Skip to main content

Laser Flow Microphotometers for Rapid Analysis and Sorting of Individual Mammalian Cells

  • Chapter

Abstract

Flow microphotometry, a term we have coined to describe the unique flow systems developed over the last few years at the Los Alamos Scientific Laboratory (LASL), allows quantitative precision measurements to be made of the optical properties of individual mammalian cells. Mammalian cells in suspension are made to pass through a special flow chamber where they are lined up, one at a time, for exposure to the blue light from an argon ion laser. As each cell crosses the laser beam, it produces one or more optical pulses of a duration equal to cell transit time across the beam. These pulses are detected, amplified, and analyzed using essentially the techniques of γ-ray spectroscopy.

This work was carried out under the auspices of the U.S. Atomic Energy Commission at Los Alamos Scientific Laboratory of the University of California.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, L. R., and Kamentsky, L. A., 1971, Machine characterization of human leukocytes by acridine orange fluorescence, Acta Cytol. 15: 289.

    Google Scholar 

  • Bonner, W. A., Hulett, H. R., Sweet, R. G., and Herzenberg, L. A., 1972, Fluorescence activated cell sorting, Rev. Sci. Instr. 43: 404.

    Article  Google Scholar 

  • Bostock, C. J., Prescott, D. M., and Kirkpatrick, J. B., 1971, An evaluation of the double thymidine block for synchronizing mammalian cells at the G1-S border, Exptl. Cell Res. 68: 163.

    Article  Google Scholar 

  • Brunsting, A., 1972, Computer analysis of differential light scattering from coated spheres, Ph.D. thesis, University of New Mexico, Los Alamos Scientific Laboratory Report LA-5032 (November).

    Google Scholar 

  • Brunsting, A., and Mullaney, P. F., 1972a, Light scattering from coated spheres: Model for biological cells, Appl. Opt. 11: 675.

    Article  Google Scholar 

  • Brunsting, A., and Mullaney, P. F., 1972b, A light scattering photometer using photographic film, Rev. Sci. Instr. 43: 1514.

    Article  Google Scholar 

  • Brunsting, A., and Mullaney, P. F., 1972c, Differential light scattering: A possible method of mammalian cell identification, J. Colloid Interface Sci. 39: 492.

    Article  Google Scholar 

  • Chu, B., and Schoenes, S. J., 1968, Small angle scattering by yeast cells: A comparison with Mie predictions, J. Colloid Interface Sci. 27: 425.

    Article  Google Scholar 

  • Coulter, W. H., 1956, High speed automatic blood cell counter and cell size analyzer, Natl. Electronics Conf. Proc. 12: 1034.

    Google Scholar 

  • Cram, L. S., and Brunsting, A., 1973, Fluorescence and light scattering measurements on hog cholera-infected PK-15 cells, Exptl. Cell Res. 78: 209.

    Article  Google Scholar 

  • Crissman, H., and Van Dilla, M. A., 1972, Personal communication.

    Google Scholar 

  • Crossland-Taylor, P. J., 1953, A device for counting small particles suspended in a fluid through a tube, Nature 171: 37.

    Article  Google Scholar 

  • Culling, C., and Vassar, P., 1961, Desoxyribose nucleic acid: A fluorescent histochemical technique, Arch. Pathol. 71: 88.

    Google Scholar 

  • Deitch, A. D., Wagner, D., and Richart, R. M., 1968, Conditions influencing the intensity of the Feulgen reaction, J. Histochem. Cytochem. 16: 371.

    Article  Google Scholar 

  • Dittrich, W., and Göhde, W., 1969, Impulse fluorometry with single cells in suspension, Z. Naturforsch. 24B: 360.

    Google Scholar 

  • Dittrich, W., Göhde, W., Severin, E., and Reiffenstuhl, G., 1974, The nucleus—cytoplasm relation in impulse cytophotometry of cervical and vaginal smears, Acta Cytol., in press.

    Google Scholar 

  • Fand, S., 1970, Environmental conditions for optimal Feulgen hydrolysis, in: Introduction to Quantitative Cytochemistry ( G. L. Wied and G. F. Bahr, eds.), Vol. II, p. 211, Academic Press, New York.

    Google Scholar 

  • Fulwyler, M. J., 1965, Electronic separation of biological cells by volume, Science 150: 910.

    Article  Google Scholar 

  • Fulwyler, M. J., Perrings, J. D., and Cram, L. S., 1973, Production of uniform microspheres, Rev. Sci. Instr. 44: 204.

    Article  Google Scholar 

  • Galavazi, G., and Bootsma, D., 1966, Synchronization of mammalian cells in vitro by inhibition of the DNA synthesis, Exptl. Cell Res. 41: 438.

    Article  Google Scholar 

  • Hodkinson, J. R., and Greenleaves, I., 1963, Computations of light scattering and extinction by spheres according to diffraction and geometrical optics and some comparisons with Mie theory, J. Opt. Soc. Am. 53: 577.

    Article  Google Scholar 

  • Hopwood, D., 1969, Fixatives and fixation: A review, Histochem. J. 1: 323.

    Article  Google Scholar 

  • Hudson, B., Upholt, W. B., Devinny, J., and Vinograd, J., 1969, The use of an ethidium bromide analogue in the dye-buoyant density procedure for the isolation of closed circular DNA: The variation of the superhelix density of mitochondrial DNA, Proc. Natl. Acad. Sci. (USA) 62: 813.

    Article  Google Scholar 

  • Hulett, H. R., Bonner, W. A., Barrett, J., and Herzenberg, L. A., 1969, Cell sorting: Automated separation of mammalian cells as a function of intracellular fluorescence, Science 166: 747.

    Article  Google Scholar 

  • Ichimura, S., Zama, M., and Fujita, H., 1971, Quantitative determination of single stranded sections in DNA using the fluorescent probe acridine orange, Biochim. Biophys. Acta 240: 485.

    Google Scholar 

  • Julius, M. H., Masuda, T., and Herzenberg, L. A., 1972, Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter, Proc. Natl. Acad. Sci. (USA) 69: 1934.

    Article  Google Scholar 

  • Kamentsky, L. A., and Melamed, M. R., 1967, Spectrophotometric cell sorter, Science 156: 1364.

    Article  Google Scholar 

  • Kamentsky, L. A., Melamed, M. R., and Derman, H., 1965, Spectrophotometer: New instrument for ultrarapid cell analysis, Science 150: 630.

    Article  Google Scholar 

  • Kasten, F. H., 1959, Schiff-type reagents in cytochemistry, Histochemie 1: 466.

    Article  Google Scholar 

  • Kasten, F. H., 1967, Cytochemical studies with acridine orange and the influence of dye contaminants in the staining of nucleic acids, in: International Review of Cytology ( G. H. Bourne and J. F. Danielli, eds.), Vol. 21, p. 141, Academic Press, New York.

    Google Scholar 

  • Kisch, A. L., Kelley, R. O., Crissman, H., and Paxton, L., 1973, DMSO induced reversion of several features of polyoma transformed BHK-21 cells: Alterations in growth and morphology, J. Cell Biol. 57: 38.

    Article  Google Scholar 

  • Koch, A. L., 1968, Theory of the angular dependence of light scattered by bacteria and similar sized biological objects, J. Theoret. Biol. 18: 133.

    Article  Google Scholar 

  • Koch, A. L., 1961, Some calculations on the turbidity of mitochondria and bacteria, Biochim. Biophys. Acta 51: 429.

    Article  Google Scholar 

  • Koch, A. L., and Ehrenfeld, E., 1968, The size and shape of bacteria by light scattering measurements, Biochim. Biophys. Acta 165: 262.

    Article  Google Scholar 

  • Kraemer, P. M., and Crissman, H., 1972, Unpublished data.

    Google Scholar 

  • Kraemer, P. M., Petersen, D. F., and Van Dilla, M. A., 1971, DNA constancy in heteroploidy and the stem line theory of tumors, Science 174: 714.

    Article  Google Scholar 

  • Kraemer, P., Deaven, L., Crissman, H., and Van Dilla, M., 1972, DNA constancy despite variability in chromosome number, in: Advances in Cell and Molecular Biology ( E. J. DuPraw, ed.), Vol. 2, p. 47, Academic Press, New York.

    Google Scholar 

  • Kraemer, P. M., Tobey, R. A., and Van Dilla, M. A., 1973, Flow microfluorometric studies of lecitin binding to mammalian cells. I. General features, J. Cell. Physiol. 81: 305.

    Article  Google Scholar 

  • Latimer, P., Moore, D. M., and Bryant, F. D., 1968, Changes in light scattering and absorption caused by changes in particle conformation, J. Theoret. Biol. 21: 348.

    Article  Google Scholar 

  • LePecq, J. B., and Paoletti, C., 1967, A fluorescent complex between ethidium bromide and nucleic acids, J. Mol. Biol. 27: 87.

    Article  Google Scholar 

  • Mallucci, L., 1971, Binding of concanavalin A to normal and transformed cells as detected by immunofluorescence, Nature New Biol. 233: 241.

    Google Scholar 

  • Melamed, M. R., Adams, L. R., Zimring, A., Murnick, J. G., and Mayer, K., 1972, Preliminary evaluation of acridine orange as a vital stain for automated differential leukocyte counts, Am. J. Clin. Pathol. 57: 95.

    Google Scholar 

  • Merrill, J. T., Veiyades, N., Hulett, H. R., Wolf, P. L., and Herzenberg, L. A., 1971, An improved cell volume analyzer, Rev. Sci. Instr. 42: 1157.

    Article  Google Scholar 

  • Mullaney, P. F., 1970, Application of the Hodkinson scattering model to particles of low relative refractive index, J. Opt. Soc. Am. 60: 573.

    Article  Google Scholar 

  • Mullaney, P. F., 1972, Unpublished data.

    Google Scholar 

  • Mullaney, P. F., and Dean, P. N., 1969, Cell sizing: A small-angle scattering method for sizing particles of low relative refractive index, Appl. Opt. 8: 2361.

    Article  Google Scholar 

  • Mullaney, P. F., and Dean, P. N., 1970, The small angle light scattering of biological cells, Biophys. J. 10: 764.

    Article  Google Scholar 

  • Mullaney, P. R., Van Dilla, M. A., Coulter, J. R., and Dean, P. N., 1969, Cell sizing: A light scattering photometer for rapid volume determination, Rev. Sci. Instr. 40: 1029.

    Article  Google Scholar 

  • Müller, M., Schreiber, M., Kartenbeck, J., and Schreiber, G., 1972, Preparations of single-cell suspensions from normal liver, regenerating liver and Morris hepatomas 9121 and 5123tc, Cancer Res. 32: 2568.

    Google Scholar 

  • Nicolson, G. L., 1971, Difference in topology of normal and tumour cell membranes shown by different surface distributions of ferritin conjugated concanavalin A, Nature New Biol. 233: 244.

    Google Scholar 

  • Packer, L., 1960, Metabolic and structural states of mitochondria, J. Biol. Chem. 235: 242.

    Google Scholar 

  • Pearse, A. G., 1968, Histochemistry: Theoretical and Applied, 3rd ed., Vol. 1, 759 pp., Little, Brown and Co., Boston.

    Google Scholar 

  • Pessac, B., and Defendi, V., 1972, Cell aggregation: Role of acid mucopolysaccharides, Science 175: 898.

    Article  Google Scholar 

  • Petersen, D. F., Anderson, E. C., and Tobey, R. A., 1968, Mitotic cells: Source of synchronized cultures, in: Methods in Cell Physiology ( D. M. Prescott, ed.), Vol. 3, p. 247, AcadeMic Press, New York.

    Google Scholar 

  • Petukhov, V. G., 1965, Possible applications of Mie theory to light scattering by suspensions of spherical bacteria, Biofizika 10: 993.

    Google Scholar 

  • Raju, M. R., Trujillo, T. T., Mullaney, P. F., Steinkamp, J. A., and Walters, R. A., 1973, DNA distribution of normal and tumor cells in mice, unpublished data.

    Google Scholar 

  • Rigler, R., 1966, Microfluorometric characterization of intracellular nucleic acids and nucleoproteins by acridine orange, Acta Physiol. Scand. 67:122, Suppl. 267.

    Google Scholar 

  • Rigler, R., 1969, Acridine orange in nucleic acid analysis, Ann. N.Y. Acad. Sci. 157: 211.

    Article  Google Scholar 

  • Rotman, B., and Papermaster, B. W., 1966, Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters, Proc. Natl. Acad. Sci. (USA) 55: 134.

    Article  Google Scholar 

  • Salzman, G. C., and Mullaney, P. F., 1973, A Coulter volume spectrometer employing a potential sensing technique, Biophys. J. Abst. 13: 302a.

    Google Scholar 

  • Sprenger, E., Böhm, N., and Sandritter, W., 1971, Flow-through fluorescence cytophotometry for ultrarapid DNA measurements in large cell populations, Histochemie 26: 238.

    Article  Google Scholar 

  • Steinkamp, J. A., 1967, An apparatus for the detection of fluorescing cells, Ph. D. thesis, Iowa State University.

    Google Scholar 

  • Steinkamp, J. A., Romero, A., and Van Dilla, M. A., 1973, Multiparameter cell sorting: Identification of human leukocytes by acridine orange fluorescence, Acta Cytol. 17: 113.

    Google Scholar 

  • Thomas, A., and Leif, R. C., 1971, A report on the completion of the first stage of the automated multiparameter analyzer for cells, Biophys. J. Abst. 11: 169a.

    Google Scholar 

  • Tjio, J. H., and Puck, T. T., 1958, Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture, J. Exptl. Med. 108: 259.

    Article  Google Scholar 

  • Tobey, R. A., 1973, Production and characterization of mammalian cells reversibly arrested in G, by growth in isoleucine-deficient medium, in: Methods in Cell Physiology ( D. M. Prescott, ed.), Vol. 6, pp. 67–112, Academic Press, New York.

    Google Scholar 

  • Tobey, R. A., and Crissman, H. A., 1972a, Preparation of large quantities of synchronized mammalian cells in late G, in the pre-DNA replicative phase of the cell cycle, Exptl. Cell Res. 75: 460.

    Article  Google Scholar 

  • Tobey, R. A., and Crissman, H. A., 1972b, Use of flow microfluormetry in detailed analysis of the effects of chemical agents on cell cycle progression, Cancer Res. 32: 2726.

    Google Scholar 

  • Tobey, R. A., and Ley, K. D., 1971, Isoleucine mediated regulation of genome replication in various mammalian cell lines, Cancer Res. 31: 46.

    Google Scholar 

  • Tobey, R. A., Anderson, E. C., and Petersen, D. F., 1967, Properties of mitotic cells prepared by mechanically shaking monolayer cultures of Chinese hamster cells, J. Cell. Physiol. 70: 63.

    Article  Google Scholar 

  • Tobey, R. A., Crissman, H. A., and Kraemer, P. M., 1972, A method for comparing effects of different synchronizing protocols on mammalian cell cycle traverse, J. Cell Biol. 54: 638.

    Article  Google Scholar 

  • Trujillo, T. T., and Van Dilla, M. A., 1972, Adaptation of the fluorescent Feulgen reaction to cells in suspension for flow microfluorometry, Acta Ctyol. 16: 26.

    Google Scholar 

  • Van Dilla, M. A., Fulwyler, M. J., and Boone, I. U., 1967a, Volume distribution and separation of normal human leukocytes, Proc. Soc. Exptl. Biol. Med. 125: 367.

    Google Scholar 

  • Van Dilla, M. A., Mullaney, P. F., and Coulter, J. R., 1967b, The fluorescent cell photometer: A new method for the rapid detection of biological cells stained with fluorescent dyes, in: Biomedical Research Group Annual Report, Los Alamos Scientific Laboratory Report LA-3848-MS (September), p. 100.

    Google Scholar 

  • Van Dilla, M. A., Trujillo, T. T., Mullaney, P. F., and Coulter, J. R., 1969, Cell microfluorometry: A method for rapid fluorescence measurements, Science 163: 1213.

    Article  Google Scholar 

  • West, S. S., 1969, Fluorescence microspectrophotometry of supravitally stained cells, in: Physical Techniques in Biological Research (A. W. Pollister, ed.), Vol. III, Part C, p. 253, Academic Press, New York.

    Google Scholar 

  • Wyatt, P., 1968, Differential light scattering: A physical method for identifying living bacterial cells, Appl. Opt. 7: 1879.

    Article  Google Scholar 

  • Wyatt, P. J., 1969, Identification of bacteria by differential light scattering, Nature 221: 1257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Mullaney, P.F., Steinkamp, J.A., Crissman, H.A., Cram, L.S., Holm, D.M. (1974). Laser Flow Microphotometers for Rapid Analysis and Sorting of Individual Mammalian Cells. In: Wolbarsht, M.L. (eds) Laser Applications in Medicine and Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7323-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7323-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7325-8

  • Online ISBN: 978-1-4615-7323-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics