Skip to main content

Abstract

By use of a hydrocode it is shown that the interaction of high intensity light with an expanding plasma surface produces a positive plasma cloud followed by a negative plasma cloud. This result, which is opposite to that without the laser light, is the result of the nonlinear ponderomotive force. This theory explains the experimental observations made at Soreq. These double layers were measured with the help of a new electro-optical technique (developed at Soreq) in which a streak camera is coupled to a Pockels cell with a fast risetime. This technique can improve the time resolution of the high voltages observed in laser-produced plasmas by two orders of magnitude in comparision to the best oscilloacope measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Langmuir, Phys. Rev. 33:954 (1929).

    Article  Google Scholar 

  2. D. Bohm, “Characteristics of Electrical Discharges in Magnetic Fields”, Ed. A. Guthrie and R. K. Wakerling, p. 77 (McGraw Hill, N.Y., 1949).

    Google Scholar 

  3. “Symposium on Plasma Double Layers”, RISO National Laboratory, June 16–1 8, 1982, Ed. P. Michelsen and J. J. Rasmussen, RISO-R-472, Roskilde, Denmark.

    Google Scholar 

  4. “Second Symposium on Plasma Double Layers and Related Topics”, July 5–6, 1984, Ed. R. Schrittwieser and G. Eder, Innsbruck, Austria.

    Google Scholar 

  5. I. B. Bernstein, J. M. Green and M. D. Kruskal, Phys. Rev. 108:546 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Manheimer and I. Haber, Phys. Fluids 17:706 (1974).

    Article  Google Scholar 

  7. P. Lalousis and H. Hora, Laser and Particle Beams 1:283 (1983).

    Article  Google Scholar 

  8. R. A. Smith, Physica Scripta T2/1:238 (1932).

    Google Scholar 

  9. W. B. Bridges, A. N. Chesler, A. S. Halsted and J. V. Parker, Proc. IEEE 59, 724 (1971).

    Article  Google Scholar 

  10. A. Mohri, K. Narihara, Y. Tomita, T. Tsuzuki, Z. Kabeya, K. Akaishi and A. Miyahara, Jap. J. Appl. Phys. 19:L174 (1980).

    Article  Google Scholar 

  11. G. I. Dimov, V. Z. Zakaidakov and M. E. Kishinevskii, Fiz. Plasma 2:597 (1976).

    Google Scholar 

  12. G. I. Dimov, V. Z. Zakaidakov and M. E. Kishinevskii Spy. J. Plasma Phys. 2:326 (1976).

    Google Scholar 

  13. D. E. Baldwin and B. G. Logan, Phys. Rev. Lett. 43:1318 (1979).

    Article  Google Scholar 

  14. N. Sato, “Symposium on Plasma Double Layers”, Ed. P. Michelsen and J. J. Rasmussen, p. 116, Riso-R-47-. Iilde, Denmark (1982).

    Google Scholar 

  15. N. Hershkowitz, “Review of Recent Laboratory Double Layer Experiments”, Space Science Review (to be published).

    Google Scholar 

  16. H. Hora, P. Lalousis and S. Eliezer, Phys. Rev. Lett. 53:1 650 (1984).

    Article  Google Scholar 

  17. H. Schamel, J. Plasma Phys. 13:139 (1975).

    Article  Google Scholar 

  18. H. Alfvén, “Cosmic Plasma”, (Reidel Pub., Dordrech, Holland, 1981).

    Book  Google Scholar 

  19. P. Lalousis, Ph.D. Thesis, University of New South Wales, Sydney, Australia, 1983 (unpublished).

    Google Scholar 

  20. A. Schluter, Z. Naturforsch. 5A:72 (1950).

    MathSciNet  Google Scholar 

  21. J. A. Stamper, E. A. McLean and B. H. Ripin, Phys. Rev. Lett. 40:1177 (1978).

    Article  Google Scholar 

  22. A. Raven, O. Willi and P. T. Rumsby, Phys. Rev. Lett. 41:554 (1978).

    Article  Google Scholar 

  23. J. Briand, V. Adrian, M. Ellamer, A. Gomes, Y. Quemener, J. P. Dinguirard and J. C. Kieffer, Phys. Rev. Lett. 54:38 (1985).

    Article  Google Scholar 

  24. S. Eliezer and A. Ludmirsky, Laser and Particle Beams 1:251 (1983).

    Article  Google Scholar 

  25. A. Ludmirsky, S. Eliezer, B. Arad, A. Borowitz, Y. Gazit, S. Jackel, A. D. Krumbein, D. Salzmann and H. Szichman, IEEE Transactions on Plasma Science 13, 132 (1985).

    Article  Google Scholar 

  26. M. H. Key, “Laser Plasma Interactions”, Proceedings of the Twentieth Scottish Universities Summer School in Physics, St. Andrews, Ed. R. A. Cairns and J. J. Sanderson, p. 219 (1980).

    Google Scholar 

  27. A. Ludmirsky, M. Givon, S. Eliezer, Y. Gazit, S. Jackel, A. Krumbein and H. Szichman, Laser and Particle Beams 2:245 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Eliezer, S. et al. (1986). Double Layers in Laser Produced Plasmas. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7335-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7335-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7337-1

  • Online ISBN: 978-1-4615-7335-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics