Skip to main content

Pointing, Scanning, and Stabilization Mechanisms

  • Chapter
Principles of Infrared Technology
  • 387 Accesses

Abstract

The photon’s journey through the sensor ends with its conversion to an electronic signal at the focal plane array. During the sampling (exposure, or integration) time, where photons are collected, the line of sight must be maintained within specified limits. That is, the light gathered from a given point in the scene must be registered. Otherwise, the photons from a given point in the scene will fall on and be recorded by pixels that are supposed to represent different parts of the scene. Similarly, in many applications, the stability of the scene with respect to the focal plane must also be maintained between frames. It is frequently required that both these criteria be met while the sensor is attached to a vibrating platform. The function of controlling and stabilizing the optical line of sight (LOS) falls to the servo/gimbal subsystem, which plays a significant part in determining overall infrared sensor performance, cost, and schedule.

“The trouble with nude dancing is that not everything stops when the music stops.”

Sir Robert Helpmann

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Neal and C. Overy. 1991. “Rapid Retargeting and Precision Pointing.” Martin Marietta Astronautics Group Journal 2:36–44.

    Google Scholar 

  2. K. Ogata. 1970. Modern Control Engineering. Englewood Cliffs: Prentice Hall, Inc.

    Google Scholar 

  3. D. Neal and C. Overy. 1991. “Rapid Retargeting and Precision Pointing.” Martin Marietta Astronautics Group Journal 2:36–44.

    Google Scholar 

  4. Ibid.

    Google Scholar 

  5. J. How, E. Anderson, D. Miller, and S. Hall. 1991. “High Bandwidth Control For Low Area Density Deformable Mirrors.” Proc. SPIE 1489:148–161.

    Article  Google Scholar 

  6. R. Medbery and L. Germann. 1991. “Specifications of Precision Optical Pointing Systems.” Proc. SPIE 1489:163–176.

    Article  Google Scholar 

  7. L. Germann and J. Braccio. November 1990. “Fine Steering Mirror Technology Supports 10 Nanoradian Systems.” Optical Engineering, 1351–1359.

    Google Scholar 

  8. R. Medbery and L. Germann. 1991. “Specifications of Precision Optical Pointing Systems.” Proc. SPIE 1489:163–176.

    Article  Google Scholar 

  9. B. Ulich. 1988. “Overview of Acquisition, Tracking and Pointing System Technologies.” Proc. SPIE 887:40–63.

    Article  Google Scholar 

  10. C. Stanton et al. 1987. “Optical Tracking Using Charge Coupled Devices.” Optical Engineering 29:930–938.

    Google Scholar 

  11. R. Medbery and L. Germann. 1991. “Specifications of Precision Optical Pointing Systems.” Proc. SPIE 1489:163–176.

    Article  Google Scholar 

  12. J. Galvagni. November 1990. “Electrostrictive Actuators and Their Use in Optical Applications.” Optical Engineering 29:1389–1389.

    Article  Google Scholar 

  13. Ibid.

    Article  Google Scholar 

  14. S. Cross. 1989. “Piezoelectric and Electrostrictive Sensors and Actuators for Adaptive Structures and Smart Materials.” Proc. ASME Ad-Vol 15.

    Google Scholar 

  15. C. O’Neill and C. O’Neill. November 1990. “Ferroelectric Actuators in the Electromechanical Interface.” Optical Engineering 29:1383–1387.

    Article  Google Scholar 

  16. R. Sinnott. May 1989. “The Amazing Stepper Motor.” Sky & Telescope, 554–557.

    Google Scholar 

  17. R. Kline-Schoder and M. Wright. 1991. “Design and Analysis of a Dither Mirror Control System,” Proc. SPIE 1489:189–200.

    Article  Google Scholar 

  18. B. Ulich. 1988. “Overview of Acquisition, Tracking and Pointing System Technologies.” Proc. SPIE 887:40–63.

    Article  Google Scholar 

  19. Ibid.

    Article  Google Scholar 

  20. D. Wulich and N. Kopeika. June 1987. “Image Resolution Limits Resulting From Mechanical Vibrations.” Optical Engineering, 529–533.

    Google Scholar 

  21. Ibid.

    Google Scholar 

  22. J. Fawcett. 1991. “Lightweight Surveillance FLIR.” Proc. SPIE 1498:82–91.

    Article  Google Scholar 

  23. R. Cochran and R. Vassar. 1990. “Fast Steering Mirrors in Optical Control Systems.” Proc. SPIE 1303:245–51.

    Article  Google Scholar 

  24. R. Kline-Schoder and M. Wright. 1991. “Design and Analysis of a Dither Mirror Control System,” Proc. SPIE 1489:189–200.

    Article  Google Scholar 

  25. K. Liddaird. 1988. “Technical Note: A Novel Focal Plane Scanning Technique.” Infrared Physics 28:195–197.

    Article  Google Scholar 

  26. R. Medbery and L. Germann. 1991. “Specifications of Precision Optical Pointing Systems.” Proc. SPIE 1489:163–176.

    Article  Google Scholar 

  27. W. Wolfe and G. Zissis, eds. 1985. The Infrared Handbook. Ann Arbor: ERIM, 22–11.

    Google Scholar 

  28. Ibid.

    Google Scholar 

  29. 1993. Information courtesy of Dornier.

    Google Scholar 

  30. A. Gupta, C. Van Houten, and L. Germann. 1990. “Attitude Determination for High Accuracy Submicron Jitter Pointing on Space Based Platforms.” Proc. SPIE 1303: 336–349.

    Article  Google Scholar 

  31. C. Pertit. 1991. “Line of Sight Stabilization, Sensor Blending.” Proc. SPIE 1498: 278–287.

    Google Scholar 

  32. L. Germann and A. Gupta. April 1990. “Inertially Referenced Pointing for Body Fixed Payloads.” Technical Symposium on Optical Engineering and Photonics in Aerospace Sensing.

    Google Scholar 

  33. R. Medbery and L. Germann. 1991. “Specifications of Precision Optical Pointing Systems.” Proc. SPIE 1489:163–176.

    Article  Google Scholar 

  34. L. Germann and J. Braccio. November 1990. “Fine Steering Mirror Technology Supports 10 Nanoradian Systems.” Optical Engineering, 1351–1359.

    Google Scholar 

  35. W. Goltos and M. Holz. November 1990. “Agile Beam Steering Using Binary Optics Microlens Arrays.” Optical Engineering, 29:1392–1397.

    Article  Google Scholar 

  36. L. Germann and J. Braccio. November 1990. “Fine Steering Mirror Technology Supports 10 Nanoradian Systems.” Optical Engineering, 1351–1359.

    Google Scholar 

  37. S. Gleckler, B. Ulich, S. Shepard, and J. Conklin. 1990. “Surface Control Techniques for Large Segmented Mirrors.” Proc. SPIE 1303:288–298.

    Article  Google Scholar 

  38. S. William. March 9, 1992. “Black World Engineers, Scientists Encourage Using Highly Classified Technology for Civil Applications.” Aviation Week and Space Technology, 66–7.

    Google Scholar 

  39. “Rubber Mirrors Are Reshaping The Universe.” SDI High Technology Update. Vol. 1, no. 3.

    Google Scholar 

  40. A. Meinel and M. Meinel. November 1992. “Two Stage Optics: High-Acuity Performance From Low-Acuity Optical Systems.” Optical Engineering, 2271–2281.

    Google Scholar 

  41. M. Janosky. November 1990. “Development of a Lightweight Active Optic System for a Spaceborne Relay Mirror Application.” Optical Engineering 29:1328–1332.

    Article  Google Scholar 

  42. J. How, E. Anderson, D. Miller, and S. Hall. 1991. “High Bandwidth Control For Low Area Density Deformable Mirrors.” Proc. SPIE 1489:148–162.

    Article  Google Scholar 

  43. B. Magrath. November 1990. “Optical Astronomy Looks to the Future.” Astronomy, 35–43.

    Google Scholar 

  44. November 1991. “Japan’s 8 Meter Telescope.” Sky & Telescope, 456.

    Google Scholar 

  45. B. Martin, J. Hill, and R. Angel. March 1991. “The New Ground Based Optical Telescopes.” Physics Today, 22–30.

    Google Scholar 

  46. Ibid.

    Google Scholar 

  47. S. Gleckler, B. Ulich, S. Shepard, and J. Conklin. 1990. “Surface Control Techniques for Large Segmented Mirrors.” Proc. SPIE 1303:288–298.

    Article  Google Scholar 

  48. A. Tebo. December 1991. “Adaptive Optics: The Promise For High Resolution Ground Based Astronomy.” OE Reports, 14.

    Google Scholar 

  49. Ibid.

    Google Scholar 

  50. B. Welsh. December 1, 1991. “Image Performance Analysis of Adaptive Optical Telescopes Using Laser Guide Stars.” Applied Optics, 5021–5030.

    Google Scholar 

  51. A. Tebo. December 1991. “Adaptive Optics: The Promise For High Resolution Ground Based Astronomy.” OE Reports, 14.

    Google Scholar 

  52. R. Reintjes. December 1988. “Nonlinear and Adaptive Techniques Control Laser Wavefronts.” Laser Focus, 63–78.

    Google Scholar 

  53. July 1989. “Active-Optics Camera Tested.” Sky & Telescope, 12–13.

    Google Scholar 

  54. C. Powell. November 1991. “Mirroring The Cosmos.” Scientific American, 112–123.

    Google Scholar 

  55. A. Tebo. December 1991. “Adaptive Optics: The Promise For High Resolution Ground Based Astronomy.” OE Reports, 14.

    Google Scholar 

  56. C. Powell. November 1991. “Mirroring The Cosmos.” Scientific American, 112–123.

    Google Scholar 

  57. A. Tebo. December 1991. “Adaptive Optics: The Promise For High Resolution Ground Based Astronomy.” OE Reports, 14.

    Google Scholar 

  58. January 6, 1992. “Livermore Technology May Boost Detail of Earth Bound Astronomy.” Aviation Week and Space Technology, 57.

    Google Scholar 

  59. B. Welsh. December 1, 1991. “Image Performance Analysis of Adaptive Optical Telescopes Using Laser Guide Stars.” Applied Optics, 5021–5030.

    Google Scholar 

  60. C. Powell. November 1991. “Mirroring The Cosmos.” Scientific American, 112–123.

    Google Scholar 

  61. January 6, 1992. “Livermore Technology May Boost Detail of Earth Bound Astronomy.” Aviation Week and Space Technology, 57.

    Google Scholar 

  62. J. Kirkhart. November 1991. “Adaptive Optics.” Ad Astra, 40–42.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Van Nostrand Reinhold

About this chapter

Cite this chapter

Miller, J.L. (1994). Pointing, Scanning, and Stabilization Mechanisms. In: Principles of Infrared Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7664-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7664-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7666-2

  • Online ISBN: 978-1-4615-7664-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics