Skip to main content

An Electrochemical Approach to the Design of Membrane-Based Molecular Optoelectronic Devices

  • Chapter
Molecular Electronics

Abstract

Many prototype molecular optoelectronic devices utilize a membrane or a thin film as the substrate in which photoactive elements are embedded.1,2 This type of design strategy is implemented in nature as photosynthetic and visual membranes (for reviews, see Refs. 3–6). Thus, insights into the operating mechanisms in these structures via “reverse engineering” may be useful in the development of molecular devices. Not only can the associated biopigments be exploited as bioelectronic materials, but a better understanding of the fundamental design principle of these structures can also inspire new strategies to build novel devices from synthetic organic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Sugi, Langmuir-Blodgett films for molecular electronics — recent trends in Japan, in: “Molecular Electronic Devices,” F. L. Carter, R. E. Siatkowski, and H. Wohltjen, eds., pp. 441–463, North-Holland, Amsterdam (1988).

    Google Scholar 

  2. H. T. Tien, Ultrathin bilayer film: an experimental approach to biomolecular electronic devices, in: “Molecular Electronic Devices,” F. L. Carter, R. E. Siatkowski, and H. Wohltjen, eds., pp. 209–226, North-Holland, Amsterdam (1988).

    Google Scholar 

  3. J. Barber, Photosynthetic electron transport in relation to thylakoid membrane composition and organization. Plant Cell Environ. 6:311–322 (1983).

    Article  CAS  Google Scholar 

  4. J. Delsenhofer, H. Michel, and R. Huber, The structural basis of photo synthetic light reactions in bacteria. Trends Biochem. Sci. 10:243–248 (1985).

    Article  Google Scholar 

  5. L. Stryer, The molecules of visual excitation. Sci. Am. 257(1) 42–50 (1987).

    CAS  Google Scholar 

  6. H. Shichi, Visual phototransduction: biochemical aspects, this volume.

    Google Scholar 

  7. L. A. Drachev, A. Yu. Semenov, V. P. Skulachev, I. A. Smirnova, S. K. Chamorovsky, A. A. Kononenko, A. B. Rubin, and N. Ya. Uspenskaya, Fast stages of photoelectric processes in biological membranes. III. bacterial photosynthetic redox system, Eur. J. Biochem. 117, 483–489 (1981).

    Article  CAS  Google Scholar 

  8. L. A. Drachev, G. R. Kalamkarov, A. D. Kaulen, M. A. Ostrovsky, and V. P. Skulachev, Fast stages of photoelectric processes in biological membranes, II. visual rhodopsin, Eur. J. Biochem. 117:471–481 (1981).

    Article  CAS  Google Scholar 

  9. T. F. Shevchenko, G. R. Kalamkarov, and M. A. Ostrovsky, The lack of H+ transfer across the photoreceptor membrane during rhodopsin photolysis, Sensory Systems (USSR Acad. Sci.) 1:117–126 (1987).

    CAS  Google Scholar 

  10. W. Stoeckenius, Light energy transducing and signal transducing rhodopsins of Halobacteria, this volume.

    Google Scholar 

  11. K. T. Brown and M. Murakami, A new receptor potential of the monkey retina with no detectable latency. Nature London 201:626–628 (1964).

    Article  CAS  Google Scholar 

  12. H.-W. Trissl and M. Montal, Electrical demonstration of rapid lightinduced conformational changes in bacteriorhodopsin. Nature (London) 266:655–657 (1977).

    Article  CAS  Google Scholar 

  13. S.-B. Hwang, J. I. Korenbrot, and W. Stoeckenius, Transient photovoltages in purple membrane multilayers: charge displacement in bacteriorhodop- sin and its photointermediates, Biochim. Biophvs. Acta 509:300–317 (1978).

    Article  CAS  Google Scholar 

  14. L. A. Drachev, A. D. Kaulen, L. V. Khitrina, and V. P. Skulachev, Fast stages of photoelectric processes in biological membranes, I. bacteriorhodopsin, Eur. J. Biochem. 117:461–470 (1981).

    Article  CAS  Google Scholar 

  15. F. T. Hong and M. Montal, Bacteriorhodopsin in model membranes: a new component of the displacement photocurrent in the microsecond time scale, Biophvs. J. 25:465–472 (1979).

    Article  CAS  Google Scholar 

  16. F. T. Hong, Effect of local conditions on heterogeneous reactions in the bacteriorhodopsin membrane: an electrochemical view, J. Electrochem. Soc. 134:3044–3052 (1987).

    Article  CAS  Google Scholar 

  17. R. R. Birge and T. M. Cooper, Energy storage in the primary step of the photocycle of bacteriorhodopsin, Biophys. J. 42:61–69 (1983).

    Article  CAS  Google Scholar 

  18. A. Cooper, Energy uptake in the first step of visual excitation. Nature (London) 282:531–533 (1979).

    Article  CAS  Google Scholar 

  19. R. A. Cone and W. L. Pak, The early receptor potential, in: “Handbook of Sensory Physiology, Vol. I. Principles of Receptor Physiology,” W. R, Loewenstein, ed., pp. 345–365, Springer-Verlag, Berlin (1971).

    Chapter  Google Scholar 

  20. S. E. Ostroy, Rhodopsin and the visual process, Biochim. Biophys. Acta 463:91–125 (1977).

    CAS  Google Scholar 

  21. F. T. Hong, Mechanisms of generation of the early receptor potential revisited, Bioelectrochem. Bioenerg. 5:425–455 (1978).

    Article  CAS  Google Scholar 

  22. F. T. Hong, Charge transfer across pigmented bilayer lipid membrane and its interfaces, Photochem. Photobiol. 24:155–189 (1976).

    Article  CAS  Google Scholar 

  23. F. T. Hong and D. Mauzerall, Interfacial photoreactions and chemical capacitance in lipid bilayers, Proc. Natl. Acad. Sci. USA 71:1564–1568 (1974).

    Article  CAS  Google Scholar 

  24. T. L. Okajima and F. T. Hong, Kinetic analysis of displacement photocurrents elicited in two types of bacteriorhodopsin model membranes, Biophvs. J. 50:901–921 (1986).

    Article  CAS  Google Scholar 

  25. F. T. Hong and T. L. Okajima, Electrical double layers in pigment-containing biomembranes, in: “Electrical Double Layers in Biology,” M. Blank, ed., pp. 129–147, Plenum Press, New York (1986).

    Chapter  Google Scholar 

  26. F. T. Hong, Displacement photocurrents in pigment-containing biomem branes: artificial and natural systems, ACS Adv. Chem. Ser. 188:211–237 (1980).

    CAS  Google Scholar 

  27. F. T. Hong, The bacteriorhodopsin model membrane system as a prototype molecular computing element, BioSystems 19:223–236 (1986).

    Article  CAS  Google Scholar 

  28. F. T. Hong and T. L. Okajima, Rapid light-induced charge displacements in bacteriorhodopsin membranes: an electrochemical and electrophysiological study, in: “Biophysical Studies of Retinal Proteins,” T. G. Ebrey, H. Frauenfelder, B. Honig, and K. Nakanishi, eds., pp. 188–198, University of Illinois Press, Urbana, IL (1987).

    Google Scholar 

  29. L. A. Drachev, A. D. Kaulen, and V. P. Skulachev, Time resolution of the intermediate steps in the bacteriorhodopsin-linked electrogenesis, FEBS Lett. 87:161–167 (1978).

    Article  CAS  Google Scholar 

  30. H. Kuhn, Forrest L. Carter Lecture: organized monolayers — building blocks in constructing supramolecular devices, this volume.

    Google Scholar 

  31. D. S. Cafiso and W. L. Hubbell, Light-induced interfacial potentials in photoreceptor membranes, Biophys. J. 30:243–263 (1980).

    Article  CAS  Google Scholar 

  32. V. I. Bolshakov, G. R. Kalamkarov, and M. A. Ostrovsky, Photoinduced generation of potential on disc membrane of photoreceptor cell, Dokl. Akad. Nauk USSR 240(5):1241–1244 (1978).

    CAS  Google Scholar 

  33. U. Wilden and H. Kühn, Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites. Biochemistry 21:3014–3022 (1982).

    Article  CAS  Google Scholar 

  34. F. T. Hong, Relevance of light-induced charge displacements in molecular electronics: design principles at the supramolecular level, J. Molec. Electron.. in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Hong, F.T. (1989). An Electrochemical Approach to the Design of Membrane-Based Molecular Optoelectronic Devices. In: Hong, F.T. (eds) Molecular Electronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7482-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7482-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7484-2

  • Online ISBN: 978-1-4615-7482-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics