Skip to main content
  • 283 Accesses

Abstract

The well-known phenomenon of generating very energetic ions (MeV and more) from laser produced plasmas is analysed for the use of alternative accelerators. One mechanism is an ion acceleration to MeV energies by the electrostatic double layer of the surface of a plasma of keV temperature, however the number of ions in the Debye sheath is small and cannot account for the observed number of ions which is 103 and more higher than that for which the Debye sheath can account. Another mechanism is the nonlinear force (ponderomotive) acceleration. This resulted in a transfer of 50% of the laser energy at uniform irradiation of a spherical pellet into 60 keV ions. This acceleration is increased geometrically by self-focussing. The nonlinear force and the relativistic properties of the optical constants cause two types of self-focussing where the high energy densities in the focus can lead to MeV ion emission of large quantities in full agreement with experiments. In order to extend these models by a sophisticated numerical treatment by 1 to 2 orders of magnitude, rather safe predictions were possible of how to produce 1010 eV heavy high Z ions with 100 MeV/nucleon. Bursts of 103 Ampere and 10-11 sec duration will provide special new techniques in nuclear and high energy physics. Combination with the nonlinear force driven electrostatic double layer method should result in small numbers of TeV ions with 1010 to 1011 eV/nucleon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W.I. Linlor, Appl. Phys. Letts. 3, 210 (1963).

    Article  ADS  Google Scholar 

  2. H. Hora, 2nd European Conference “Laser Interaction with Matter”, Paris, February 1967.

    Google Scholar 

  3. H. Hora, Phys. Fluids 12, 182 (1969).

    Article  ADS  Google Scholar 

  4. H. Hora, Z. Phys. 226, 156 (1969).

    Article  ADS  Google Scholar 

  5. H. Hora, E. L. Kane and J.L Hughes, J. Appl. Phys. 49, 923 (1978).

    Article  ADS  Google Scholar 

  6. E. L. Kane and H. Hora, Aust. J. Phys. 34, 385405 (1981).

    Google Scholar 

  7. R.Y. Chiao, E. Gamire, and C.H. Townes, Phys. Rev. Lett. 13, 479 (1964).

    Article  ADS  Google Scholar 

  8. G.A. Askaryan, Sov. Phys. JETP, 15, 1088 (1962).

    Google Scholar 

  9. H. Hora, J. Opt. Soc. Am. 65, 882 (1975).

    Article  ADS  Google Scholar 

  10. E.L. Kane and H. Hora, “Laser Interaction and Related Plasma Phenomenon”, H. Schwarz and H. Hora eds. (Plenum, New York, 1977) Vol. 4B, p. 913.

    Chapter  Google Scholar 

  11. H. Hora and M.M. Novak, “Laser Interaction and Related Plasma Phenomenon”, H.J. Schwarz et al., eds. (Plenum, New York) Vol. 4B (1977) p. 999.

    Chapter  Google Scholar 

  12. A.W. Ehler, J. Appl. Phys. 46, 2464 (1975).

    Article  ADS  Google Scholar 

  13. B. Luther-Davies and J.C. Hughes, Opt. Comm. 18, 351 (1976).

    Article  ADS  Google Scholar 

  14. R.A. Haas, J.F. Holzrichter, H.G. Ahlstrom, E. Storm and K.R. Manes, Opt. Comm. 18, 105(1976).

    Google Scholar 

  15. K.R. Manes, H.G. Ahlstrom, R.A. Haas and J.F. Holzrichter, J. Opt. Soc. Amer. 67, 717 (1977).

    Article  ADS  Google Scholar 

  16. J.A. Fleck Jr., J. Compt. Phys. 16, 324 (1974).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. B. Bezzerides, D.F. Dubois, D.W. Forsland, and E.L. Lindman, Phys. Rev. Lett. 38, 495 (1977).

    Article  ADS  Google Scholar 

  18. K. Kogiso, S. Ueda and N. Tajima, J. Phys. Soc. Jap. 51, 269 (1982).

    Article  ADS  Google Scholar 

  19. E.L. Lindman and M.A. Stroscio, Nucl. Fusion 17, 619 (1977).

    Article  Google Scholar 

  20. M.R. Siegrist, J. Appl. Phys. 48, 1378 (1977).

    Article  ADS  Google Scholar 

  21. C.W. Mendel and J.N. Olsen, Phys. Rev. Lett. 34, 859 (1975).

    Article  ADS  Google Scholar 

  22. Y. Gazit, J. Delettrez, T.C. Bristow, A. Entenberg, and J. Sources, Phys. Rev. Lett. 43, 1943 (1979).

    Article  ADS  Google Scholar 

  23. H. Hora, “Laser Plasmas and Nuclear Energy”, (Plenum, New York, 1975).

    Book  Google Scholar 

  24. H. Hora, “Electrostatic Fields and Charged Particle Acceleration in Laser Produced Plasmas”, Report No. 31, Theoretical Physics Dept., University of New South Wales, May 1982; Laser and Particle Beams, 1 (No. 2) (1983).

    Google Scholar 

  25. P. Channell, ed., “Acceleration of Particles by Lasers”, AIP Conference — Proceedings No. 91 (Am. Inst. Phys. New York) 1982, p. 112–138.

    Google Scholar 

  26. R. Castillo, H. Hora, E.L. Kane, G. Kentwell, P. Lalousis, V.F. Lawrence, R. Mavaddat, M.M. Novak, P.S. Ray and A. Schwartz, “Laser Interaction and Related Plasma Phenomena”, H. Schwarz et al., eds. (Plenum, New York) Vol. 5 pgs. 399–422.

    Google Scholar 

  27. D.A. Jones, E.L. Kane, P. Lalousis, P.R. Wiles, and H. Hora, Appl. Phys. B27, 157 (1982).

    ADS  Google Scholar 

  28. H. Haken, “Synergetics”, (Springer, Heidelberg 1978).

    Book  Google Scholar 

  29. A.B. Shvartsburg, Phys. Reports 83, 107 (1982).

    Article  ADS  Google Scholar 

  30. A.C.-L. Chian, and C.F. Kennel, “Laser Interaction and Related Plasma Phenomena”, H. Hora, and G. Miley, eds. (Plenum, New York 1983) Vol. 6

    Google Scholar 

  31. J.S. Bakos, I.B. Földes, and Z. Sörlei, J. Appl. Phys. 52, 634 (1981); J.S. Bakos, I.B. Földes, P.N. Ignacz, Zs. Sörlei, Phys. Rev. A (submitted).

    Article  ADS  Google Scholar 

  32. C. Joshi, M.C. Richardson and G.D. Enright, Appl. Phys. Lett. 34, 625 (1979)

    Article  ADS  Google Scholar 

  33. N.A. Enright, C. Joshi and H.A. Baldis, Phys. Rev. A25, 2440 (1982).

    Google Scholar 

  34. S. Nakai, private communication.

    Google Scholar 

  35. C. Yamanaka, M. Yokoyama, S. Nakai, T. Yamanaka, Y. Izawa, Y. Kato, T. Sasaki, T. Mochizuki, Y. Kitagawa, M. Matoba, Q. Yoshida, J. Mizui, and N. Yamaguchi, “Plasma Physics and Controlled Nuclear Fusion Research” (IAEA Conf. Innsbruck 1978) Vol. 3 p. 135.

    Google Scholar 

  36. D.A. Jones, E.L. Kane, P. Lalousis, P. Wiles and H. Hora, Physics of Fluids, 25, 2295 (1982).

    Article  ADS  MATH  Google Scholar 

  37. H. Azechi, N. Miyanaga, S. Sakabe, T. Yamanaka, and C. Yamanaka, Jap. J. Appl. Phys. 20 L477 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Jones, D.A., Kane, E.L., Lalousis, P., Hora, H. (1984). GeV IONS from Laser Produced Plasmas. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7332-6_67

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7332-6_67

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7334-0

  • Online ISBN: 978-1-4615-7332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics