Skip to main content
  • 282 Accesses

Abstract

Beam fusion with light ions resulted in the best fusion gains ever and has achieved the level to build a hybrid reactor at a price comparable to the conventional breeders, but safer than these. The reason that this could not occur earlier was the argument of cross sections by which any beam fusion concept for the last 30 years was condemned. Induced by the experimental breakthrough of beam fusion, the complicated physics is discussed including recent developments of electrostatic double layer effects in plasmas. An interpenetration model for self-sustained fusion combustion in solid DT is presented with a threshold of 2 × 107 Joules/cm2. Present days CO2 lasers may initiate this boots trap process using nonlinear force effects to generate space charge neutral ion beam densities exceeding 109 Amp/cm2. From this example and from the experience of the development of fusion research, the scientific development is considered and a motivation is given for rethinking about the fusion programs toward an earlier achievement of fusion energy.

Supported by the Australian Research Grant Scheme, Grant No. B81/15115.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. If solar energy could provide 10% of all energy needed, this still would be of a gigantic volume and a very profitable big business; there seem to be fundamental limits, however, that the concentrated low cost main energy for producing the fertilizers for feeding the present or even growing population cannot come from solar energy.

    Google Scholar 

  2. G. Cooperstein, S.A. Goldstein, D. Mosher, R.J. Barker, J.R. Boiler, D.G. Colombant, A. Drobot, R.A. Meger, W.F. Oliphant, P.F. Ottinger, F.L Sandel, S.J. Stephanakis, and F.C. Young, Laser Interaction and Related Plasma Phenomena, H. Schwarz et al. eds. (Plenum, New York, 1981) Vol. 5, p. 105.

    Google Scholar 

  3. H. Hora, Atomkernenergie 40, 289 (1982).

    Google Scholar 

  4. F. Aebi, Hilterfingen (private communication, 1982).

    Google Scholar 

  5. M.L.F. Oliphant, P. Harteck, and Lord Rutherford, Proc. Roy. Soc. A144, 692 (1934).

    ADS  Google Scholar 

  6. M. Oliphant, Rutherford-Recollections of the Cambridge Days (Amsterdam, Elsevier, 1972) p. 144 ff.

    Google Scholar 

  7. B. Kronast, Z. Angew. Physik 15, 377 (1963).

    Google Scholar 

  8. F. Freiberg, Report Emil Haefely, Basel, 1982.

    Google Scholar 

  9. A. Simon, An Introduction to Thermonuclear Research, (Pergamon, New York, 1959).

    Google Scholar 

  10. L.N. Kmetyk and R. Gross, Phys. Fluids 25, 1042 (1982).

    Article  ADS  MATH  Google Scholar 

  11. H. Hora, Physics of Laser Driven Plasmas, (Wiley, New York, 1981).

    Google Scholar 

  12. H. Hora, Nuovo Cimento 64B, 1 (1981).

    ADS  Google Scholar 

  13. F.F. Chen, Introduction to Plasma Physics (Plenum, New York, 1975), p. 14.

    Google Scholar 

  14. K.A. Brueckner, and S. Joma, Rev. Mod. Phys. 46, 325 (1974);

    Article  ADS  Google Scholar 

  15. R.E. Kidder, Nucl. Fusion 19, 223 (1979);

    Article  ADS  Google Scholar 

  16. S.E. Bodner, Naval Res. Lab. Rept. (1981) NRL-4453.;

    Google Scholar 

  17. M.V. Babykin, N.A. Tahir, and K.A. Long, Atomkemenergie 40, 157 (1982).

    Google Scholar 

  18. M.S. Chu, Phys. Fluids 15, 413 (1972);

    Article  ADS  Google Scholar 

  19. O.N. Krokhin, Physics of High Energy Density, Proceed. Enrico Fermi School Course 48, P. Caldrioli, ed. (Acad. Press New York, (1971) p. 278;

    Google Scholar 

  20. B. Ahborn, Phys. Lett. 37A, 227 (1971).

    ADS  Google Scholar 

  21. S.J. Stephanakis, L.S. Levine, D. Mosher, M.I. Vitkowitzky, and F. Young, Phys. Rev. Lett. 29; 568 (1972).

    Article  ADS  Google Scholar 

  22. J.R. Kearns, C.W. Rogers, J.G. Clark, Bull. Am. Phys. Soc. 17, 690 (1972).

    Google Scholar 

  23. E. Bagge and H. Hora, Atomkemenergie 24, 143 (1974).

    Google Scholar 

  24. P.S. Ray, and H. Hora, Nucl. Fusion 16, 535 (1976);

    Article  ADS  Google Scholar 

  25. H. Hora, and P.S. Ray, Z. Naturforsch 33A, 890 (1978).

    ADS  Google Scholar 

  26. H. Hora, Laser Plasmas and Nuclear Energy (Plenum, New York, 1975) p. 23.

    Book  Google Scholar 

  27. C.W. Mendel, and J.N. Ohlsen, Phys. Rev. Lett. 34, 859 (1975).

    Article  ADS  Google Scholar 

  28. J.S. Pearlman, and G.H. Dahlbacka, Appt. Phys. Letters 31, 414 (1977).

    Article  ADS  Google Scholar 

  29. Hannes Alfven, Cosmic Plasmas (Reidel, Dordrecht, 1981).

    Book  Google Scholar 

  30. H. Hora, Laser Interaction and Related Plasma Phenomena, H. Hora and G.H. Miley eds. (Plenum, New York 1983), Vol. 6, p.

    Google Scholar 

  31. Y. Gazit, J. Delettrez, T.C. Bristow, A. Entenberg, and J. Soures, Phys. Rev. Lett. 43, 1943 (1979);

    Article  ADS  Google Scholar 

  32. G.H. Miley, Progress Report High-Energy Fusion-Product Energy-Loss Measurements, Fusion Studies Lab., Univ. Illinois, Dec. 1981.

    Google Scholar 

  33. H. Hora, Electrostatic Fields and Charged Particle Acceleration in Laser Produced Plasmas, UNSW, Theor. Phys. Dept. Rept. No. 31 (May 1982).

    Google Scholar 

  34. B.W. Boreham, and H. Hora, Phys. Rev. Letters 42, 776 (1979).

    Article  ADS  Google Scholar 

  35. H. Hora, Phys. Fluids 12, 182 (1969);

    Article  ADS  Google Scholar 

  36. H. Hora, Phys. Fluids 17, 939 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  37. E. Teller, Colloquium, Max-Planck-Institut fur Plasmaphysik, Garching, Nov. 1972.

    Google Scholar 

  38. J. Lindhard, M. Scharff, and H.E. Scott, Matematisk-fysiske Meddelehser, Kongel. Danske Vidensk. Selskab 33, No. 14 (1963).

    Google Scholar 

  39. Hans C.H. Nip, and J.C. Kelly, Phys. Rev. B3, 2884 (1971).

    ADS  Google Scholar 

  40. J.H. Nuckolls, IAEA Meeting “Inertial Confinement Fusion”, Livermore, Febr. 1978.

    Google Scholar 

  41. W. Pauli, Helvet. Phys. Acta, Suppl. IV, p. 68 (1956).

    Google Scholar 

  42. P.S. Ray, and H. Hora, Z. Naturforsch. 32A, 136 (1977).

    Google Scholar 

  43. M.N. Rosenbluth, W.M. MacDonald, and D.L Judd, Phys. Rev. 107, 1 (1957);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. F. Winterberg, Dessert Res. Inst. Rept. 64, March 1969.

    Google Scholar 

  45. P.S. Ray, Ph.D. Thesis, Univ. UNSW, 1977.

    Google Scholar 

  46. J. Stepanek, Laser Interaction and Related Plasma Phenomena, H. Schwarz et al (Plenum, New York, 1981) Vol. 8, p. 341.

    Google Scholar 

  47. R. Hofstadter, IAEA Meeting “Inertial Confinement Fusion”, Osaka, Oct. 1979, Advances in Inertial Confinement, C. Yamanaka éd. (ILE, Osaka, 1980), p. 180.

    Google Scholar 

  48. The experimental breakthrough in beam fusion [2] should be seen similar to the discovery of the transistor effect with the very unpredicted long life time of minority carriers in germanium single crystals, later explained as an anomaly of the multivalley band model; or similar to the first ruby laser developed contrary to the expected laser action of sodium lines.

    Google Scholar 

  49. K.I. Golden, Laser and Particle Beams 1, (1983).

    Google Scholar 

  50. D. Neilson Lowy, and HJ. Kreuzer, J. Plasma Phys. 23, 357 (1980).

    Article  ADS  Google Scholar 

  51. John H. Nuckolls, Physics Today, 35 (Sept.), 24 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Hora, H. (1984). Historical Remarks on Beam Fusion. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7332-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7332-6_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7334-0

  • Online ISBN: 978-1-4615-7332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics