Skip to main content
Book cover

Ion Channels pp 283–327Cite as

Ionic Channels in Ocular Epithelia

  • Chapter

Abstract

Membrane phenomena are dominated by channels, integral membrane proteins specialized to allow and control the movement of solutes through aqueous pores spanning the membrane. The tiny aqueous pore (less than 1 nm in diameter) is embedded in a much larger protein cylinder some 10 nm in diameter and length that shields the solute from the low dielectric constant of the lipid membrane, decreasing the electrostatic energy barriers which prevent ion movement across artificial lipid membranes. Proteins play a role in membrane phenomena (whether the proteins form “channels” or other transporters) akin to the role of enzymes in metabolism: they accelerate the rate of chemical reactions or solute translocation so greatly that, to a good approximation, they are the only pathways of biological significance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blatz, A. L., and Magleby, K. L., 1983, Single voltage dependent chloride-selective channels of large conductance in cultured rat muscle, Biophys. J. 43:237–241.

    Article  PubMed  CAS  Google Scholar 

  • Bockris, J. O. M., and Reddy, A. K. N., 1970, Modern Electro-Chemistry, Plenum Press, New York.

    Google Scholar 

  • Boyle, P. J., and Conway, E. J., 1941, Potassium accumulation in muscle and associated changes, J. Physiol (London) 100:1–63.

    CAS  Google Scholar 

  • Chad, J., and Eckert, R., 1985, Leupeptin, an inhibitor of Ca-dependent proteases, retards the kinase-irreversible Ca-dependent loss of calcium current in perfused snail neurons, Biophys. J. 47:266a.

    Google Scholar 

  • Colquhoun, D., and Hawkes, A. G., 1983, The principles of the stochastic interpretation of ion-channel mechanisms, in: Single-Channel Recording(B. Sakmann and E. Neher, eds.), pp. 135–174, Plenum Press, New York.

    Google Scholar 

  • Colquhoun, D., Neher, E., Reuter, H., and Stevens, C. F., 1981, Inward current channels activated by intracellular Ca in cultured cardiac cells, Nature 294:750–754.

    Article  Google Scholar 

  • Coombs, J. S., Eccles, J. C., and Fatt, P., 1955, The specific ionic conductance and ionic movements across the myoneural membrane that produce the inhibitory post-synaptic potential, J. Physiol. (London) 130:326–373.

    CAS  Google Scholar 

  • Cooper, K. E., Tang, J. M., Rae, J. L., and Eisenberg, R. S., 1985, Cation-selective channel in the epithelium of the frog lens, J. Gen. Physiol. 86:9a.

    Google Scholar 

  • Coronado, R., and Miller, C., 1979, Voltage-dependent caesium blockade of a cation channel from fragmented sarcoplasmic reticulum, Nature 280:807–810.

    Article  CAS  Google Scholar 

  • Coronado, R., and Miller, C., 1980, Decamethonium and hexamethonium block K+ channels on sarcoplasmic reticulum, Nature 288:495–497.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, R., and Miller, C., 1982, Conduction and block by organic cations in a K+ selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers, J. Gen. Physiol. 79:529–547.

    Article  PubMed  CAS  Google Scholar 

  • Creighton, T. E., 1984, Proteins: Structures and Molecular Properties, Freeman, San Francisco.

    Google Scholar 

  • Eisenman, G., and Horn, R., 1983, Ionic selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels, J. Membr. Biol. 76:197–225.

    Article  PubMed  CAS  Google Scholar 

  • Fatt, P., and Katz, B., 1951, An analysis of the end-plate potential recorded with an intracellular electrode, J. Physiol. (London) 121:320–370.

    Google Scholar 

  • Fenwick, E. M., Marty, A., and Neher, E., 1982, A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine, J. Physiol. (London) 331:577–597.

    CAS  Google Scholar 

  • Fitzhugh, R., 1983, Statistical properties of the asymmetric random telegraph signal, with applications to single-channel analysis, Math. Biosci. 64:75–89.

    Article  Google Scholar 

  • Goldman, D. E., 1943, Potential, impedance, and rectification in membranes, J. Gen. Physiol. 27:37–60.

    Article  PubMed  CAS  Google Scholar 

  • Guharay, F., and Sachs, F., 1985, Mechanotransducer ion channels in chick skeletal muscle: The effects of extracellular pH, J. Physiol. (London) 363:119–134.

    CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391:85–100.

    Article  CAS  Google Scholar 

  • Hahrahan, J. W., Alles, W. P., and Lewis, S. A., 1985, Single anion-selective channels in basolateral membrane of mammalian tight epithelium, Proc. Natl. Acad. Sci. USA 82:7791–7795.

    Article  Google Scholar 

  • Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer, Sunderland, Mass.

    Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952a, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol. (London) 116:449–472.

    CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952b, The components of membrane conductance in the giant axon of Loligo, J. Physiol. (London) 116:473–496.

    CAS  Google Scholar 

  • Hodgkin, A. L., and Katz, B., 1949, the effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. (London) 108:37–77.

    CAS  Google Scholar 

  • Hodgkin, A. L., Huxley, A. F., and Katz, B., 1952, Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J. Physiol. (London) 116:424–448.

    CAS  Google Scholar 

  • Horn, R., and Lange, K., 1983, Estimating kinetic constants from single channel data, Biophys. J. 43:207–223.

    Article  PubMed  CAS  Google Scholar 

  • Horn, R., and Vandenberg, C. A., 1984, Statistical properties of single sodium channels,J. Gen. Physiol. 84:505–534.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M. B., 1985, Stochastic behavior of a many channel membrane system, Biophys. J. 47:129–137.

    Article  PubMed  CAS  Google Scholar 

  • Katz, B., 1950, Depolarization of sensory terminals and the initiation of impulses in the muscle spindle,J. Physiol. (London) 111:261–282.

    CAS  Google Scholar 

  • Latorre, R., Alvarez, O., Cecchi, X., and Vergara, C., 1985, Properties of reconstituted ion channels, Annu. Rev. Biophys. Chem. 14:79–111.

    Article  CAS  Google Scholar 

  • Levis, R. A., 1981, Patch and axial wire voltage clamp techniques and impedance measurements from cardiacPurkinje fibers. Ph.D. thesis, University of California, Los Angeles.

    Google Scholar 

  • Magleby, K. L., and Pallotta, B. S., 1983a, Calcium dependence of open and shut interval distributions from calcium activated potassium channels in cultured rat muscle, J. Physiol. (London) 344:585–604.

    CAS  Google Scholar 

  • Magleby, K. L., and Pallotta, B. S., 1983b, Burst kinetics of single calcium activated potassium channels in cultured rat muscle. J. Physiol. (London) 344:605–623.

    CAS  Google Scholar 

  • Marty, A., 1981, Ca-dependent K channels with large unitary conductance in chromaffin cell membranes, Nature291:497–500.

    Article  PubMed  CAS  Google Scholar 

  • Marty, A., and Neher, E., 1983, Tight-seal whole cell recording, in: Single-Channel Recording(B. Sakmann and E. Neher, eds.), pp. 107–121, Plenum Press, New York.

    Google Scholar 

  • Maruyama, Y., and Petersen, O. H., 1982, Single-channel currents in isolated patches of plasma membranes from basal surface of pancreatic acini, Nature 299:159–161.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, Y., Gallagher, D. V., and Petersen, O. H., 1983, Voltage and calcium activated potassium channel in basolateral acinar cell membranes of mammalian salivary glands,Nature 302:827–829.

    Article  PubMed  CAS  Google Scholar 

  • Methfessel, C., and Boheim, G., 1982, The gating of single calcium-dependent potassium channels is described by an activation/blockade mechanism, Biophys. Struct. Mech. 9:35–60.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C., 1982, Feeling around inside a channel in the dark, in: Transport in Biomembranes, Model Systems and Reconstitution(R. Antolini, ed.), pp. 99–108, Raven Press, New York.

    Google Scholar 

  • Miller, C., 1983, Integral membrane channels: Studies in model membranes, Physiol. Rev. 63:1209–1237.

    PubMed  CAS  Google Scholar 

  • Neher, E., 1981, Unit conductance studies in biological membranes, in: Techniques in Cellular Physiology(P. F. Baker, ed.), pp. 1–32, Elsevier, Amsterdam.

    Google Scholar 

  • Neher, E., and Steinbach, J. H., 1978, Local anaesthetics transiently block currents through single acetylcholine receptor channels, J. Physiol. (London) 277:153–176.

    CAS  Google Scholar 

  • Nelson, D. J., Tang, J. M., and Palmer, L. G., 1984, Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells,J. Membr. Biol. 80:81–89.

    Article  PubMed  CAS  Google Scholar 

  • Pallotta, B. S., Magleby, K. L., and Barrett, J. N., 1981, Single channel recordings of Ca2+activated K+ currents in rat muscle cell culture, Nature 293:471–474.

    Article  PubMed  CAS  Google Scholar 

  • Rae, J. L., 1985, The application of patch clamp methods to ocular epithelia, Curr. Eve Res. 4:409–420.

    Article  CAS  Google Scholar 

  • Rae, J. L., and Levis, R. A., 1984a, Patch clamp recordings from the epithelium of the lens obtained during glasses selected for low noise and improved sealing properties, Biophys. J. 45:144–146.

    Article  PubMed  CAS  Google Scholar 

  • Rae, J. L., and Levis, R. A., 1984b, Patch voltage clamp of lens epithelial cells: Theory and practice,Mol. Physiol. 6:115–162.

    CAS  Google Scholar 

  • Sachs, F., 1984, The noise produced by patch electrodes, Biophys. J. 45:57a.

    Article  Google Scholar 

  • Sachs, F., and Auerbach, A., 1983, Single channel electrophysiology: Use of the patch clamp, Methods Enzymol. 103:147–176.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, F., Neil, J., and Barkakati, N., 1982, The automated analysis of data from single ionic channels, Pfluegers Arch. 395:331–340.

    Article  CAS  Google Scholar 

  • Sakmann, B., and Neher, E., 1983, Geometric parameters of pipettes and membrane patches, in: Single-ChanneJ Recording (B. Sakmann and E. Neher, eds.), pp. 37–51), Plenum Press, New York.

    Google Scholar 

  • Schwarze, W., and Kolb, H. A., 1984, Voltage dependent kinetics of an anionic channel of large unit conductance in macrophages and myotube membranes, Pfluegers Arch. 402:281–291.

    Article  CAS  Google Scholar 

  • Sigworth, F. J., 1983, Electronic design of the patch clamp, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 3–35, Plenum Press, New York.

    Google Scholar 

  • Spalding, B. C., Senyk, O., Swift, J. G., and Horowicz, P., 1981, Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle,Am. J. Physiol. 241:C68–C75.

    PubMed  CAS  Google Scholar 

  • Stimers, J. R., Bezanilla, F., and Taylor, R. E., 1985, Sodium channel activation in the squid giant axon, J. Gen. Physiol. 85:65–82.

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg, C. A., and Horn, R., 1984, Inactivation viewed through single sodium channels, J. Gen. Physiol. 84:535–564.

    Article  PubMed  CAS  Google Scholar 

  • Woodhull, A. M., 1973, Ionic blockage of sodium channels in nerve, J. Gen. Physiol. 61:687–708.

    Article  PubMed  CAS  Google Scholar 

  • Yellen, G., 1982, Single Ca2+activated nonselective cation channels in neuroblastoma, Nature 296:357–359.

    Article  PubMed  CAS  Google Scholar 

  • Yellen, G., 1984a, Ionic permeation and blockade in Ca2+activated K+channels of bovine chromaffin cells, J. Gen. Physiol. 84:157–186.

    Article  PubMed  CAS  Google Scholar 

  • Yellen, G., 1984b, Relief of Na+block of Ca2+activated K+channels by external cations, J. Gen. Physiol. 84:187–199.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Rae, J.L., Levis, R.A., Eisenberg, R.S. (1988). Ionic Channels in Ocular Epithelia. In: Narahashi, T. (eds) Ion Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7302-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7302-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7304-3

  • Online ISBN: 978-1-4615-7302-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics