Skip to main content

Laser Spectroscopy of Fast KNO3 Ferroelectric Switches

  • Chapter
Book cover Laser Optics of Condensed Matter

Abstract

Raman spectroscopy of sub-micron ferroelectric films of potassium nitrate reveal qualitative changes from the bulk, which are interpreted in terms of surface electric field effects. Analogous effects have been reported by Farhi and Moch in thiourea. Possible relation to space charge effects is discussed.

Work supported in part by ARO contract number DAAL03-86-K-0053.

Work at CU supported by French Ministry for Defense

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. C. Lubensky and M. H. Rubin, Critical Phenomena in Semi-Infinite Systems: II. Mean-Field Theory, Phys. Rev. B12:3885 (1975).

    ADS  Google Scholar 

  2. D. R. Tilley and B. Zeks, Landau Theory of Phase Transitions in Thick Films, Sol. St. Commun. 49:823 (1984).

    Article  ADS  Google Scholar 

  3. K. Binder, Finite Size Effects on Phase Transitions, Ferroelectrics73:48 (1987).

    Article  Google Scholar 

  4. R. B. Godfrey, J. F. Scott, H. B. Meadows, M. Golabi, C. Araujo, and L. McMillan, Analysis of Electrical Switching in Sub-Micron Thin Films, Ferroelectrics Letters 5:167 (1986).

    Article  Google Scholar 

  5. C. Araujo, J. F. Scott, R. B. Godfrey, and L. McMillan, Analysis of Switching Transients in KNO Ferroelectric Memories, Appl. Phys. Lett. 48:1439 (1986).

    Article  ADS  Google Scholar 

  6. M. Sayer, “Fabrication and Application of Multi-Component Piezoelectric Thin Films,” Proc. 6th Int. Sym. Appl. Ferroelectrics, IEEE, New York, (1986), p.560.

    Chapter  Google Scholar 

  7. M. H. Francombe, Ferroelectric Films and Their Device Applications, Ferroelectrics 3:199 (1972).

    Article  Google Scholar 

  8. J. F. Scott, R. B. Godfrey, C. Araujo, L. D. McMillan, H. B. Meadows, and M. Golabi, “Device Characteristics of Ferroelectric Ceramic KNO Thin-Film Raw Memories.” Proc. 6th Int. Sym. Appi. Ferroelectrics, IEEE, New York, (1986), p.569

    Chapter  Google Scholar 

  9. J. F. Scott and C. A. Araujo, The Physics of Ferroelectric Memories, in “Molecular Electronics”, M. Borissov. ed., World Scientific Pub. Co., Singapore (1987), p.209

    Google Scholar 

  10. C. A. Araujo and J. F. Scott, A Novel High Speed Nonvolatile Memory Based on a Low Coercivity Ferroelectric Thin Film. Ibid, p.216.

    Google Scholar 

  11. S.Y. Wu,M.H. Francombe, and W. J. Takei, Domain Switching Effects in Epitaxial Films of Ferroelectric Bismuth Titanate, Ferroelectrics 10209 (1967).

    Article  Google Scholar 

  12. Yu. Ya. Tomashpolsky, “Ferroelectric Thin Films,” Radio and Communication Publishing Co., Moscow, (1984) (in Russian).

    Google Scholar 

  13. A. Hadni, R. Thomas, S. Ungar, and X. Gerbaux. Drastic Modifications of Electrical Properties of Ferroelectric Crystal Plates with Thickness: The Case of Triglycine Sulfate, Ferroelectrics 47:201 (1983).

    Article  Google Scholar 

  14. A. Hadni and R. Thomas, High Electric Fields and Surface Layers in Very Thin Single Crystal Plates of Triglycine Sulfate, Ferroelectrics 59:221 (1984).

    Article  Google Scholar 

  15. A. M. Glass, K. Nassau and J. W. Shrever, Evolution of Ferroelectricity in Ultrafine-Grained Pb5Ge3011 Crystallized from the Glass, J. Appl. Phys. 48, 5213 (1977).

    Article  ADS  Google Scholar 

  16. D. L. Mills, Surface Effects in Magnetic Crystals near the Ordering Temperature, Phys. Rev. B3:3887 (1971).

    ADS  Google Scholar 

  17. K. Binder, Surface Effects on Phase Transitions in Ferroelectircs and Antiferroelectrics. Ferroelectrics. 35:99 (1981).

    Article  Google Scholar 

  18. J. F. Scott, H. M. Duiker, P. D. Beale, Properties of Ceramic KNO3 Thin-Film Memories, Physica B/C (in press, 1987).

    Google Scholar 

  19. D. R. Tilley, private communication.

    Google Scholar 

  20. R. Loudon, Theory of the First-Order Raman Effect in Crystals, Proc. Roy. Soc. A275:223 (1968).

    Google Scholar 

  21. E. Burstein, S. Ushioda, A. Pinczuk, and J. F. Scott, Raman Scattering by Polaritons in Polyatomic Crystals, in: “Light Scattering Spectra of Solids,” G. B. Wright, ed., Springer, New York (1969), p.43.

    Google Scholar 

  22. P. A. Fleury and J. M. Worlock. Electric-Field-Induced Raman Scattering in SrTiO3 and KTaO3. Phys. Rev. 174:613 (1968)

    Article  ADS  Google Scholar 

  23. E. Anastassakis and E. Burstein, Electric-Field-Induced Infrared Absorption and Raman Scattering in Diamond, Phys. Rev. B2:1952 (1970)

    ADS  Google Scholar 

  24. L. J. Brillson and E. Burstein, Surface Electric-Field-Induced Raman Scattering in PbTe and SnTe, Phys. Rev. Lett. 27:808 (1971).

    Article  ADS  Google Scholar 

  25. M. Balkanski, M. K. Teng, and M. Nusimovici, Raman Scattering in KN03 Phases I, II, and III, Phys. Rev. 176:1098 (1968).

    Article  ADS  Google Scholar 

  26. J. F. Scott, Ming-sheng Zhang, Raman Spectroscopy of Submicron KNO Films, Phys. Rev. B35-.4044 (1987).

    ADS  Google Scholar 

  27. R. Farhj and P. Moch, Raman and Dielectric Susceptibility Studies in Thiourea under Electric Fields, J. Phys. C18:925 (1985).

    ADS  Google Scholar 

  28. R. Braunstein and K. Barner, Space Charge Injection into a Dipolar Glass, Sol. St. Commun. 33:941 (1980).

    Article  ADS  Google Scholar 

  29. N. W. Schubring, R. A. Dork, and J. P. Nolta, Ferroelectric and Other Properties of Polycrystalline Potassium Nitrate Films, in Ferroelectricity,“ E. F. Weller, ed., Elsevier, Amsterdam (1967), p.269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Scott, J.F., Pouligny, B., Ming-sheng, Z. (1988). Laser Spectroscopy of Fast KNO3 Ferroelectric Switches. In: Birman, J.L., Cummins, H.Z., Kaplyanskii, A.A. (eds) Laser Optics of Condensed Matter. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7341-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7341-8_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7343-2

  • Online ISBN: 978-1-4615-7341-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics