Skip to main content

Biochemical and Ultrastructural Evidence for the Double Role of Phagocytosis in Molluscs: Defense and Nutrition

  • Chapter
Book cover Comparative Pathobiology

Part of the book series: Comparative Pathobiology ((CPATH,volume 3))

Abstract

Haeckel (1862) was the pioneer in reporting that the hemolymph cells of molluscs are capable of phagocytosis. Since that initial report, a number of individuals have demonstrated the phagocytosis of nonself materials by molluscan cells (see Feng, 1967; Cheng, 1967; for reviews).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcadi, J. A. (1968). Tissue response to the injection of charcoal into the pulmonate gastropod Lehmania poirieri. J. Invertebr. Pathol., 11, 59–62.

    Article  Google Scholar 

  • Bayne, C. J. (1973). Molluscan internal defense mechanism: the fate of 14C-labeled bacteria in the land snail Helix pomatia (L.). J. Comp. Physiol., 86, 17–25.

    Article  Google Scholar 

  • Bayne, C. J. and Kime, J. B. (1970). In vivo removal of bacteria from the hemolymph of land snail Helix pomatia (Pulmonata: Stylommatophora). Malacol. Rev., 3, 103–113.

    Google Scholar 

  • Cheng, T. C. (1967). Marine molluscs as hosts for symbioses. Adv. Mar. Biol., 5, 1–424.

    Article  Google Scholar 

  • Cheng, T. C. (1975). Functional morphology and biochemistry of molluscan phagocytes. Arm. N.Y. Acad. Sci., 266, 343–379.

    Article  CAS  Google Scholar 

  • Cheng, T. C. and Cali, A.(1974). An electron microscope study of the fate of bacteria phagocytized by granulocytes of Crassostrea virginica. Contemp. Top. Immunobiol., 4, 25–35.

    Article  Google Scholar 

  • Cheng, T. C. and Rifkin, E.(1970). Cellular reactions in marine molluscs in response to helminth parasitism. In “Diseases of Fish and Shellfish.” Am. Fisher. Soc. Spec. Publ. No. 5. Washington, D. C.

    Google Scholar 

  • Cheng, T. C., Thakur, A. S., and Rifkin, E.(1969). Phagocytosis as an internal defense mechanism in the Mollusca: with an experimental study of the role of leucocytes in the removal of ink particles in Littorina soabra Linn. Proc. Symp. Mollusca, Part II, 546–563, Marine Biol. Assoc. India.

    Google Scholar 

  • Cheng, T. C., Cali, A., and Foley, D. A. (1974). Cellular reaction in marine pelecypods as a factor influencing endosymbioses. In “Symbiosis in the Sea.” (W. B. Vernberg, ed.). Univ. South Carolina Press, Columbia S.C. pp. 61–91.

    Google Scholar 

  • Des Voigne, D. M. and Sparks, A. K.(1968). The process of wound healing in the Pacific oyster, Crassostrea gigas. J. Invertebr. Pathol., 12, 53–65.

    Article  Google Scholar 

  • Feng, S. Y. (1959). Defense mechanism of the oyster. Bull. N.J. Acad. Sci., 4, 17.

    Google Scholar 

  • Feng, S. Y. (l965). Pinocytosis of proteins by oyster leucocytes. Biol. Bull., 128, 95–105.

    Google Scholar 

  • Feng, S. Y.(1967). Responses of molluscs to foreign bodies, with special reference to the oyster. Fed. Proc., 26, 1685–1692.

    PubMed  CAS  Google Scholar 

  • Haeckel, E. (1862). Die Radiolarien. Geo. Reimer, Berlin.

    Google Scholar 

  • Pauley, G. B. and Heaton, L. H.(1969). Experimental wound repair in the fresh-water mussel Anodonta oregonensis. J. Invertebr. Pathol., 13, 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Pauley, G. B. and Krassner, S. M. (1972). Cellular defense reactions to particulate materials in the California sea hare, Aplysia californioa. J. Invertebr. Pathol., 19, 18–27.

    Article  Google Scholar 

  • Pauley, G. B. and Sparks, A. K. (1965). Preliminary observations on the acute inflammatory response in the Pacific oyster, Crassostrea gigas (Thurnberg). J. Invertebr. Pathol., 7, 248–256.

    Article  Google Scholar 

  • Polglase, W. J., Smith, E. L., and Tyler, R. H. (1952). Studies on human glycogen I. Preparation, purity, and average chain length. J. Biol. Chem., 199, 97–104.

    PubMed  CAS  Google Scholar 

  • Reade, P. C. (1968). Phagocytosis in invertebrates. Aust. J. Exp. Biol. Med. Sci., 46, 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Scott, R. M.(1969). Clinical analysis by TLC. Ann Arbor-Humphrey Science Publ. Ann Arbor, Michigan.

    Google Scholar 

  • Sminia, T.(1972). Structure and function of blood and connective tissue cells of the fresh water pulmonate Lymnaea stagnalis studied by electron microscopy and enzyme histochemistry. Z. Zellforsch., 130, 497–526.

    Article  PubMed  CAS  Google Scholar 

  • Stauber, L. A. (1950). The fate of India ink injected intracardially in the oyster, Ostrea virginica Gmelin. Biol. Bull., 98, 227–251.

    Article  PubMed  CAS  Google Scholar 

  • Staurt, A. E.(1968). The reticuloendothelial apparatus of the lesser octopus, Eledone cirrosa. J. Path. Bact., 96, 401–412.

    Article  Google Scholar 

  • Takatsuki, S. (1934). On the nature and function of the amoebocytes of O. edulis. Quart. J. Miorosc. Sci., 76, 379–431.

    Google Scholar 

  • Tripp, M. R. (1958a). Disposal by the oyster of intracardially injected red blood cells of vertebrates. Proc. Nat. Shellfish. Assoc., 48, 143–147.

    Google Scholar 

  • Tripp, M. R. (1958b). Studies on the defense mechanism of the oyster. J. Parasitol., 44(Sect. 2), 35–36.

    Google Scholar 

  • Wagge, L. E. (1951). The activity of amoebocytes and of alkaline phosphatases during the regeneration of shell of the snail Helix aspersa. Quart. J. Microsc. Sci., 92, 307–321.

    Google Scholar 

  • Wagge, L. E.(1955). Amoebocytes. Int. Rev. Cytol., 4, 31–78.

    Article  Google Scholar 

  • Yonge, C. M. (1923). The mechanism of feeding, assimilation, and digestion in Mya arenaria. Brit. J. Exp. Biol., 1, 15–63.

    Google Scholar 

  • Yonge, C. M. (1926). Structure and physiology of the organs of feeding and digestion in Ostrea edulis. J. Mar. Biol. Assoc. U.K., 14, 295–388.

    Article  Google Scholar 

  • Yonge, C. M. and Nicholas, H. M. (1940). Structure and function of the gut and symbiosis with zooxanthellae in Tridaona crispata (Oerst). Bgk. Papers Tortugas Lab. Carnegie Inst., 32, 287–301.

    Google Scholar 

  • Zacks, S. I.(1955). The cytochemistry of the amoebocytes and intestinal epithelium of Venus mercenaria (Lamelli branchiata), with remarks on a pigment resembling ceroid. Quart. J. Microsc. Sci., 96, 57–71.

    Google Scholar 

  • Zacks, S. I. and Welsh, J. H.(1953). Cholinesterase and lipase in the amoebocytes, intestinal epithelium and heart muscle of the quahog, Venus mercenaria. Biol. Bull., 105, 200–211.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Cheng, T.C. (1977). Biochemical and Ultrastructural Evidence for the Double Role of Phagocytosis in Molluscs: Defense and Nutrition. In: Bulla, L.A., Cheng, T.C. (eds) Comparative Pathobiology. Comparative Pathobiology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7299-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7299-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7301-2

  • Online ISBN: 978-1-4615-7299-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics