Skip to main content

Maternal Factors Affecting the Vitamin D Content of Human Milk

  • Chapter
Human Lactation 2

Abstract

The antirachitic activity of human milk has been estimated using a variety of techniques during the past several years (1–9). The earlier studies were dependent upon the rat line biological assay to provide crude estimates of total antirachitic activity (1–3). Later studies utilized chemical methods that proved to be totally unreliable in estimating the vitamin D content of human milk (4–6). Only recently has the actual vitamin D content of human milk been determined using procedures based on high-performance liquid chromatography (HPLC) and/or competitive protein binding assay (CPBA) (7–13). These techniques have demonstrated: 1) that vitamin D sulfate does not contribute to the antirachitic activity of human milk; 2) that many vitamin D compounds exist in human milk; 3) of the vitamin D compounds in human milk 25-hydroxyvitamin D (25-OH-D) contributes the vast majority of antirachitic activity; 4) that maternal factors such as diet, ultraviolet light exposure and race greatly affect the vitamin D content of human milk. This last aspect, the effect of maternal vitamin D status on the vitamin D content of her milk, is relatively new and has not been reported in great detail. Thus, it is the purpose of this report to provide a detailed and comprehensive review of this area of nutritional investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.S., Clemens, T.L., Parrish, J.A., Holick, M.F., 1982, Vitamin D synthesis and metabolism after ultraviolet irradiation of normal and vitamin D-deficient subjects, N. Engl. J. Med., 306:722–25.

    Article  Google Scholar 

  2. Belsey, R., Clark, M.B., Dernat, M., Glowacki, J., Holick, M.F., DeLuca, H.F., Potts, J.T., 1974, The physiologic significance of plasma transport of vitamin D and metabolites, Amer. J. Med., 57:50–6.

    Article  Google Scholar 

  3. Bouillon, R., VanBaelen, H., 1981, Transport of vitamin D: significance of free and total concentrations of the vitamin D metabolites, Calcif. Tiss. Internatl., 33:451–33.

    Article  Google Scholar 

  4. Clemens, T.L., Henderson, S.L., Adams, J.S., Holick, M.F., 1982, Increased skin pigment reduces the capacity of skin to synthesize vitamin D3, Lancet 8263:74–6.

    Article  Google Scholar 

  5. Drummond, J.C., Gray, C.H., Richardson, N.E.G., 1939, The antirachitic value of human milk, Br. Med. J., 2:757–60.

    Article  Google Scholar 

  6. Greer, F.R., Hollis, B.W., Cripps, D.J., Tsang, R.C., 1984, Effects of maternal ultraviolet irradiation on vitamin D content of human milk, J. Pediat., 105:431–33.

    Article  Google Scholar 

  7. Greer, F.R., Hollis, B.W., Napoli, J.L., 1984, High concentrations of vitamin D2 in human milk associated with pharmacologic doses of vitamin D2, J. Pediat., 105:61–4.

    Article  Google Scholar 

  8. Haddad, J.G., Walgate, J., 1976, 25-Hydroxyvitamin D transport in human plasma: isolation and partial characterization of calcifidiol-binding protein, J. Biol. Chem., 251:4803–809.

    Google Scholar 

  9. Harris, R.S., Bunker, J.W., 1939, Vitamin D potency of human breast milk, J. Publ. Health, 29:744–7.

    Article  Google Scholar 

  10. Hoff, N., Haddad, J., Teitelbaum, S., McAlister, W., Hillman, L., 1979, Serum concentrations of 25-hydroxyvitamin D in rickets of extremely premature infants, J. Pediat, 94:460–66.

    Article  Google Scholar 

  11. Hcllis, B.W., 1984, Comparison of equilibrium and disequilibrium assay conditions for ergocalciferol, cholecalciferol and their major metabolites, J. Steroid Biochem, 21:81–6.

    Article  Google Scholar 

  12. Hollis, B.W., 1983, Individual quantitation of vitamin D2, vitamin D3, 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human milk. Anal. Biochem., 131:311–19.

    Article  Google Scholar 

  13. Hollis, B.W., Greer, F.R., Tsang, R.C., 1982, The effects of oral vitamin D supplementation and ultraviolet phototherapy on the antirachitic sterol content of human milk, Calci. Tiss. Internatl., 34–552 (abst).

    Google Scholar 

  14. Rollis, B.W., Pittard, W.B., 1984, Evaluation of the total fetomaternal vitamin D relationships at term: evidence for racial differences, J. Clin. Endocrinol. Metab., 59:652–57.

    Article  Google Scholar 

  15. Hollis, B.W., Pittard, W.B., 1985, Mineral metabolic parameters in the serum of term infants following their supplementation with vitamin D2, D3 or 25-hydroxyvitamin D3, Pediat. Res, 19:312A (abst).

    Google Scholar 

  16. Hollis, B.W., Pittard, W.B., Reinhardt, T.A., 1986, Relationships between vitamin D, 25-hydroxyvitamin D and vitamin D-binding protein concentrations in the plasma and milk of human subjects, J. Clin. Endocrinol. Metab., 62:41–44.

    Article  Google Scholar 

  17. Hollis, B.W., Roos, B.A., Draper, H.H., Lambert, P.W., 1981, Occurence of vitamin D sulfate in human milk whey, J. Nutr., 111:384–90.

    Google Scholar 

  18. Hollis, B.W., Roos, B.A., Draper, H.H., Lambert, P.W., 1981, Vitamin D and its metabolites in human and bovine milk, J. Nutr.,

    Google Scholar 

  19. Horst, R.L., Reinhardt, T.A., Beitz, D.C., Littledike, E.T., 1981, A sensitive competitive protein binding assay for vitamin D in plasma, Steroids, 37:581–91.

    Article  Google Scholar 

  20. Lakdawala, D.R., Widdowson, E.M., 1977, Vitamin D in human milk, Lancet, i:167–8.

    Article  Google Scholar 

  21. LeBoulch, N., Gulat-Marnay, C., Raoul, Y., 1974, Derives de la vitamin D3 des laits de femme et de vache: ester sulfate de cholecalciferol et hydroxy-25-cholecalciferol, Int. J. Nutr. Res., 44:167–79.

    Google Scholar 

  22. Park, E., 1923, The etiology of rickets, 3:106–19.

    Google Scholar 

  23. Polskin, L.J., Kramer, B., Sobel, H.E., 1945, Secretion of vitamin D in milks of women fed fish liver oil, J. Nutr., 30:451–66.

    Google Scholar 

  24. Reeve, L.E., Chesney, R.W., DeLuca, H.F., 1982, Vitamin D of human milk: identification of biologically active forms, Am. J. Clin. Nutr., 36:122–26.

    Google Scholar 

  25. Sashi, Y., Suzuki, T., Higaki, M., Ansano, T., 1967, Metabolism of vitamin D in animals. V. Isolation of vitamin D sulfate from mammalian milk, J. Nutr. Sci., Vitaminol., 13:33–6.

    Google Scholar 

  26. Specker, B.L., Tsang, R.C., Hollis, B.W., 1985, Effect of race and maternal diet on breast milk vitamin D and 25-hydroxyvitamin D concentrations, Am. J. Dis. Child., 139:1134–1137.

    Google Scholar 

  27. Tanaka, Y., Frank, H., DeLuca, H.F., 1973, Biological activity of 1,25-hydroxy-vitamin D3 in the rat, Endocrinol., 92:417–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Hollis, B.W. (1986). Maternal Factors Affecting the Vitamin D Content of Human Milk. In: Hamosh, M., Goldman, A.S. (eds) Human Lactation 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7207-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7207-7_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7209-1

  • Online ISBN: 978-1-4615-7207-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics