Skip to main content

Simultaneous Emission and Transmission Tomography

  • Chapter

Abstract

Single Photon Emission Computed Tomography (SPECT) has the capability of providing quantitative information about in-vivo radionuclide activity distribution using a rotating gamma camera, which is now available to most nuclear medicine departments. This quantitative potential has been limited largely because of the inability to accurately correct for the effects of photon attenuation. Researchers are becoming increasingly aware that knowledge of attenuation coefficients is necessary to implement accurate attenuation correction, particularly in the thorax. However, this normally necessitates an extra study. This paper proposes a method which overcomes this limitation by measuring the attenuation of the body with a transmission scan concurrent with the measurement of radiopharmaceutical distribution. The accuracy of the method when applied to iterative post-reconstruction attenuation correction is examined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anger, H.O. and McRae, J. (1968). Transmission Scintiphotography, J.Nucl. Med. 9, 267–269.

    Google Scholar 

  • Axelsson, B., Msaki, P. and Israelsson, A. (1984). Subtraction of Compton scattered photons in SPECT, J.Nucl.Med. 25, 490–494.

    Google Scholar 

  • Bailey, D.L. (1986). Towards Quantitation in SPECT: A Dual Radionuclide Approach. M.App.Sc. thesis, NSWIT, Sydney.

    Google Scholar 

  • Beck, R.N., Zimmer, L.T., Charleston, D.B. et al (1973). Advances in Fundamental Aspects of Imaging Systems & Techniques, in Medical Radionuclide Scintigraphy Vol I, pp 3–45, IAEA, Vienna.

    Google Scholar 

  • Chang, L.T. (1978). A Method for Attenuation Correction in Radionuclide Computed Tomography, IEEE Trans.Nucl.Sci. NS-25, 638–643.

    Google Scholar 

  • Filipow, L.J., Macey. D.J. and Munro, T.R. (1979). Measurement of the Depth of a Point Source of a Radioisotope from Gamma Ray Spectra, Phys.Med.Biol. 24, 341–352.

    Google Scholar 

  • Hutton, B.F., Jayasinghe, M.A.C., Bailey, D.L. et al (1987). Artefact Reduction in Dual Radionuclide Subtraction Studies, Phys. Med. Biol. 32, 477–493.

    Google Scholar 

  • Jayasinghe, M.A.C. (1984). Possibe improvements for the subtraction imaging technique in radio-imunodetection of cancer (RID), M.Sc. thesis, UNSW, Sydney.

    Google Scholar 

  • Kuhl, D.E., Hale, J. and Eaton, W.L. (1966). Transmission Scanning: A Useful Adjunct to Conventional Emission Scanning for Accurately Keying Isotope Deposition to Radiographic Anatomy, Radiology 87, 278–284.

    Google Scholar 

  • Larsson, S.A. (1980). Gamma Camera Emission Tomography, ACTA Radiologica Supplementum 363, pp24-30, Stockholm.

    Google Scholar 

  • Malko, J.A., Van Heertum, R.L., Gullberg, G.T. et al (1986). SPECT Liver Imaging Using an Iterative Attenuation Correction Algorithm and an External Flood Source, J.Nucl.Med. 27, 701–705.

    Google Scholar 

  • Manglos, S.H., Jaszczak, R.J., Floyd, C.E. et al (1987). Non-Isotropic Attenuation in SPECT: Phantom Tests of Quantitative Effects and Compensation Techniques, J.Nucl.Med. (in press).

    Google Scholar 

  • Moore, S.C. (1982). Attenuation Compensation, in Computed Emission Tomography, Ell P.J. and Holman B.L.(Eds.), pp 339-360, Oxford University Press.

    Google Scholar 

  • Moore, S.C., Brunelle, J.A. and Kirsch, C-M. (1982). Quantitative Multi-Detector Emission Computerized Tomography Using Iterative Attenuation Compensation, J.Nucl.Med. 23, 706 - 714.

    Google Scholar 

  • Rutherford, R.A., Pullen, B.R., Goddard, J. et al (1975). Quantitative Information from the EMI scanner, in Information Processing in Scintigraphy, pp 353 - 376, Todd-Pokropek A. and Raynaud C.(Eds.), Orsay.

    Google Scholar 

  • Sorenson, J.A., Briggs, R.C. and Cameron, J.R. (1969). 99m_ Tc Point Source for Transmission Scanning, J.Nucl.Med. 10, 252–253.

    Google Scholar 

  • Tothill, P. and Galt, J.M. (1971). Quantitative Profile Scanning for the Measurement of Organ Radioactivity, Phys.Med.Bio1. 16, 625–634.

    Article  Google Scholar 

  • Walters, T.E., Simon, W., Chesler, D.A. et al (1981). Attenuation Correction in gamma emission tomography, J.Comput.Assist.Tomogr. 5, 89–94.

    Article  Google Scholar 

  • Webb, S., Flower, M.A., Ott, R.J. et al (1983). A comparison of attenuation correction methods for quantitative single photon emission computed tomography, Phys.Med.Biol. 28, 1045–1056.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bailey, D.L., Hutton, B.F. (1988). Simultaneous Emission and Transmission Tomography. In: de Graaf, C.N., Viergever, M.A. (eds) Information Processing in Medical Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7263-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7263-3_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7265-7

  • Online ISBN: 978-1-4615-7263-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics