Skip to main content

Molecular Sensor Based on Olfactory Transduction

  • Chapter
Molecular Electronics

Abstract

The initial step in odor perception by an olfactory system is the momentary binding of odorant molecules to receptor sites of olfactory receptor cells. The interaction between odorant molecules and some receptor sites is highly specific. Humans and animals can discriminate between odorants with a high degree of molecular similarity, for example, between optical isomers. The olfactory system is capable of responding at threshold to very small concentrations of airborne chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Vodyanoy and R. B. Murphy, Single channel fluctuation in lipid biomolecular lipid membranes induced by rat olfactory epithelial homogenates, Science. 220:717 (1983).

    Article  CAS  Google Scholar 

  2. V. Vodyanoy, and R. B. Murphy, Solvent-free lipid bimolecular membranes of large surface area, Biochem. Biophys. Acta. 687:189 (1982).

    Article  CAS  Google Scholar 

  3. V. Vodyanoy, P. Halverson, and R. B. Murphy, Hydrostatic stabilization of solvent free lipid bimolecular membranes, J. Coll. Inter. Sci., 88:247 (1982)

    Article  CAS  Google Scholar 

  4. U. Wilmsen, C. Methfessel, W. Hanke, and G. Boheim, in: “Physical Chemistry of Transmembrane Ion Motions,” G. Troyanowsky, ed., p. 479, Elsevier, Amsterdam (1983).

    Google Scholar 

  5. V. Vodyanoy, Cyclic nucleotide-gated electrical activity in olfactory receptors, in: “Receptor and Transduction Mechanisms in Taste and Olfaction,” Joseph G. Brand, and John H. Teeter, eds., p. 319, Marcel Dekker, New York (1989).

    Google Scholar 

  6. C.J. Kerry, K. S. Kits, R. L. Ramsey, M. S. P. Sansom, and N. R. Usher- wood. Single channel kinetics of a glutamate receptor, Biophys. J., 51:137 (1987).

    Article  CAS  Google Scholar 

  7. W. Van Dronglen, Unitary recordings of near threshold responses of receptor cells in the olfactory mucosa of the frog, J. Physiol., 277:424 (1978).

    Google Scholar 

  8. V. Vodyanoy, I. Vodyanoy, N. Fedorovich, Current-voltage characteristics of bimolecular phospholipid membranes modified by iodine, Soviet Phys. Semicond., 5:604 (1971).

    Google Scholar 

  9. J. Z. Yeh, G. S. Oxford, C. H. Wu, and T. Narahashi, Dynamics of aminoyridine block of potassium channels in squid axon membrane, J. Gen. Physiol., 68:519 (1976).

    Article  CAS  Google Scholar 

  10. V. Vodyanoy and I. Vodyanoy, ATP and GTP are essential for olfactory response, Neurosci. Lett., 73:253 (1987).

    Article  CAS  Google Scholar 

  11. Y. Umezawa, M. Kataoka, M. Sugawara, H. Abe, K. Kojima, M. Takinami, H. Sazawa, and Y. Yasuda, Immunosensor systems using liposomes and planar lipid bilayer membranes for ion-channel model sensors, in: “Biosensors International Workshop,” R. D. Schmid, ed., p. 127, VCH Publishers, New York (1987).

    Google Scholar 

  12. V. Vodyanoy, Olfactory sensor, in: “IEEE 1988 Engineering in Medicine and Biology,” F. Harris, and C. Walker, eds., pp. 997–998, Core Communications, Arlington, VA (1988).

    Google Scholar 

  13. R. M. Cohen and J. Janata, Measurement of excess charge at polarized electrodes with field effect transistors, Electroanal. Chem., 151:41.

    Google Scholar 

  14. K. K. Likharev, Single-electron transistors: electrostatic analog of the dc squids, IEEE Trans. Magnet., 23(2):1142 (1987).

    Article  Google Scholar 

  15. S. P. Fracek, G. W. Gross and R. Schäfer, An in vitro neural network model of the olfactory system. Abstracts 17th Annual Meeting Soc. Neurosci., 13(2):1409 (1987).

    Google Scholar 

  16. D. Lancet, Vertebrate olfactory reception, Ann. Rev. Neurosci., 9:329 (1986).

    Article  CAS  Google Scholar 

  17. F. Patte, M. Etcheto, and P. Laffort. Selected and standardized values of suprathreshold odor intensities for 110 substances, Chem. Senses Flavour., 1:238 (1975).

    Article  Google Scholar 

  18. J. E. Amoore, R. G. Buttery, Partition coefficient and comparative olfactometry, Chem. Senses Flavour., 3:57 (1978).

    Article  CAS  Google Scholar 

  19. T. S. Reese, Olfactory cilia in frog, J. Cell Biol., 25:209 (1965).

    Article  CAS  Google Scholar 

  20. G. M. Shepherd, Synaptic organization of the mammalian olfactory bulb, Physiol. Rev., 52:864 (1972).

    CAS  Google Scholar 

  21. R. J. O’Connel, and R. J. Mozel, Quantitative stimulation of frog olfactory receptors, J. NeuroPhys., 32:51 (1969).

    Google Scholar 

  22. D. Ottoson, Analysis of the electrical activity of the olfactory epithelium, Acta physiol. scand. 35 suppl., 122:1 (1956).

    Google Scholar 

  23. D. Ottoson, The Electro-olfactogram, in: “Handbook of Sensory Physiology. IV. Chemical Senses. I. Olfaction,” L. M. Beidler, ed., pp. 96–131, Springer-Verlag, Berlin (1971).

    Google Scholar 

  24. B. Ph. M. Menco, Qualitative and quantitative freeze-fracture studies on olfactory and nasal respiratory epithelial surfaces of frog, ox, rat and dog. II. Cell apices, cilia and microvilli. Cell Tissue Res., 211:5 (1980).

    Google Scholar 

  25. T. V. Getchell, F. L. Margolis, and M. L. Getchell, Perireceptor and receptor events in vertebrate olfaction. Prog. NeuroBiol., 23:317.

    Google Scholar 

  26. M. King, Viscoelastic properties of airway mucus. Fed. Proc., 39:3080 (1980).

    CAS  Google Scholar 

  27. J. A. DeSimone, G. L. Heck and S. Price, Physicochemical aspects of transduction by chemoreceptor cell, in: “Perception of Behavioral Chemicals,” D. Norris, ed., pp. 205–225, Elsevier, New York (1981).

    Google Scholar 

  28. T. V. Getchell, Functional properties of vertebrate olfactory receptor neurons, Physiol. Rev., 66:772 (1986).

    CAS  Google Scholar 

  29. Z. Chen and D. Lancet, Membrane proteins unique to vertebrate olfactory cilia: candidates for sensory receptor molecules, Proc. Natl. Acad. Sci. USA. 81:1859 (1984).

    Article  CAS  Google Scholar 

  30. J. N. Gennings, D. B. Gower, and L. H. Bannister, Studies on the receptors to 5a-androst-16-en-3-one and 5a-androst-16–3n-3a-ol in sow nasal mucosa, Biochim. Biophvs Acta. 496:547 (1977).

    Article  CAS  Google Scholar 

  31. S. Price, Anisole binding protein from dog olfactory epithelium, Chem. Senses Flavour., 3:51 (1978).

    Article  CAS  Google Scholar 

  32. J. Pevsner, R. R. Trifiletti, S. M. Strittmatter, and S. H. Snyder, Isolation and Characterization of an olfactory receptor protein for odorant pyrazines, Proc. Natl. Acad Sci. USA. 82:3059 (1985).

    Article  Google Scholar 

  33. F. L. Margolis, Biochemical markers of the primary olfactory pathway: A model neural system, in: “Advances in Neurochemistry,” Vol. 1, B. W. Agranoff, and M. H. Aprison, eds., pp. 193–246, Plenum Press, New York (1975).

    Google Scholar 

  34. U. Pace and D. Lancet, Olfactory GTP-binding proteins: signal-transducing polypeptide of vertebrate chemosensory neurons, Proc. Natl. Acad. Sci. USA. 83:4947 (1986).

    Article  CAS  Google Scholar 

  35. Z. Chen, U. Pace, J. Heldman, A. Shapira, and D. Lancet, Isolated Frog olfactory cilia: a preparation of dendritic membranes from chemosensory neurons, J. Neurosci., 6(8):2146 (1986).

    CAS  Google Scholar 

  36. W. J. Freeman, A physiological hypothesis of perception, Perspect. Biol. M., 561 (1981).

    Google Scholar 

  37. J. E. Amoore, Olfactory genetics and anosmia, Handb. Sensory Physiol., 4(1):245 (1971).

    Article  Google Scholar 

  38. J. Pevsner, R. R. Reed, P. G. Feinstein, S. H. Snyder, Molecular cloning of odorant-binding protein: member of a ligand carrier family, Science. 241:336 (1988).

    Article  CAS  Google Scholar 

  39. R. H. Anholt, Primary events in olfactory reception. Trends Biochem. Sci., 12(2):58 (1987).

    Article  CAS  Google Scholar 

  40. R. A. Maue and V. E. Dionne, Patch-clamp studies of isolated mouse olfactory receptor neurons, J. Gen. Physiol., 90:95 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Vodyanoy, V. (1989). Molecular Sensor Based on Olfactory Transduction. In: Hong, F.T. (eds) Molecular Electronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7482-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7482-8_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7484-2

  • Online ISBN: 978-1-4615-7482-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics