Skip to main content

Channel Protein Engineering

An Approach to the Identification of Molecular Determinants of Function in Voltage-Gated and Ligand-Regulated Channel Proteins

  • Chapter
Ion Channels

Abstract

Transfer of information in the brain is mediated by the activity of ion-channel proteins. For several decades, these transducers were characterized by electrophysiological and biophysical techniques (for review see Hille, 1984).

Scientific knowledge comprises the world of the known and knowable, and hypotheses based upon the known are scientific hypotheses; the validity of science and its hypotheses rests upon proof by correspondence with reality. Beyond these there is only the great vacuity of the unknown....

Homer Smith, Kamongo, Viking Press, New York, 1956

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AChR:

acetylcholine receptor

ACh:

acetylcholine

V:

applied voltage

γ:

single-channel conductance

VSSC:

voltage-sensitive sodium channel

GABA R:

γ-aminobutyric acid receptor

SCP:

synthetic channel peptide

Ï„ o :

open channel lifetime

Ï„ c :

closed channel lifetime

PCP:

phencyclidine

CPZ:

chlorpromazine

TTX:

tetrodotoxin

BTX:

batrachotoxin

µH :

hydrophobic moment.

A:

alanine

R:

arginine

N:

asparagine

D:

aspartate

C:

cysteine

E:

glutamate

Q:

glutamine

G:

glycine

H:

histidine

I:

isoleucine

L:

leucine

K:

lysine

M:

methionine

F:

phenylalanine

P:

proline

S:

serine

T:

threonine

W:

tryptophan

Y:

tyrosine

V:

valine.

References

  • Adams, D. J., Dwyer, T. M., and Hille, B., 1980, The permeability at endplate channels to monovalent and divalent metal cations, J. Gen. Physiol. 75: 493–510.

    PubMed  CAS  Google Scholar 

  • Auld, V. J., Goldin, A. L., Krafte, D. S., Marshall, J., Dunn, J. M., Catterall, W. A., Lester, H. A., Davidson, N., and Dunn, R. J., 1988, A rat brain Na+ channel et subunit with novel gating properties, Neuron 1: 449–461.

    PubMed  CAS  Google Scholar 

  • Baldwin, T., Yashihara, C., Blackner, K., Kintner, C., and Burden, S., 1988, Regulation of acetylcholine receptor transcript expression during development of Xenopus laevis, J. Cell Biol. 106: 469–478.

    PubMed  CAS  Google Scholar 

  • Barany, G., and Merrifield, R. B., 1980, Solid phase peptide synthesis, In: The Peptides: Analysis, Synthesis, Biology, Volume 2 (E. Gross and J. Meienhofer, eds.), Academic Press, New York, pp. 1–255.

    Google Scholar 

  • Barchi, R. L., 1988, Probing the molecular structure of the voltage-dependent sodium channel, Annu. Rev. Neurosci. 11: 455–495.

    PubMed  CAS  Google Scholar 

  • Barnard, E. A., Miledi, R., and Sumikawa, K., 1982, Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes, Proc. R. Soc. London Ser. B 215: 241–246.

    CAS  Google Scholar 

  • Barnard, E. A., Darlison, M. G., and Seeburg, P., 1987, Molecular biology of the GABAA receptor: The receptor/channel superfamily, Trends Neurosci. 10: 502–508.

    CAS  Google Scholar 

  • Begenisich, T., 1987, Molecular properties of ion permeation through sodium channels, Annu. Rev. Biophys. Biophys. Chem. 16: 247–263.

    PubMed  CAS  Google Scholar 

  • Bernheimer, A. W., and Rudy, B., 1986, Interactions between membranes and cytolytic peptides, Biochim. Biophys. Acta 864: 123–141.

    PubMed  CAS  Google Scholar 

  • Betz, H., 1987, Biology and structure of the mammalian glycine receptor, Trends Neurosci. 10: 113–117.

    CAS  Google Scholar 

  • Beyer, E. C., Paul, D. L., and Goodenough, D. A., 1987, Connexin 43: A protein from rat heart homologous to a gap junction protein from liver, J. Cell Biol. 105: 2621–2629.

    PubMed  CAS  Google Scholar 

  • Blaurock, A. E., and Wilkins, M. H. F., 1969, Structure of frog photoreceptor membranes, Nature 223: 906–909.

    PubMed  CAS  Google Scholar 

  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M., 1983, CHARMM: A program for macromolecular energy, minimization and dynamics calculations, J. Comp. Chem. 4: 187–217.

    CAS  Google Scholar 

  • Catterall, W. A., 1988, Structure and function of voltage-sensitive ion channels, Science 242: 5061.

    Google Scholar 

  • Changeux, J. P., and Revah, F., 1987, The acetylcholine receptor molecule: Allosteric sites and the ion channel, Trends Neurosci. 10: 245–250.

    CAS  Google Scholar 

  • Changeux, J. P., Pinset, G., and Ribera, A. B., 1986, Effects of chlorpromazine and phencyclidine on mouse C2 acetylcholine receptor kinetics, J. Physiol. (London) 378:497–513.

    CAS  Google Scholar 

  • Chothia, C., Levitt, M., and Richardson, D., 1981, Helix to helix packing in proteins, J. Mol. Biol. 145: 215–250.

    PubMed  CAS  Google Scholar 

  • Chou, K.-C., Maggiora, G. M., Nemethy, G., and Scheraga, H. A., 1988, Energetics of the structure of the four-alpha-helix bundle in proteins, Proc. Natl. Acad. Sci. USA 85: 4295–4299.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1978, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. Enzymol. 47: 45–148.

    PubMed  CAS  Google Scholar 

  • Claudio, T., Ballivet, M., Patrick, J., and Heinemann, S., 1983, Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor γ subunit, Proc. Natl. Acad. Sci. USA 80: 111–115.

    Google Scholar 

  • Craik, C. S., 1985, Use of oligonucleotides for site-specific mutagenesis, Bio Techniques 3: 1217.

    Google Scholar 

  • Dani, J. A., and Eisenman, G., 1984, Acetylcholine-activated channel current–voltage relations in symmetrical Na+ solutions, Biophys. J. 45: 10–12.

    PubMed  CAS  Google Scholar 

  • Dani, J. A., and Eisenman, G., 1987, Monovalent and divalent cation permeation in acetylcholine receptor channels, J. Gen. Physiol. 89: 959–983.

    PubMed  CAS  Google Scholar 

  • Devilliers-Thiery, A., Giraudat, J., Bentaboulet, M., and Changeux, J.-P., 1983, Complete mRNA coding sequence of the acetylcholine binding a-subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain, Proc. Natl. Acad. Sci. USA 80: 2067–2071.

    Google Scholar 

  • Dwyer, B. P., 1988, Evidence for the extramembranous location of the putative amphipathic helix of acetylcholine receptor, Biochemistry 27: 5586–5592.

    PubMed  CAS  Google Scholar 

  • Dwyer, T. M., Adams, D. J., and Hille, B., 1980, The permeability of the endplate-channel to organic cations in frog muscle, J. Gen. Physiol. 75: 469–492.

    PubMed  CAS  Google Scholar 

  • Eisenberg, D., Weiss, R. M., Terwilliger, T. C., and Wilcox, W., 1982, Hydrophobic moments and protein structure, Faraday Symp. Chem. Soc. 17: 109–120.

    Google Scholar 

  • Eisenberg, D., Schwarz, E., Komaromy, M., and Wall, R., 1984, Analysis of membrane and surface protein sequences with the hydrophobic moment plot, J. Mol. Biol. 179: 125–143.

    PubMed  CAS  Google Scholar 

  • Eisenman, G., and Dani, J. A., 1987, An introduction to molecular architecture and permeability of ionic channels, Annu. Rev. Biophys. Biophys. Chem. 16: 205–226.

    PubMed  CAS  Google Scholar 

  • Ellis, S. B., Williams, M. E., Ways, N. R., Brenner, R., Sharp, A. H., Leuing, A. P., Campbell, K. P., McKenna, E., Koch, W. J., Hui, A., Schwartz, A., and Harpold, M. M., 1988, Sequence and expression of mRNAs encoding to al and a2 subunits of a DHP-sensitive calcium channel, Science 241: 1661–1664.

    PubMed  CAS  Google Scholar 

  • Finer-Moore, J., and Stroud, R. M., 1984, Amphipathic analysis and possible formation of the ion-channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. USA 81: 155–159.

    PubMed  CAS  Google Scholar 

  • Fitton, J. F., Dell, A., and Shaw, W. V., 1980, The amino acid sequence of the delta haemolysin of Staphylococcus aureus, FEBS Lett. 115: 209–212.

    PubMed  CAS  Google Scholar 

  • Fox, R. O., Jr., and Richards, F. M., 1982, A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-A resolution, Nature 300: 325–330.

    PubMed  CAS  Google Scholar 

  • French, R. J., Worley, J. F., III, Blaustein, M. B., Romine, W. O., Jr., Tam, K. K., and Krueger, B. K., 1986, Gating of batrachotoxin-activated sodium channels in lipid bilayers, In: Ion Channel Reconstitution ( C. Miller, ed.), Plenum Press, New York, pp. 363–383.

    Google Scholar 

  • Furman, R E, Tanaka, J. C., Mueller, P., and Barchi, R. L., 1986, Voltage-dependent activation in purified reconstituted sodium channels from rabbit-T-tubular membranes, Proc. Natl. Acad. Sci. USA 83: 488–492.

    PubMed  CAS  Google Scholar 

  • Furois-Corbin, S., and Pullman, A., 1986, Theoretical study of the packing of a-helices of poly (L -alanine) into transmembrane bundles. Possible significance for ion-transfer, Biochim. Biophys. Acta 860: 165–177.

    CAS  Google Scholar 

  • Furois-Corbin, S., and Pullman, A., 1987, Theoretical study of the packing of a-helices into possible transmembrane bundles. Sequences including alanines, leucines and serines, Biochim. Biophys. Acta 902: 31–45.

    PubMed  CAS  Google Scholar 

  • Furois-Corbin, S., and Pullman, A., 1988, Theoretical study of potential ion-channels formed by bundles of a-helices. Partial modelling of the acetylcholine receptor channels, In: Transport through Membranes: Carriers, Channels, and Pumps ( A. Pullman et al., eds.), Kluwer Academic Publishers, Dordrecht, pp. 337–357.

    Google Scholar 

  • Gamier, J., Osguthorpe, D. J., and Robson, B., 1978, Analysis of the accuracy and implications of simple methods for predicting the secondary of globular proteins, J. Mol. Biol. 120: 97–120.

    Google Scholar 

  • Gimlich, R. L., Kumar, N. M., and Gilula, N. B., 1988, Sequence and developmental expression of mRNA coding for a gap junction protein, J. Cell Biol. 107: 1065–1073.

    PubMed  CAS  Google Scholar 

  • Giraudat, J., Dennis, M., Heidmann, T., Chang, J. Y., and Changeux, J.-P., 1986, Structure of the high-affinity binding site for non-competitive blockers of the acetylcholine receptor: Serine-262 of the 8-subunit is labeled by [3H]chlorpromazine, Proc. Natl. Acad. Sci. USA 83: 2719–2723.

    PubMed  CAS  Google Scholar 

  • Gordon, R. D., Fieles, W. E., Schotland, D. L., Hogue-Angeletti, R., and Barchi, R. L., 1987, Topographic localization of the C-terminal region of the voltage-dependent sodium channel from Electrophorus electricus using antibodies raised against a synthetic peptide, Proc. Natl. Acad. Sci. USA 84: 308–312.

    PubMed  CAS  Google Scholar 

  • Greenblatt, R. E., Blatt, Y., and Montai, M., 1985, The structure of the voltage sensitive sodium channel-Inferences derived from computer-aided analysis of the Electrophorus electricus primary structure, FEBS Lett. 193: 125–134.

    PubMed  CAS  Google Scholar 

  • Greeningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E. D., and Betz, H., 1987, The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors, Nature 328: 215–220.

    Google Scholar 

  • Gundersen, C. B., Miledi, R., and Parker, I., 1983, Voltage operated channels induced by foreign messenger RNA in Xenopus oocytes, Proc. B. Soc. London Ser. B 220: 131–140.

    CAS  Google Scholar 

  • Guy, H. R., 1984, A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations, Biophys. J. 45: 249–261.

    PubMed  CAS  Google Scholar 

  • Guy, H. R., and Hucho, F., 1987, The ion channel of the nicotinic acetylcholine receptor, Trends Neurosci. 10: 318–321.

    CAS  Google Scholar 

  • Guy, H. R., and Seetharalamu, P., 1986, Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA 83: 508–512.

    PubMed  CAS  Google Scholar 

  • Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montal, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers, Proc. Natl. Acad. Sci. USA 82: 240–244.

    PubMed  CAS  Google Scholar 

  • Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montal, M., 1986a, Functional reconstitution of purified sodium channels from brain in lipid bilayers, Ann. N.Y. Acad. Sci. 479: 293–305.

    PubMed  CAS  Google Scholar 

  • Hartshorne, R. P., Tamkun, M., and Montai, M., 1986b, The reconstituted sodium channel from brain, In: Ion Channel Reconstitution (C. Miller, ed.), Plenum Press, New York, pp. 337–362.

    Google Scholar 

  • Heinemann, S., Asouline, G., Ballivet, M., Boulter, J., Connolly, J., Deneris, E., Evans, K., Evans, S., Forrest, J., Gardner, P., Goldman, D., Kochhar, A., Luyten, W., Mason, P., Treco, D., Wada, K., and Patrick, J., 1987, Molecular biology of the neural and muscle acetylcholine receptors, In: Molecular Neurobiology: Recombinant DNA Approaches (S. Heinemann and J. Patrick, eds.), Plenum Press, New York, pp. 45–96.

    Google Scholar 

  • Hille, B., 1971, The permeability of the sodium channel to organic cations in myelinated nerve, J. Gen. Physiol. 58: 599–619.

    PubMed  CAS  Google Scholar 

  • Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, Mass., p. 426.

    Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve and muscle, J. Physiol. (London) 117: 500–544.

    CAS  Google Scholar 

  • Horn, R., and Patlak, J., 1980, Single channel currents from excised patches of muscle membrane, Proc. Natl. Acad. Sci. USA 77: 6930–6934.

    PubMed  CAS  Google Scholar 

  • Hucho, F., Oberthür, W., and Lottspeich, F., 1986, The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices MII of the receptor subunits, FEBS Lett. 205: 137–142.

    PubMed  CAS  Google Scholar 

  • Imoto, K., Methfessel, C., Sakmann, B., Mishina, M., Mori, Y., Konnu, T., Fukuda, K., Kurasaki, M., Bujo, H., Fujita, Y., and Numa, S., 1986, Location of a a subunit region determining ion transport through the acetylcholine receptor channel, Nature 324: 670–674.

    PubMed  CAS  Google Scholar 

  • Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K., and Numa, S., 1988, Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance, Nature 335: 645–648.

    PubMed  CAS  Google Scholar 

  • Iverson, L. A., Tanouye, M. A., Lester, H. A., Davidson, N., and Rudy, B., 1988, A-type potassium channels expressed from Shaker locus cDNA, Proc. Natl. Acad. Sci. USA 85: 5723–5727.

    PubMed  CAS  Google Scholar 

  • Kaiser, E. T., 1987, Design principles in the construction of biologically active peptides, Trends Biochem. Sci. 12: 305–309.

    CAS  Google Scholar 

  • Kamb, A., Tseng-Crank, J., and Tanouye, M. A., 1988, Multiple products of the Drosophila shaker gene may contribute to potassium channel diversity, Neuron 1: 421–430.

    PubMed  CAS  Google Scholar 

  • Karlin, A., DiPaola, M., Kao, P. N., and Lobel, P., 1987, Functional sites and transient states of the nicotinic acetylcholine receptor, Soc. Gen. Physiol. Ser. 41:43–65.

    PubMed  CAS  Google Scholar 

  • Kayano, T., Noda, M., Flockerzi, V., Takahashi, H., and Numa, S., 1988, Primary structure of rat brain sodium channel III deduced from the cDNA sequence, FEBS Lett. 228: 187–194.

    PubMed  CAS  Google Scholar 

  • Keller, B. U., Hartshorne, R. P., Talvenheimo, J. A., Catterall, W. A., and Montal, M., 1986, Sodium channels in planar lipid bilayers: Channel gating kinetics of purified sodium channels modified by batrachotoxin, J. Gen. Physiol. 88: 1–23.

    PubMed  CAS  Google Scholar 

  • Kemp, B. E., Graves, D. J., Benjamin, E., and Krebs, E. G., 1977, Role of multiple basic residues on determining the substrate specificity of cyclic AMP-dependent protein kinase, J. Biol. Chem. 252: 4888–4894.

    PubMed  CAS  Google Scholar 

  • Kennedy, S. J., Roeske, R. W., Freeman, A. R., Watanabe, A. M., and Besch, H. R., 1977, Synthetic peptides form ion channels in artificial lipid bilayers membranes, Science 106: 1341–1342.

    Google Scholar 

  • Khodorov, B. I., 1985, Batrachotoxin as a tool to study voltage-sensitive sodium channels of excitable membranes, Prog. Biophys. Mol. Biol. 45: 57–148.

    PubMed  CAS  Google Scholar 

  • Kitson, D. H., Avbelj, F., Eggleston, D. S., and Hagler, A. T., 1986, The structure, energy, entropy and dynamics of peptide crystals, Ann. N.Y. Acad. Sci. 482: 145–162.

    PubMed  CAS  Google Scholar 

  • Kosower, E. M., 1985, A structural and dynamic molecular model for the sodium channel of Electrophorus electricus, FEBS Lett. 182: 234–242.

    PubMed  CAS  Google Scholar 

  • Krueger, B. K., Worley, J. F., III, and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayers, Nature 303: 172–175.

    PubMed  CAS  Google Scholar 

  • Kubalek, E., Ralstom, S., Lindstrom, J., and Unwin, N., 1987, Location of subunits within the acetylcholine receptor: Analysis of tubular crystals from Torpedo mormorata, J. Cell Biol. 105: 9–18.

    PubMed  CAS  Google Scholar 

  • Kubo, T., Noda, M., Takai, T., Tanabe, T., Kayano, T., Shimizu, S., Tanaka, K., Takahashi, H., Hirose, T., Inayama, S., Kikuno, R., Miyata, T., and Numa, S., 1985, Primary structure of the 8-subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence, Eur. J. Biochem. 149: 5–13.

    PubMed  CAS  Google Scholar 

  • Kumar, N. M., and Gilula, N. B., 1986, Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein, J. Cell. Biol. 103: 767–776.

    PubMed  CAS  Google Scholar 

  • Kyte, J., and Doolittle, R., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157: 105–132.

    PubMed  CAS  Google Scholar 

  • Labarca, P., Lindstrom, J., and Montal, M., 1984, Acetylcholine receptors in planar lipid bilayers: Characterization of the channel properties of the purified nicotinic acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayers, J. Gen. Physiol. 83: 473–496.

    PubMed  CAS  Google Scholar 

  • La Polla, R. J., Mixter-Mayne, K., and Davidson, N., 1984, Isolation and characterization of a cDNA clone for the complete protein coding region of the 8 subunit of the mouse acetylcholine receptor, Proc. Natl. Acad. Sci. USA 81: 7970–7974.

    Google Scholar 

  • La Rochelle, W. J., Wray, B. E., Sealock, R., and Froehner, S. C., 1985, Immunochemical demonstration that amino acids 360–377 of the acetylcholine receptor 8-subunit are cytoplasmic, J. Cell Biol. 100: 684–691.

    Google Scholar 

  • Lear, J. D., Wasserman, Z. R., and DeGrado, W. F., 1988, Synthetic amphiphilic peptide models for protein ion channels, Science 240: 1177–1181.

    PubMed  CAS  Google Scholar 

  • Leatherbarrow, R. J., and Fersht, A. R., 1986, Protein engineering, Protein Eng. 1: 7–16.

    PubMed  CAS  Google Scholar 

  • Leonard, R. J., Labarca, C. G., Charnet, P., Davidson, N., and Lester, H. A., 1988, Evidence that the M2 membrane spanning region lines the ion channel pore of the nicotinic receptor, Science 242: 1578–1581.

    PubMed  CAS  Google Scholar 

  • Lewis, C. A., and Stevens, C. F., 1983, Acetylcholine receptor channel ionic selectivity: Ions experience an aqueous environment, Proc. Natl. Acad. Sci. USA 80: 6110–6113.

    PubMed  CAS  Google Scholar 

  • Lindstrom, J., 1986, Probing nicotinic acetylcholine receptors with monoclonal antibodies, Trends Neurosci. 9: 401–407.

    CAS  Google Scholar 

  • Luther, M. A., Schoepfer, R., Whiting, P., Casey, B., Blatt, Y., Montal, M. S., Montai, M., and Lindstrom, J., 1989, A muscle acetylcholine receptor is expressed in the human cerebellar medulloblastoma cell line TE671, J. Neurosci. 9: 1082–1096.

    PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Stewart, M., 1976, The 14-fold periodicity in a-tropomyosin and the interaction with actin, J. Mol. Biol. 103: 271–298.

    PubMed  CAS  Google Scholar 

  • Mellor, I. R., Thomas, D. H., and Sansom, M. S. P., 1988, Properties of ion channels formed by Staphylococcus aureus 8-toxin, Biochim. Biophys. Acta 942: 280–294.

    PubMed  CAS  Google Scholar 

  • Merrifield, R. B., 1965, Automated synthesis of peptides, Science 150:178–185. Merrifield, R. B., 1986, Solid phase synthesis, Science 232: 341–347.

    Google Scholar 

  • Milks, L. C., Kumar, N. M., Houghten, R., Unwin, N., and Gilula, N. B., 1988, Topology of the 32kd liver gap junction protein determined by site-directed antibody localizations, EMBO J. 7: 2967–2975.

    PubMed  CAS  Google Scholar 

  • Mishina, M., Kurasaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., and Numa, S., 1984, Expression of functional acetylcholine receptor from cloned cDNAs, Nature 307: 604–608.

    PubMed  CAS  Google Scholar 

  • Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., and Numa, S., 1985, Location of functional regions of acetylcholine receptor a subunit by site-directed mutagenesis, Nature 313: 364–369.

    PubMed  CAS  Google Scholar 

  • Molle, G., Dugast, J. Y., Duclohier, H., Daumas, P., and Spach, G., 1988, Inophore properties of a synthetic alpha-helical transmembrane fragment of the mitochondrial H+-ATP synthetase of Saccharomyces cerevisiae. Comparison with alamethicin, Biophys. J. 53: 193–203.

    PubMed  CAS  Google Scholar 

  • Montai, M., 1987, Reconstitution of channel proteins from excitable cells in planar lipid bilayer membranes, J. Membr. Biol. 98: 101–115.

    Google Scholar 

  • Montai, M., and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers and a study of the electrical properties, Proc. Natl. Acad. Sci. USA 69: 3561–3566.

    Google Scholar 

  • Montai, M., Labarca, P., Fredkin, D. R., and Suarez-Isla, B. A., 1984, Channel properties of the purified acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayer membranes, Biophys. J. 45: 165–174.

    Google Scholar 

  • Montai, M., Anholt, R., and Labarca, P., 1986, The reconstituted acetylcholine receptor, In: Ion Channel Reconstitution ( C. Miller, ed.), Plenum Press, New York, pp. 157–204.

    Google Scholar 

  • Montai, M., Oiki, S., and Danko, W., 1988, Channel protein engineering: A novel strategy to establish structure-function correlations in the voltage-dependent sodium channel, Biophys. J. 53: 35a.

    Google Scholar 

  • Mueller, P., and Rudin, D. O., 1968, Action potentials induced in bimolecular lipid membranes, Nature 217: 713–719.

    PubMed  CAS  Google Scholar 

  • Nef, P., Mauron, A., Stalder, R., Alliod, C., and Ballivet, M., 1984, Structure, linkage and sequence of the two genes encoding the a and -y subunits of the nicotinic acetylcholine receptor, Proc. Natl. Acad. Sci. USA 81: 7975–7979.

    PubMed  CAS  Google Scholar 

  • Neher, E., and Steinbach, J. H., 1978, Local anesthetics transiently block currents through single acetylcholine receptor channels, J. Physiol. (London) 277: 153–176.

    CAS  Google Scholar 

  • Noda, M., and Numa, S., 1987, Structure and function of sodium channel, J. Becept. Res. 7: 467–497.

    CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutami, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S., 1982, Primary structure of the a-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature 299: 793–797.

    PubMed  CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T.. Toyosato, M., Kikotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983a, Primary structures of 13- and 8-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301: 251–255.

    PubMed  CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikotani, S., Furutami, Y., Hirose, T.

    Google Scholar 

  • Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983b, Structural homology of Torpedo californica acetylcholine receptor subunits, Nature 302: 528–532.

    PubMed  Google Scholar 

  • Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, M. H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312: 121–127.

    PubMed  CAS  Google Scholar 

  • Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takashima, H., Kurasaki, M., Takahashi, H., and Numa, S., 1986a, Existence of distinct sodium channel messenger RNAs in rat brain, Nature 320: 188–192.

    PubMed  CAS  Google Scholar 

  • Noda, M., Ikeda, T., Suzuki, H., Takashima, H., Takahashi, T., Kuno, M., and Numa, S., 1986b, Expression of functional sodium channels from cloned cDNA, Nature 322: 826–828.

    PubMed  CAS  Google Scholar 

  • Numa, S., and Noda, M., 1986, Molecular structure of sodium channels, Ann. N.Y. Acad. Sci. 479: 338–355.

    PubMed  CAS  Google Scholar 

  • Oberthür, W., and Hucho, F., 1988, Photoaffinity labeling of functional states of the nicotinic acetylcholine receptor, J. Protein Chem. 7: 141–150.

