Skip to main content

Recent Advances in Microwave Simulation of Laser-Plasma Interactions

  • Chapter
Laser Interaction and Related Plasma Phenomena

Abstract

In a laser driven pellet, the absorbed laser energy is primarily transferred to the electrons. This transfer process has been widely studied using theory, computer simulation calculations, and experiments. As a result we know that the phenomena that can occur in a net energy producing pellet are extremely complicated. The basic difficulty is that laser-plasma interactions involve very difficult problems in nonlinear plasma physics. These problems are very important since pellet performance is strongly affected. The primary unknowns are the strengths of the various parametric instabilities and the mechanisms that result in the apparent strong electron heat flux inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Mizuno, J. S. DeGroot, and F. Kehl, Phys. Rev. Lett. 49, 1004 (1982).

    Article  ADS  Google Scholar 

  2. D. Rasmussen, UCD Report PRG-R-62, Ph.D. Dissertation, unpublished, 1981.

    Google Scholar 

  3. K. Mizuno and J. S. DeGroot, Phys. Rev. Lett. 35, 219 (1975)

    Article  ADS  Google Scholar 

  4. K. Mizuno and J. S. DeGroot, Phys. Fluids 22, 2229 (1979).

    Article  ADS  Google Scholar 

  5. K. Mizuno, J. S. DeGroot, and K. G. Estabrook, UCD PRG-R-75, submitted to Phys. Rev. Lett. (1982).

    Google Scholar 

  6. K. Mizuno and J. S. DeGroot, UCD Report PRG-R-76, submitted to Phys. Fluids (1982).

    Google Scholar 

  7. K. G. Estabrook, and W. L. Kruer, Phys. Rev. Lett. 40, 42 (1978)

    Article  ADS  Google Scholar 

  8. D. W. Forslund, J. M. Kindel, and K. Lee, Phys. Rev. Lett. 39, 284 (1977).

    Article  ADS  Google Scholar 

  9. J. S. DeGroot, W. L. Kruer, Wee Woo, and K. Mizuno, UCD Report PRG-R-48, submitted to Physics of Fluids (1982).

    Google Scholar 

  10. D. F. DuBois and M. V. Goldman, Phys. Rev. 164, 207 (1967)

    Article  ADS  Google Scholar 

  11. K. Nishikawa, J. Phys. Soc. Jpn. 24, 916 and 1152 (1968)

    Google Scholar 

  12. F. W. Perkins and J. Flick, Phys. Fluids 14, 2012 (1971).

    Article  ADS  Google Scholar 

  13. W. L. Kruer and K. G. Estabrook, Abstract in Bulletin of the American Physical Society 26, 970 (1981).

    Google Scholar 

  14. K. G. Estabrook and W. L. Kruer, UCRL-87502, and submitted to Phys. Fluids (1982).

    Google Scholar 

  15. Wee Woo, J. S. DeGroot, and P. Rambo, Lawrence Livermore Laboratory Laser Program Annual Report UCRL-50021–80 (1981).

    Google Scholar 

  16. K. Mizuno, F. Kehl, and J. S. DeGroot, UCD Report PRG-R-77, and submitted to Phys. Fluids (1982).

    Google Scholar 

  17. K. Mizuno, J. S. DeGroot, D. A. Rasmussen, F. Kehl, and Wee Woo, Lawrence Livermore Laboratory Laser Program Annual Report UCRL-50021–80 (1981).

    Google Scholar 

  18. T. A. Hargreaves, UCD Report PRG-R-72, Ph.D. Dissertation and submitted to Phys. Fluids (1982).

    Google Scholar 

  19. R. Z. Sagdeev and A. A. Galeev, Nonlinear Plasma Theory (Benjamin, New York, 1969) Chapter 2.

    MATH  Google Scholar 

  20. C. S. Liu and M. N. Rosenbluth, Phys. Fluids, 19 967 (1976).

    Article  ADS  Google Scholar 

  21. Wee Woo, P. Rambo, and J. S. DeGroot, UCD Report PRG-R-78, submitted to Phys. Fluids (1982).

    Google Scholar 

  22. B. F. Lasinksi, A. B. Langdon, K. G. Estabrook, and W. L. Kruer, Lawrence Livermore National Laboratory Laser Program Annual Report, UCRL-50021–80, 1981.

    Google Scholar 

  23. R. James, UCD Report PRG-R-79, Ph.D. Dissertation and submitted to Phys. Rev. Lett. (1982).

    Google Scholar 

  24. D. W. Forslund, J. M. Kindel, and E. Lindman, Phys. Fluids 18, 1002, (1975).

    Article  ADS  Google Scholar 

  25. J. J. Thomson and C. J. Randall, “Time Evolution of Stimulated Brillouin Scattering in Bounded Systems”, November, 1981, and submitted to Phys. Fluids (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

DeGroot, J.S. et al. (1984). Recent Advances in Microwave Simulation of Laser-Plasma Interactions. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7332-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7332-6_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7334-0

  • Online ISBN: 978-1-4615-7332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics