Skip to main content

Biological Photosensors: Phytochrome and Stentorin

  • Chapter
Molecular Electronics
  • 226 Accesses

Abstract

Living organisms possess extremely sensitive sensors by which the organisms are capable of probing their various environmental signals such as chemicals (Chemotaxis), heat (thermotaxis), gravitational force (gravitropism), magnetic field (magnetotaxis) and radiation (phototaxis, photophobic response, etc.). In this chapter, we discuss two examples of the biological radiation sensors, namely, phytochrome in plants and stentorin in an aneural unicellular protozoan ciliate Stentor coeruleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beychok, S., 1966, Circular dichroism of biological macromolecules. Science. 154:1288.

    Article  CAS  Google Scholar 

  • Braslavsky, S. E., Al-Ekabi, H., Petrier, C., and Schaffner, K., 1985, Phytochrome models. 9. Conformation selectivity of the photocyclization of the biliverdin IXr and IXd dimethyl esters, Photochem. Photobiol., 41:237.

    Article  CAS  Google Scholar 

  • Chai, Y. G., Song, P. S., Cordonnier, M.-M., and Pratt, L. H., 1987, A photoreversible circular dichroism spectral change in oat phytochrome is suppressed by a monoclonal antibody that binds near its N-terminus and by chromophore modification, Biochemistry. 26:4947.

    Article  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1978, Empirical predictions of protein conformation, Annu. Rev. Biochem., 47:251.

    Article  CAS  Google Scholar 

  • Ekelund, N. G. A., Sundqvist, C., Quail, P. H. and Vierstra, R. D., 1985, Chromophore rotation in 124-kilodalton Avena phytochrome as measured by light-induced changes in linear dichroism, Photochem. Photobiol., 41:221.

    Article  CAS  Google Scholar 

  • Furuya, M., ed., 1987, “Phytochrome and Photoregulation in Plants”, in press, Academic Press, New York and Tokyo.

    Google Scholar 

  • Hahn, T. R., and Song, P. S., 1981, The hydrophobic properties of phytochrome as probed by 8-anilinonaphthalene 1-sulfonate fluorescence, Biochemistry. 20:2602.

    Article  CAS  Google Scholar 

  • Hahn, T. R., Song, P. S., Quail, P. H., and Vierstra, R. D., 1984, Tetranitromethane oxidation of phytochrome chromophore as a function of spectral form and molecular weight, Plant Physiol., 74:755.

    Article  CAS  Google Scholar 

  • Heihoff, K., Braslavsky, S. E., and Schaffner, K., 1987, Study of 124-kilo-dalton oat phytochrome photoconversion in vitro with laser-induced optoacoustic spectroscopy. Biochemistry. 26:1422.

    Article  CAS  Google Scholar 

  • Hershey, H. P., Barker, R. F., Idler, K. B., Lissemore, J. L., and Quail, P. H., 1985, Analysis of cloned cDNA and genomic sequences for phytochrome: complete amino acid sequences for two gene products expressed in etiolated Avena, Nucleic Acids Res., 13:8543.

    Article  CAS  Google Scholar 

  • Holzwarth, A. R., Wendler, J., Ruzsicska, R. P., Braslavsky, S. E., and Schaffner, K., 1984, Picosecond time-resolved and stationary fluorescence of oat phytochrome highly enriched in the native 124 kDa protein, Biochim. Biophys. Acta. 791:265.

    Article  CAS  Google Scholar 

  • Inoue, Y., 1986, Round-table discussion, S3rmp. on Phytochrome and Photoregulation in Plants, sssOkazaki, Japan.

    Google Scholar 

  • Jones, A. M., and Quail, P. H., 1986, Quaternary structure of 124-kilodalton phytochrome from Avena sativa L., Biochemistry. 25:2987.

    Article  CAS  Google Scholar 

  • Kendrick, R. E., 1983, The physiology of phytochrome action, in: “The Biology of Photoreception,” D. Gosens and D. Vince-Prue, eds., Cambridge University Press, Cambridge, pp. 275–303.

    Google Scholar 

  • Lagarias, J. C., and Mercurio, F. M., 1985, Structure-function studies of phytochrome. Identification light-induced conformational changes in 124-kDa Avena phytochrome in vitro, J. Biol. Chem., 260:2415.

    CAS  Google Scholar 

  • Lagarias, J. C., Kelly, J. M., Cyr, K. L., and Smith, W. O., 1987, Comparative photochemical analysis of highly purified 124 kilodalton oat and rye phytochromes in vitro, Photochem. Photobiol. 46:5.

    Article  CAS  Google Scholar 

  • Lamppa, G. K., Morelli, G., and Chua, N. H., 1985, Structure and developmental regulation of a wheat gene encoding the major chlorophyll a/b- binding polypeptide. Mol. Cell. Biol., 5:1370.

    CAS  Google Scholar 

  • Pratt, L. H., 1986, Phytochrome: localization within the plant, in: “Photomorphogenesis in Plants,” R. E. Kendrick and G. H. M. Kronenberg, eds., Martinas Nijhoff, Dordrecht, pp. 61–81.

    Google Scholar 

  • Pratt, L. H., Inoue, Y. , and Furuya, M. , 1984, Photoactivity of transient intermediates in the pathway from the red-absorbing to the far-red-absorbing form of Avena phytochrome as observed by a double-flash transient-spectrum analyzer, Photochem. Photobiol., 39:241.

    Article  Google Scholar 

  • Quail, P. H., Barker, R. F., Colber, J. T., Daniels, S. M., Hershey, H. P., Idler, K. B. , Jones, A. M., and Lissemore, J. L., 1987, Structural features of the phytochrome molecule and feedback regulation of the expression of its genes in Avena, in: “Molecular Biology of Plant Growth Control,” J. F. Fox and M. Jacobs, eds., Alan R. Liss, New York, pp. 425–439.

    Google Scholar 

  • Roux, S. J., 1983, A possible role of Ca in mediating phytochrome responses, in: “The Biology of Photoreception,” D. Gosens and D. Vince-Prue, eds., Cambridge University Press, Cambridge, pp. 561–508.

    Google Scholar 

  • Rüdiger, W., Thuemmler, F., Cmiel, E., and Schneider, S., 1983, Chromophore structure of the physiologically active form (Pfr) of phytochrome, Proc. Natl. Acad. Sci. USA. 80:6244.

    Article  Google Scholar 

  • Ruzsicska, B. P., Braslavsky, S. E., and Schaffner, K., 1985, The kinetics of the early stages of the phytochrome transformation Pr Pfr. A comparative study of small (60 kDalton) and native (124 kDalton) phytochromes from oat, Photochem. Photobiol., 41:681.

    Article  CAS  Google Scholar 

  • Schaefer, E., and Briggs, W. R., 1986, Photomorphogenesis from signal perception to gene expression, Photobiochem. Photo biophys., 12:305.

    CAS  Google Scholar 

  • Song, P. S., 1981, Photosensory transduction in Stentor coeruleus and related organisms, Biochim. Biophys. Acta. 639:1.

    CAS  Google Scholar 

  • Song, P. S., 1983, Protozoan and related photoreceptors: Molecular aspects, Annu. Rev. Biophys. Bioengin., 12:35.

    Article  CAS  Google Scholar 

  • Song, P. S., 1985, Primary molecular events in aneural cell photoreception, in: “Sensory Perception and Transduction in Organisms,” G. Colombetti, F. Lenci and P. S. Song, eds., Plenum, London, pp. 47–59.

    Chapter  Google Scholar 

  • Song, P. S., 1988, The molecular topography of phytochrome: Chromophore and apoprotein, J. Photochem. Photobiol., Part B. 2:43.

    Article  CAS  Google Scholar 

  • Song, P. S., Chae, Q., and Gardner, J. G., 1979, Spectroscopic properties and chromophore conformations of the photomorphogenic receptor: Phytochrome, Biochim. Biophys. Acta. 576:479.

    CAS  Google Scholar 

  • Song, P. S., Tamai, N., and Yamazaki, I., 1986, Viscosity dependence of pri mary photoprocesses of 124 kdalton phytochrome, Biophys. J., 49:645.

    Article  CAS  Google Scholar 

  • Tokutomi, S., Inoue, Y., Sato, N., Yamamoto, K. T., and Furuya, M., 1986, Effect of pH on absorption spectra of pea 114 and 121 kilodalton phytochromes during and after red-light irradiation, Plant Cell. Physiol., 27: 765.

    CAS  Google Scholar 

  • Tokutomi, S., Yamamoto, K. T., Miyoshi, Y., and Furuya, M., 1982, Photoreversible changes in pH of pea phytochrome solution, Photochem. Photobiol. 35:431.

    Article  CAS  Google Scholar 

  • Walker, E. B., Lee, T. Y., and Song, P. S., 1979, Spectroscopic characterization of the Stentor photoreceptor, Biochim. Biophys. Acta. 587:129.

    Article  CAS  Google Scholar 

  • Yang, K. C., Prusti, R. K., Walker, E. B., Song, P. S., Watanabe, M., and Furuya, M., 1986, Photodynamic action in Stentor coeruleus sensitized by endogenous pigment stentorin, Photochem. Photobiol., 43:305.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Song, PS. (1989). Biological Photosensors: Phytochrome and Stentorin. In: Hong, F.T. (eds) Molecular Electronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7482-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7482-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7484-2

  • Online ISBN: 978-1-4615-7482-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics