Skip to main content

A Meta-Model for Segmentation Problems in Mathematical Morphology

  • Chapter
  • 83 Accesses

Abstract

In Image Analysis, segmentation is a concept widely in use, being a basic transformation in most studies. As a general rule, the word segmentation is intended for “partition”, or “division” of an image into regions that are uniform according to given criteria. However, we shall use it in a more restricted sense, i.e. the extraction of an object in a complex image, a meaning which is closer to that used in pattern recognition.

Keywords

  • Left Ventricle
  • Grey Level
  • Mathematical Morphology
  • Word Segmentation
  • Segmentation Problem

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4615-7263-3_3
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-1-4615-7263-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beucher, S., and Meyer, F. (1977). Méthodes d’analyse de contraste à l’analyseur de textures, N-536, C.M.M, Fontainebleau.

    Google Scholar 

  • Bloch, I., Prêteux, F., Cabanis, E.A., Iba-Zizen, M.T., Bourgoin, C., and Tamraz, J. (1986). Mathematical morphology for automatic detection of MR brain lesions: primary results, XIII symposium neuroradiologicum, Stockholm.

    Google Scholar 

  • Boulanger, F., Soussaline, F., and Prêteux, F. (1987). A new segmentation algorithm in mathematical morphology, MARI87, La Villette, France, 342–349.

    Google Scholar 

  • Coster, M., and Chermant, J.L. (1975). Précis d’Analyse d’Images, éd. CNRS.

    Google Scholar 

  • Haton, J.P. (1987). Knowledge-based systems for pattern recognition and interpretation, MARI87, La Villette, France, 73–80.

    Google Scholar 

  • Klein, J.C. (1976). Conception et réalisation d’une unité logique pour l’analyse quantitative d’images, Thèse de doctorat, Université de Nancy.

    Google Scholar 

  • Lavayssière, B., and Prêteux, F. (1987). Repérage automatique du ventricule gauche en angioradiographie numérique par la morphologie mathématique, llème colloque GRETSI, Nice, France.

    Google Scholar 

  • Matheron, G. (1975). Random Sets and Integral Geometry, Wiley and S., New York.

    MATH  Google Scholar 

  • Matheron, G. (1983). Filters and Lattices, N-851, C.G.M.M., Fontainebleau.

    Google Scholar 

  • Merlet, N. (1987). Détermination du volume pulmonaire dans le cadre du traitement de l’emphysème bulleux, C.M.M., Fontainebleau.

    Google Scholar 

  • Meyer, F. (1986). Erodés ultimes, maxima régionaux: algorithmes rapides, N-5/86/MM, C.M.M, Fontainebleau.

    Google Scholar 

  • Prêteux, F., Laval-Jeantet, A.M., Roger, B., and Laval-Jeantet, M. (1985).

    Google Scholar 

  • New Prospects in CT Image Processing via Mathematical Morphology, Europ. J. Radiol. 5, 313–317.

    Google Scholar 

  • Prêteux, F. (1986). Primitive Extraction and Mathematical Morphology, Second Image Symposium GRETSI-CESTA, Nice, France, 719–725.

    Google Scholar 

  • Prêteux, F., and Schmitt, M. (1986). A new mathematical morphological algorithm: r,h maxima, r,h minima; applications to X-rays tomographs, N.M.R., Angiography, Second Image Symposium GRETSI-CESTA, Nice, France, 469–475.

    Google Scholar 

  • Prêteux, F., and Laval-Jeantet, M. (1986). Les systèmes experts en radiologie, réponse à l’inflation et à la complexité des images, 3ème Forum des Jeunes Chercheurs GBM, Paris, France.

    Google Scholar 

  • Serra, J. (1982). Image Analysis and Mathematical Morphology, Academic Press, London.

    MATH  Google Scholar 

  • Serra, J. (1982). Les filtres morphologiques, N-744, C.M.M., Fontainebleau.

    Google Scholar 

  • Serra, J. editor (1987). Advances in Mathematical Morphology (to be published in Academic Press).

    Google Scholar 

  • Sternberg,.R. (1980). Cellular Computers and Biomedical Image Processing, U.S. France Seminar on Biomedical Image Processing, Grenoble, France, 294–319.

    Google Scholar 

  • Syrota, A., and Comar, D. (1985). Muscarinic cholinergic receptor in the human heart under physiological conditions by positron emission tomography, Proc. Nat. 1 Acad. Sci., USA.

    Google Scholar 

  • Travère, J.M., Lailler, P., Plancoulaine, B., Bloyet, D., Syrota, A., and Charbonneau, P. (1986). Automatic analysis and graphic image modeling for muscarinic receptors study by time of flight positron emission tomography, Second Image Symposium GRETSI-CESTA, Nice, France, 497–503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bloch, I., Preteux, F., Boulanger, F., Soussaline, F. (1988). A Meta-Model for Segmentation Problems in Mathematical Morphology. In: de Graaf, C.N., Viergever, M.A. (eds) Information Processing in Medical Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7263-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7263-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7265-7

  • Online ISBN: 978-1-4615-7263-3

  • eBook Packages: Springer Book Archive