Advertisement

Holography in Dentistry

  • Paul R. Wedendal
  • Hans I. Bjelkhagen

Abstract

The laser phenomenon has been the subject of increasing interest during the last decade. Dental holography, a fairly new field of research, is a product of the cooperation between the dental and the laser disciplines. It might be useful to give a brief survey of some basic facts and methods of holography as an introduction to its utilization in dental research. From the beginning, laser was a physical phenomenon explored theoretically. The era of laser technology was introduced by Maiman (1960), Prokhorov (1958), and Townes (1961). In 1961, the first gas laser was constructed; in the following years, different materials were studied and found to give laser effects.

Keywords

Solder Joint Interference Fringe Force Level Reference Beam Ruby Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, N., 1969, The holo-diagram: A practical device for making and evaluating holograms, Appl. Opt. 8: 1235–1240.CrossRefGoogle Scholar
  2. Abramson, N., 1970a, The holo-diagram. II: A practical device for information retrieval in hologram interferometry, Appl. Opt. 9: 97–101.CrossRefGoogle Scholar
  3. Abramson, N., 1970b, The holo-diagram. III: A practical device for predicting fringe patterns in hologram interferometry, Appl. Opt. 9: 2311–2320.CrossRefGoogle Scholar
  4. Abramson, N., 1972a, The.holo-diagram. V: A device for practical interpreting of hologram interference fringes, Appl. Opt. 11: 1143–1147.CrossRefGoogle Scholar
  5. Abramson, N., 1972b, The holo-diagram. VI: A practical device in coherent optics, Appl. Opt. 11: 2562–2571.CrossRefGoogle Scholar
  6. Abramson, N., 1974, Sandwich hologram interferometry: A new dimension in holographic comparison, Appl. Opt. 13: 2019–2025.CrossRefGoogle Scholar
  7. Adrian, J. C., Bernier, J. L., and Sprague, W. G., 1971, Laser and the dental pulp, J. Amer. Dent. Assoc. 83: 113–117.Google Scholar
  8. Altschuler, B. R., 1973, Holodontography: An introduction to dental laser holography, Report from USAF School of Aerospace Medicine, Brooks Air Force Base, Texas.Google Scholar
  9. Beyeler, K., and Dreyfus, J., 1947, Princip einer elektro-dynamischen Apparatur zur Messung des Lockerungsgrades der Zähne, Paradontologie 1: 113–120.Google Scholar
  10. Beyron, H., 1964, Occlusal relations and mastication in Australian aborigines, Acta Odontol. Scand. 22: 597–678.CrossRefGoogle Scholar
  11. Black, G. V., 1887, A Study of the Periosteum and Per dental Membrane, W. T. Keener, Chicago.Google Scholar
  12. Brooks, R. E., Heflinger, L. O., and Wuerker, R. F., 1965, Interferometry with holographically reconstructed comparison beam, Appi. Phys. Lett. 7: 248–249.CrossRefGoogle Scholar
  13. Charschan, S. S., 1972, Lasers in Industry, Western Electric Series, Van Nostrand Reinhold Company, New York.Google Scholar
  14. Coolidge, E. D., 1937, The thickness of the human periodontal membrane, J. Amer. Dent. Assoc. 24: 1260–1270.Google Scholar
  15. Denisyuk, N., 1962, Photographic reconstruction of the optical properties of an object in its own scattered radiation field, Soy. Phys. Dokl. 7: 543.Google Scholar
  16. Drum, W., 1962, Autodestruction of the masticatory system, Paradontologie 16: 155–160.Google Scholar
  17. Eitelman, H. K., 1969, Interferometric calculations made simple, Laser Focus 1: 29–31.Google Scholar
  18. Elbrecht, K., 1939, Beitrag zur Bestimmung der Lockerungsgrade den Zähne, Pradentium 11: 138.Google Scholar
  19. Fuchs, P., and Schott, D., 1973, Holographische Interferometrie zur Darstellung von Verformungen des menschlichen Gesichtsschädels, Schweiz. Monatsschr. Zahnheil. 83: 1468–1482.Google Scholar
  20. Gabor, B., 1948, A new microscope principle, Nature 161 (4098): 777.CrossRefGoogle Scholar
  21. Gershkoff, A., and Goldberg, N. I., 1957, Implant Dentures—Indications and Procedures, J. B. Lippincott Company, Philadelphia and Montreal.Google Scholar
  22. Goldman, H., and Cohen, W., 1968, Periodontal Therapy, The C. V. Mosby Company, Saint Louis.Google Scholar
  23. Gordon, T. E., Jr., 1966, Some effects of laser impacts on extracted teeth, J. Dent. Res. 45: 372–375.CrossRefGoogle Scholar
  24. Hedegârd, B., Lundberg, M., and Wictorin, L., 1966, Protesers mobilitet vid tuggning, Sven. Tandlaek. Tidskr. 59: 403–415.Google Scholar
  25. Heinroth, H., 1928, Klinische Untersuchungsmethoden—Die Fortschritte der Zahnheilkunde, pp. 110–135, Georg Thieme, Leipzig.Google Scholar
  26. Henrikson, C. O., Wictorin, L., and Österberg, J., 1973, Radiographic detection of defects in soldered joint of dental gold alloys, Odontol. Revy 24: 161–172.Google Scholar
  27. Hillenkamp, F., and Kaufman, R., 1972, Laser in der Medizin, GSF-Bericht A 39.Google Scholar
  28. Joel, A. A., 1958, A new method for measuring tooth mobility, Dent. Pract. Dent. Rec. 9: 329–332.Google Scholar
  29. Kantola, S., 1974, Laser-induced effects on tooth structure, Acta Odontol. Scand. 32, Suppl. 63.Google Scholar
  30. Kronfeld, R., 1931, Histologic study of the influence of function on the human periodontal membrane, J. Amer. Dent. Assoc. 18: 1242–1250.Google Scholar
  31. Körber, K. H., 1962a, Untersuchungen zur Biophysik des Paradontiums, Dtsch. Zahnaerztl. Z. 23: 1585–1595.Google Scholar
  32. Körber, K. H., 1962b, Elektronisches Messen der Zahnbeweglichkeit, Zahnärzteblatt 16: 605.Google Scholar
  33. Körber, K. H., 1963, Untersuchungen über die Kaufunktionelle Beanspruchung des Zahnes,. Dtsch. Zahnaerztl. Z. 11: 576–583.Google Scholar
  34. Körber, K. H., 1966, Elektronische Belastungsanalyse der Paradontalgewebe, Les Paradontopathies, pp. 263–271, Georg and Cie. S. A., Geneva.Google Scholar
  35. Körber, K. H., and Körber, E., 1962, Die elastische Deformation menschlicher Zähne, Dtsch. Zahnaerztl. Z. 17: 691–698.Google Scholar
  36. Körber, K. H., and Körber, E., 1963, Die rotatorische Komponente der physiologischen Zahnbeweglichkeit, Zahnaerztl. Welt Zahnaerztl. Reform 64: 10, 309–312.Google Scholar
  37. Körber, K. H., and Körber, E., 1966, Kybernetisches Modell des Paradontiums, Les Paradontopathies, pp. 251–262, Georg and Cie. S. A., Geneva.Google Scholar
  38. Leith, E. N., and Upatnieks, J., 1964, Wavefront reconstruction with diffuse illumination and three-dimensional objects, J. Opt. Soc. Amer. 54: 1295–1301.CrossRefGoogle Scholar
  39. Linkow, L., 1964, Intra-osseous implants utilized as fixed bridge abutments, J. Oral Implant Transplant Surg. 10 (2): 17–23.Google Scholar
  40. Lundqvist, C., 1956, Objektiva paradontala registrerings-metoder. III. Elektromagnetisk bestämning av tandmobilitet, Odontol. Revy 7 (1): 9–42.Google Scholar
  41. Manly, R. S., Yurkstas, A., and Reswick, J. B., 1951, An instrument for measuring tooth mobility, J. Periodontol. 22: 148.Google Scholar
  42. Maiman, T. H., 1960, Optical and micro-wave-optical experiments in ruby, Phys. Rev. Lett. 4 (11): 564.CrossRefGoogle Scholar
  43. Mühlemann, H. R., 1951, Die physiologische and pathologische Zahnbeweglichkeit, Schweiz. Monatsschr. Zahnheilk. 61: 1–71.Google Scholar
  44. Mühlemann, H. R., 1960, Ten years of tooth mobility measurements, J. Periodontol. 31: 110–122.Google Scholar
  45. Mühlemann, H. R., 1967, Tooth mobility: A review of clinical aspects and research findings, J. Periodontol. 38: 686–708.Google Scholar
  46. Nally, J.-N., 1973, Methods of handling abutment teeth in Class I partial dentures, J. Prosthet. Dent. 30: 561–566.Google Scholar
  47. Noble, W. H., and Martin, L. P., 1973, The mobility changes in response to occlusal interferences, J. Prosthet. Dent. 30: 412–417.CrossRefGoogle Scholar
  48. O’Leary, T. J., and Rudd, K. D., 1963, An instrument for measuring horizontal tooth mobility, Periodontics 1 (6): 249–254.Google Scholar
  49. Parfitt, C. J., 1960, Measurement of the physiological mobility of individual teeth in an axial direction, J. Dent. Res. 39: 608–618.CrossRefGoogle Scholar
  50. Parfitt, G. J., 1961, The dynamics of a tooth in function, J. Periodontol. 32: 102–107.Google Scholar
  51. Parma, C., 1958, Reihenuntersuchung der Paradontopathien, Dsch. Zahn Mund Kieferheilk. 29: 132–140.Google Scholar
  52. Picton, D. C. A., 1964, Some implications of normal tooth mobility during mastication, Arch. Oral Biol. 9: 565–573.CrossRefGoogle Scholar
  53. Picton, D. C. A., Johns, R. B., Wills, D. J., and Davies, W. I. R., 1974, The relationship between the mechanisms of tooth and implant support in biology and technology of oral prosthetic implants, Oral Sci. Rev. 5: 3–22.Google Scholar
  54. Powell, R. L., and Stetson, K. A., 1965, Interferometric vibration analysis by wavefront reconstruction, J. Opt. Soc. Amer. 95: 1593–1598.Google Scholar
  55. Prokhorov, A. M., 1958, Molekular Generatoren und Verstärker, Natur 7: 24.Google Scholar
  56. Ramfjord, S. and Ash, M., Jr., 1966, Occlusion, W. B. Saunders Company, Philadelphia and London.Google Scholar
  57. Rydén, H., Bjelkhagen, H., and Söder, P-O., 1974, The use of laser beams for measuring tooth mobility and tooth movement. An in vitro study, J. Periodontol. 45: 283–288.Google Scholar
  58. Rydén, H., Bjelkhagen, H., and Söder, P-Ó., 1975, The use of laser beams for measuring tooth mobility and tooth movement. A research study of a clinical problem, J. Periodontol. 46: 421–425.Google Scholar
  59. Ryder, G. H., 1969, Strength of Materials, pp. 152–194, Mac Millan and Co., London. Savdir, S., 1963, Der Periodontograph, Schweiz. Monatsschr. Zahnheilk. 73: 993–1001.Google Scholar
  60. Scheinin, A., and Kantola, S., 1969, Laser-induced effects of tooth structure. I. Crater productions with a CO2-laser, Acta Odontol. Scand. 27: 173–179.CrossRefGoogle Scholar
  61. Smith, L. D., Burnett, A. P., and Gordon, T. E., Jr., 1972, Laser welding of gold alloys, J. Dent. Res. 51: 161–167.CrossRefGoogle Scholar
  62. Stern, R. H., Sognnaes, R. F., and Goodman, F., 1966, Laser effect on in vitro enamel permeability and solubility, J. Amer. Dent. Assoc. 73: 838–843.Google Scholar
  63. Stern, R. H., Vahl, J., and Sognnaes, R. F., 1972, Laser enamel: Ultrastructural observations of pulsed carbon dioxide laser effects, J. Dent. Res. 51: 455–460.CrossRefGoogle Scholar
  64. Townes, C. H., 1961, Infrared Masers—Advances in Quantum Electronics (E. Singer, ed.), pp. 3–12, Columbia University Press, New York.Google Scholar
  65. Vahl, J., 1971, Der Laser und seine bisherige Anwendung in der Zahnmedizin, Hippokrates 42: 488–506.Google Scholar
  66. Wallow, I., Lund, O.-E., and Gabel, V.-P., 1974, A comparison of retinal argon laser lesions in man and in cynomolgus monkey, Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. 189: 159–164.Google Scholar
  67. Wedendal, P., 1973a, A new type of precision lock for advanced prosthodontics, Sci. Educ. Bull. 6: 41–47.Google Scholar
  68. Wedendal, P., 1973b, Die fakultativ abnehmbare Sattelextensions-briicke. Einige bissphysiologische Aspekte zur Prothesen-integration in das Stomatognatische System (I-IV), Quintessenz 24(7):65–72.Google Scholar
  69. Wedendal, P., 1973b, Die fakultativ abnehmbare Sattelextensions-briicke. Einige bissphysiologische Aspekte zur Prothesen-integration in das Stomatognatische System (I-IV), Quintessenz 24(8):43–48.Google Scholar
  70. Wedendal, P., 1973b, Die fakultativ abnehmbare Sattelextensions-briicke. Einige bissphysiologische Aspekte zur Prothesen-integration in das Stomatognatische System (I-IV), Quintessenz 24(9):79–85.Google Scholar
  71. Wedendal, P., 1973b, Die fakultativ abnehmbare Sattelextensions-briicke. Einige bissphysiologische Aspekte zur Prothesen-integration in das Stomatognatische System (I-IV), Quintessenz 24(10):91–98.Google Scholar
  72. Wedendal, P. R., 1974, Dental holographic interferometry in laboratory installation and in vivo, Thesis, Karolinska Institutet, Stockholm, Sweden.Google Scholar
  73. Wedendal, P., Alfredsson, H., Bjelkhagen, H., and Niia, L., 1972, Laboratory tests by means of laser technology concerning bridge constructions simulated by solid, soldered and screw-locked bar elements, The Royal Institute of Technology, Paper No. 600, pp. 1–140.Google Scholar
  74. Wedendal, P. R., Alfredsson, H., Bjelkhagen, H., and Niia, L., 1974, The tolerance within a special screw-lock system determined by means of laser metrology, Sci. Educ. Bull. 8: 27–30.Google Scholar
  75. Wedendal, P. R., and Bjelkhagen, H., 1974a, Holographic interferometry on the elastic deformation of prosthodontic appliances as simulated by bar elements, Acta Odontol. Scand. 32: 189–199.CrossRefGoogle Scholar
  76. Wedendal, P. R., and Bjelkhagen, H., 1974b, Dental holographic interferometry in vivo utilizing a ruby laser system. I. Introduction and development of methods for precision measurements on the functional dynamics of human teeth and prosthodontic appliances, Acta Odontol. Scand. 32: 131–145.CrossRefGoogle Scholar
  77. Wedendal, P. R., and Bjelkhagen, H., 1974c, Dental holographic interferometry in vivo utilizing a ruby laser system. II. Clinical applications, Acta Odontol. Scand. 32: 345–356.CrossRefGoogle Scholar
  78. Wedendal, P. R., and Bjelkhagen, H., 1974d, Dynamics of human teeth in function by means of double pulsed holography: An experimental investigation, Appi. opt. 13: 2481–2485.CrossRefGoogle Scholar
  79. Werner, V., 1942, Vergleichende Untersuchungen verschiedene Paradentosebehandlungen mittels einer neuen metrischen Methode, Paradentium 14: 43, 14: 59.Google Scholar
  80. Wictorin, L., Bjelkhagen, H., and Abramson, N., 1972, Holographic investigation of the elastic deformation of defective gold solder joints, Acta Odontol. Scand. 30: 659–670.CrossRefGoogle Scholar
  81. Yamada, M., Kumano, T., and Suzuta, K., 1971, Neural response of oral tissues to mechanical and chemical stimuli, in: Oral-Facial Sensory Motor Mechanism ( R. Dubner and Y. Kawamura, eds.), pp. 123–134, Appleton-Century-Crofts, New York.Google Scholar
  82. Zulquar-Nain, J., Burgess, G., and Zander, H. A., 1967, Photogrammetry, J. Periodontol. 38: 677–682.Google Scholar
  83. Zwirner, E., 1949, Verwendungsmöghlichkeiten des Kathoden-strahloszillographen zu Forschungswecken in der Zahn-Mund-Kieferheilkunde, Dtsch. Zahnaerztl. Z. 4: 794–806.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Paul R. Wedendal
    • 1
  • Hans I. Bjelkhagen
    • 2
  1. 1.Department of Stomatognathic Physiology Faculty of OdontologyKarolinska InstitutetStockholmSweden
  2. 2.Laser Research Group Department of Production EngineeringRoyal Institute of TechnologyStockholmSweden

Personalised recommendations