    PubMed  Google Scholar 

  • Oberthür, W., Muhn, P., Baumann, H., Lottspeich, F., Wittmann-Liebold, B., and Hucho, F., 1986, The reaction site of a non-competitive antagonist in the 6-subunit of the nicotinic acetylcholine receptor, EMBO J. 5: 1815–1819.

    PubMed  Google Scholar 

  • Oiki, S., Danho, W., and Montai, M., 1987, Synthesis of an ion-channel forming peptide predicted from the primary structure of the voltage sensitive sodium channel, Soc. Neurosci. Abstr. 13: 576.

    Google Scholar 

  • Oiki, S., Danho, W., and Montai, M., 1988a, Channel protein engineering: Synthetic 22-mer peptide from the primary structure of the voltage-sensitive sodium channel forms ionic channels in lipid bilayers, Proc. Nati. Acad. Sci. USA 85: 2393–2397.

    CAS  Google Scholar 

  • Oiki, S., Danho, W., Madison, V., and Montal, M., 1988b, M26, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor, Proc. Natl. Acad. Sci. USA 85: 8703–8707.

    PubMed  CAS  Google Scholar 

  • Paul, D. L., 1986, Molecular cloning of cDNA for rat liver gap junction protein, J. Cell Biol. 103: 123–134.

    PubMed  CAS  Google Scholar 

  • Ratnam, M., LeNguyen, D., Rivier, J., Sargent, P. B., and Lindstrom, J., 1986, Transmembrane topography of nicotinic acetylcholine receptor: Immunochemical tests contradict theoretical predictions based on hydrophobicity profiles, Biochemistry 25: 2633–2643.

    PubMed  CAS  Google Scholar 

  • Recio-Pinto, E., Duch, D. S., Levinson, S. R., and Urban, B. W., 1987, Purified and unpurified sodium channels from eel electroplax in planar bilayers, J. Gen. Physiol. 90: 375–395.

    PubMed  CAS  Google Scholar 

  • Regan, L., and DeGrado, W. F., 1988, Characterization of a helical protein designed from first principles, Science 241: 976–978.

    PubMed  CAS  Google Scholar 

  • Reynolds, J. A., and Karlin, A., 1978, Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica, Biochemistry 17: 2035–2038.

    PubMed  CAS  Google Scholar 

  • Robson, B., and Gamier, J., 1986, Introduction to Proteins and Protein Engineering, Elsevier, Amsterdam, p. 699.

    Google Scholar 

  • Sakmann, B., Patlack, J., and Neher, E., 1980, Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist, Nature 286: 71–73.

    PubMed  CAS  Google Scholar 

  • Sakmann, B, Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fukuda, K., and Numa, S., 1985, Role of acetylcholine receptor subunits in gating of the channel, Nature 318: 538–543.

    Google Scholar 

  • Salkoff, L., Butler, A., Wei, A., Scavarda, N., Giffen, K., Ifune, C., Goodman, R., and Mandel, G., 1987a, Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila, Science 327: 744–749.

    Google Scholar 

  • Salkoff, L., Butler, A., Scavarda, N., and Wei, A., 1987b, Nucleotide sequence of the putative sodium channel gene from Drosophila: Four homologous domains, Nucleic Acids Res. 15: 8569–8572.

    PubMed  CAS  Google Scholar 

  • Schiffer, M., and Edmunson, A. B., 1967, Use of helical wheels to represent the structures of proteins and to identify segments with helical potential, Biophys. J. 7: 121–135.

    PubMed  CAS  Google Scholar 

  • Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H., and Barnard, E. A., 1987, Sequence and functional expression of the GABAA receptor shows a ligand-receptor super-family, Nature 328: 221–227.

    PubMed  CAS  Google Scholar 

  • Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N., and Jan, L. Y., 1988, Multiple potassium-channel components are produced by alternate splicing at the Shaker locus in Drosophila, Nature 331: 137–142.

    PubMed  CAS  Google Scholar 

  • Smith, M., 1985, In vitro mutagenesis, Annu. Rev. Genet. 19: 423–463.

    PubMed  CAS  Google Scholar 

  • Stroud, R. M., and Finer-Moore, J., 1985, Acetylcholine receptor structure, function and evolution, Annu. Rev. Cell Biol. 1: 369–401.

    Google Scholar 

  • Stühmer, W., Methfessel, C., Sakmann, B., Noda, M., and Numa, S., 1987, Patch clamp characterization of sodium channels expressed from rat brain cDNA, Eur. Biophys. J. 14: 131–138.

    PubMed  Google Scholar 

  • Suarez-Isla, B. A., Wan, K., Lindstrom, J., and Montai, M., 1983, Single channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipets, Biochemistry 22: 2319–2323.

    PubMed  CAS  Google Scholar 

  • Suzuki, H., Beckh, S., Kubo, H., Yahagi, N., Ishida, H., Kayano, T., Noda, M., and Numa, S., 1988, Functional expression of cloned cDNA encoding sodium channel III, FEBS Lett. 228: 195–200.

    PubMed  CAS  Google Scholar 

  • Tam, J. P., Heath, W. F., and Merrifield, R. B., 1983, SN2 deprotection of synthetic peptides with a low concentration of HF in dimethylsulfoxide: Evidence and application in peptide synthesis, J. Am. Chem. Soc. 105: 6442–6455.

    CAS  Google Scholar 

  • Tanabe, T., Takashima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S., 1987, Primary structure of the receptor for calcium channel blockers from skeletal muscle, Nature 328: 313–318.

    PubMed  CAS  Google Scholar 

  • Tanabe, T., Beam, K. G., Powell, J. A., and Numa, S., 1988, Restoration of excitation—contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA, Nature 336: 134–139.

    PubMed  CAS  Google Scholar 

  • Tappin, M. J., Pastore, A., Norton, R. S., Freer, J. H., and Campbell, J. D., 1988, High resolution 1H NMR study of the solution structure of l-hemolysin, Biochemistry 27: 1643–1647.

    PubMed  CAS  Google Scholar 

  • Tempel, B., Papazian, D. M., Schwarz, T. L., Jan, Y. N., and Jan, L. Y., 1987, Sequence of a probable potassium channel component encoded at shaker locus of Drosophila, Science 237: 770–775.

    PubMed  CAS  Google Scholar 

  • Timpe, L. C., Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N., and Jan, L. Y., 1988, Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes, Nature 331: 143–145.

    PubMed  CAS  Google Scholar 

  • Tobimatsu, T., Fujita, Y., Fukuda, K., Tanaka, K., Mori, Y., Konno, T., Mishina, M., and Numa, S., 1987, Effects of substitution of putative transmembrane segments on nicotinic acetylcholine receptor function, FEBS Lett. 222: 56–62.

    PubMed  CAS  Google Scholar 

  • Tomich, J. M., Carson, L. W., Kanes, K. J., Vogelar, N. J., Emerling, M. R., and Richards, J. H., 1988, Prevention of aggregation of synthetic membrane proteins by addition of detergent, Anal. Biochem. 174: 197–203.

    PubMed  CAS  Google Scholar 

  • Tosteson, M. T., Alvarez, O., and Tosteson, D. C., 1985, Peptides as promoters of ion-permeable channels, Regul. Pept. (Suppl.) 4: 39–45.

    CAS  Google Scholar 

  • Tosteson, M. T., Levy, J. J., Caporale, L. H., Rosenblatt, M., and Tosteson, D. C., 1987, Solid phase synthesis of melittin: Purification and functional characterization, Biochemistry 26: 6627–6631.

    PubMed  CAS  Google Scholar 

  • Vassilev, P., Scheuer, T., and Catterall, W. A., 1988, Identification of an intracellular peptide segment involved in sodium channel inactivation, Science 241: 1658–1661.

    PubMed  CAS  Google Scholar 

  • Weber, P. C., and Salemme, F. R., 1980, Structural and functional diversity in 4-a-helical proteins, Nature 287: 82–84.

    PubMed  CAS  Google Scholar 

  • Yoshi, K., Yu, L., Mayne, K. M., Davidson, N., and Lester, H. A., 1987, Equilibrium properties of mouse-Torpedo acetylcholine receptor hybrids expressed in Xenopus oocytes, J. Gen. Physiol. 90: 553–573.

    Google Scholar 

  • Zoller, M. J., and Smith, M., 1983, Oligonucleotide-directed mutagenesis of DNA fragments cloned in M13 vectors, Methods Enzymol. 100: 468–500.

    PubMed  CAS  Google Scholar 

  • Zoller, M. J., and Smith, M., 1987, Oligonucleotide-directed mutagenesis: A simple method using two oligonucleotide primers and a single-stranded DNA template, Methods Enzymol. 154: 329–350.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Montal, M. (1990). Channel Protein Engineering. In: Narahashi, T. (eds) Ion Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7305-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7305-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7307-4

  • Online ISBN: 978-1-4615-7305-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics