Skip to main content

Monolayer Molecular Recognition Sites as a Basis for Biosensor Development

  • Chapter
  • 229 Accesses

Abstract

All molecular recognition systems must possess some, at least, of the three important attributes essential for their functionality; these are: complementarity of size, shape and chemical affinity. Present efforts to develop molecular recognition systems by chemists have relied largely on production of compounds which operate on the basis of the functional complementarity of specific interactions between chemical entities. The more biological approaches (i.e. biomimetic enzyme systems) must stress, as well, the size- and shape- topospecificty of the system. In both cases, however, extensive and involved synthesis of the system is usually required. Described here are molecular recognition systems based on simple monolayer constructions, applicable to a wide range of molecules and capable of being prepared by simple procedures. These systems rely exclusively on the size/shape topospecificity of the target and template molecule, although future efforts will be directed quite probably to the problem of specific chemical group interactions between guest molecules and surrounding matrix material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Sagiv, J. Am. Chem. Soc., 102:92 (1980).

    Article  CAS  Google Scholar 

  2. J. Sagiv, Isr. J. Chem., 18:339 (1979).

    CAS  Google Scholar 

  3. J. Sagiv, Isr. J. Chem., 18:346 (1979).

    CAS  Google Scholar 

  4. J.-H. Kim, T. M. Cotton and R. A. Uphaus, Thin Solid Films. 160:389 (1988). Cf: Abstracts. Third International Conference on Langmuir- Blodgett Films, Götingen, FRG, July, 1987.

    Article  CAS  Google Scholar 

  5. R. A. Uphaus, T. M. Cotton and D. Möbius, Thin Solid Films. 132:173 (1985).

    Article  CAS  Google Scholar 

  6. T. M. Cotton, R. A. Uphaus and D. Möbius, Phys. Chem., 90:6071 (1986)

    Article  CAS  Google Scholar 

  7. J.-H. Kim, T. M. Cotton and R. A. Uphaus, J. Phys. Chem., 92:5575 (1988).

    Article  CAS  Google Scholar 

  8. Tabushi, K. Kurihara, K. Naka, K. Yamamura and H. Hatakeyama, Tetrahedron Lett., 28:4299 (1987).

    Article  CAS  Google Scholar 

  9. K. Yamamura, H. Hatakeyama, K. Naka, I. Tabushi and K. Kurihara, J. Soc., Chem. Commun., 79 (1988).

    Google Scholar 

  10. K. Yamamura, H. Hatakeyama and I. Tabushi, Chem. Lett., 99 (1988).

    Google Scholar 

  11. H Ho, J. Chem. Soc., Chem. Commun., 417 (1988).

    Google Scholar 

  12. G. Wulff, ACS Svmp. Ser., 308:186 (1986).

    Article  CAS  Google Scholar 

  13. K. J. Shea and T. K. Dougherty, J. Am. Chem. Soc., 108:1091 (1986)

    Article  CAS  Google Scholar 

  14. B. Hille, “Ionic Channels of Excitable Membranes,” P. 225. Sinauer Associates, Sunderland Massachusetts (1984).

    Google Scholar 

  15. C. Miller (Editor), “Ion Channel Reconstitution, ”Plenum Press, New York, (1986).

    Google Scholar 

  16. C. L. Schauf, Sci. Prog. Oxf., 71:459 (1987).

    CAS  Google Scholar 

  17. E.K. Michaelis, W. L. Chittenden, B. E. Johnson, N. Galton and C. Decedue, J. Neurochem., 42:397 (1984).

    Article  CAS  Google Scholar 

  18. H. Sugawara, K. Kojima, H. Sazawa and Y. Umezawa, Anal. Chem., 59:2842 (1987)

    Article  CAS  Google Scholar 

  19. G. Spach, Y. Merle and G. Molle, J. Chim. Phys., 82:719 (1985).

    CAS  Google Scholar 

  20. J. D. Lear, Z. R. Zimmerman and W. F. DeGrado, Science. 240:1177 (1988).

    Article  CAS  Google Scholar 

  21. K. S. Birdi and V. S. Gevod, Coll. Polvmer Sci., 265:257 (1987).

    Article  CAS  Google Scholar 

  22. C. Peracchia and L. L. Peracchia, J. Cell. Biol., 87:719 (1980).

    Article  CAS  Google Scholar 

  23. M. B. Gorin, B. Yancey, J. Cline, J.-P. Revel and J. Horwitz, Cell. 39:49 (1984).

    Article  CAS  Google Scholar 

  24. Simpson, Rose and W. R. Loewenstein, Science, 195:294 (1977)

    Article  CAS  Google Scholar 

  25. B M. M. Gooden, L. J. Takemoto and D. A. Rintoul, Curr. Eye Res., 4:1107 (1985).

    Article  CAS  Google Scholar 

  26. P. Russell, and J. Kinoshita, Exp. Eve Res., 32:511 (1981)

    Article  CAS  Google Scholar 

  27. J.-H. Kim, T. M. Cotton and R. A. Uphaus, Thin Solid Films. 159:141 (1988).

    Article  CAS  Google Scholar 

  28. F. Ni and T. M. Cotton, J. Raman Spectroscopy, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Kim, JH., Schufeldt, D.M., Cotton, T.M., Uphaus, R.A., Rintoul, D.A. (1989). Monolayer Molecular Recognition Sites as a Basis for Biosensor Development. In: Hong, F.T. (eds) Molecular Electronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7482-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7482-8_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7484-2

  • Online ISBN: 978-1-4615-7482-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics