Skip to main content

A Filtered Iterative Reconstruction Algorithm for Positron Emission Tomography

  • Chapter
Book cover Information Processing in Medical Imaging

Abstract

Positron emission tomography (PET) has received increasing attention for the use in physiological studies in medical diagnosis. Most PET systems have a circular array of bismuth germanate (BGO) detectors and the coincidence detection of two annihilation photons is employed to reconstruct tomographic images. The detector gantry usually undergoes some type of scanning motion (wobbling, rotation, etc.) to achieve fine sampling of projection data. A recent trend of development in PET is to realize stationary PET systems with a reasonable spatial resolution (Derenzo et al.,1981; Burnham et al., 1984; Muehllehner and Karp, 1986). A totally stationary PET avoids the mechanical problems associated with accurate movement of the heavy assembly and is particularly advantageous in gated cardiac imaging or in fast dynamic studies. Elimination of scan motion along the detector plane allows one to scan the gantry quickly in the axial direction so that continuous three dimensional imaging can be achieved with a limited number of detector rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brooks, R.A., Sank, V.J, Talbert A.J. and DiChiro, G. (1979). Sampling requirements and detector motion for positron emission tomography, IEEE Trans. Nucl. Sci., NS-26, 2760–2763.

    Google Scholar 

  • Budinger, T.F. and Gullberg, G.T. (1974). Three-dimensional reconstruction in nuclear medicine emission imaging, IEEE Trans. Nucl. Sci., NS-21, 220.

    Google Scholar 

  • Burnham, C.A., Bradshaw, J., Kaufman, D., Chesler D. and Brownell G.L. (1984). A stationary positron emission ring tomograph using BG0 detector and analog readout, IEEE Trans. Nucl. Sci., NS-31, 632–636.

    Google Scholar 

  • Derenzo, S.E., Budinger, T.F. and Huesman, R.H. (1981). Imaging properties of a positron tomograph with 280 BGO crystals, IEEE Trans. Nucl. Sci., NS-28, 81–89.

    Google Scholar 

  • Gilbert, P. (1972). Iterative methods for the three-dimensional reconstruction of an object from projections, J. Theor. Biol., 36, 105–117.

    Article  Google Scholar 

  • Gordon, R., Bender, R. and Herman, G.T. (1970). Algebraic reconstruction techniques(ART) for three-dimensional electron microscopy and x-ray photography, J. Theor. Biol., 29, 471–481.

    Article  Google Scholar 

  • Herman, G.T. and Lent, A. (1976). Iterative reconstruction algorithm, Comput. Biol. Med., 6, 273–294.

    Article  Google Scholar 

  • Kawata, S. and Nalcioglu, 0. (1985). Constrained iterative reconstruction by the conjugate gradient method, IEEE Trans. Med. Imag., MI-4, 65–71.

    Google Scholar 

  • Lange, K. and Carson, R. (1984). EM reconstruction algorithms for emission and transmission tomography, J. Comput. Assist. Tomogr., 8, 306–316.

    Google Scholar 

  • Llacer, J., Veklerov, E. and Hoffman, E. J. (1987). On the convergence of the maximum likelihood estimator method of tomographic image reconstruction, in: Proc. of Conf. on Medical Imaging, Newport Beach, CA (1987), SPIE Vol.767.

    Google Scholar 

  • Minerbo, G. (1979). Maximum entropy reconstruction from cone-beam projection data, Comput. Biol. Med., 9, 29–37.

    Article  Google Scholar 

  • Muehllehner, G. and Karp, J.S. (1986). A positron camera using position-sensitive detectors: PENN-PET, J. Nucl. Med., 27, 90–98.

    Google Scholar 

  • Rockmore, A. and Macovski, A. (1977). A maximum likelihood approach to emission image reconstruction from projections, IEEE Trans. Nucl. Sci., NS-23, 1428–1432.

    Google Scholar 

  • Shepp, L.A. and Logan, B.F. (1974). Fourier reconstruction of a head section, IEEE Trans. Nucl. Sci., NS-21, 21–43.

    Google Scholar 

  • Shepp, L.A. and Vardi, Y. (1982). Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imag., MI-1, 113–122.

    Google Scholar 

  • Snyder, D.L. and Miller, M.I. (1985). The use of sieves to stabilize images produced with the EM algorithm for emission tomography, IEEE Trans. Nucl. Sci., NS-32, 3864–3872.

    Google Scholar 

  • Tanaka, E. (1987a). Recent progress on single photon and positron emission tomography–From detectors to algorithms, IEEE Trans. Nucl. Sci., NS-34, 313–320.

    Google Scholar 

  • Tanaka, E. (1987b). A fast reconstruction algorithm for stationary positron emission tomography based on a modified EM algorithm, IEEE Trans. Med. Imag., MI-6, 98–105.

    Google Scholar 

  • Tanaka, E., Nohara, N., Tomitani, T. and Yamamoto, M. (1985). Utilization of non-negativity constraints in reconstruction of emission tomograms, in: Proc. of the 9-th Conf. of Information Processing in Medical Imaging, Washington, D.C., June 10–14, 1985, S.L. Bacharach, ed., Martinus Nijhoff, pp. 379–393.

    Google Scholar 

  • Tanaka, E., Nohara, N., Tomitani, T., Yamamoto, M. and Murayama, H. (1986). Stationary positron emission tomography and its image reconstruction, IEEE Trans. Med. Imag., MI-5, 199–206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tanaka, E. (1988). A Filtered Iterative Reconstruction Algorithm for Positron Emission Tomography. In: de Graaf, C.N., Viergever, M.A. (eds) Information Processing in Medical Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7263-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7263-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7265-7

  • Online ISBN: 978-1-4615-7263-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics