Skip to main content

Biochemistry of Middle and Late Life Dementias

  • Chapter
Book cover Handbook of Neurochemistry

Abstract

The disease entities to be considered in this review are characterized clinically by a slow but relentless deterioration of intellectual faculties resulting in profound dementia and eventually death during middle and late life. Alzheimer’s disease, Pick’s disease, Huntington’s chorea, Creutzfeldt-Jakob disease, and senile dementia are included in this group of “primary dementias” where the unifying pathologic feature is a degeneration of the cerebral cortex with varying degrees of involvement of related structures. These conditions, which as yet have no established cause (the special status of Creutzfeldt-Jakob disease is discussed below) and as far as can be determined at present are not related to any known disorder, stand in contrast to the “secondary dementias” that occur in association with syphilitic infection, cerebrovascular disease, brain tumor, myxedema, alcoholism, nutritional deficiencies, encephalitis, trauma, and chronic neurological diseases such as disseminated sclerosis, subacute combined degeneration, Wilson’s disease, and the cerebral lipidoses. These secondary dementias are considered elsewhere in this Handbook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Woodward, Alzheimer’s disease in late adult life, Amer. J. Path. 49: 1157–1169 (1966).

    Google Scholar 

  2. C. J. Gibbs, Jr., D. C. Gadjusek, D. M. Asher, M. P. Alpers, E. Beck, P. M. Daniel, and W. B. Matthews, Creutzfeldt-Jakob disease (spongioform encephalopathy): transmission to the chimpanzee, Science 161: 388–389 (1968).

    Article  PubMed  Google Scholar 

  3. C. J. Gibbs, Jr. and D. C. Gadjusek, Infection as the etiology of spongioform encephalopathy (Creutzfeldt-Jakob disease), Science 165: 1023–1025 (1969).

    Article  PubMed  Google Scholar 

  4. W. R. Gowers, The pathology of tabes dorsalis and general paralysis of the insane, Lancet ii:1591-1592(1899).

    Google Scholar 

  5. W. R. Gowers, A lecture on abiotrophy, Lancet i: 1003–1007 (1902).

    Google Scholar 

  6. A. Alzheimer, Über eine eigenartige erkrankung der hirnrinde, Zbl. Nervenheilk. 30: 177-179 (1907), Allg. Z. Psychiat. 64:146-148 (1907).

    Google Scholar 

  7. P. Blocq and G. Marinesco. Sur les lésions et la pathogénie de l’épilepsie dite essentielle, Sem. Méd. Paris 12: 445–446 (1892).

    Google Scholar 

  8. E. Redlich, Ueber miliare sklerose der hirnrinde bei seniler atrophie, J. Psychiat. Neurol. 17: 208–216 (1898).

    Google Scholar 

  9. F. Bonfiglio, Di speciali reperti in un caso di probabile sifilide cerebrale, Riv. Sper. Freniat. 34: 196–199 (1908).

    Google Scholar 

  10. G. Perusini, Über klinisch und histologisch eigenartige psychische erkrankungen des spateren lebensalters, Histol. Histopath. Arb. Grosshirnrinde (Jena) 3: 297–358 (1910).

    Google Scholar 

  11. U.E. Kraepelin, Psychiatrie; ein lehrbuch für studierende und aerzte Vol. 2, 8th ed., p. 624, Leipzig, J. A.Barth, 1910.

    Google Scholar 

  12. W. H. McMenemey, Alzheimer’s disease: problems concerning its concept and nature, Acta Neurol. Scand. 39: 369–380 (1963).

    Article  PubMed  CAS  Google Scholar 

  13. W. H. McMenemey, in The Central Nervous System (O. T. Bailey and D. E. Smith, eds.) Chap. 10, pp. 201–208, Williams and Wilkins, Baltimore (1968).

    Google Scholar 

  14. L. T. Heston, D. L. W. Lowther, and C. M. Leventhal, Alzheimer’s disease, Arch. Neurol. 15: 225–233 (1966).

    Article  PubMed  CAS  Google Scholar 

  15. R. G. Feldman, K. A. Chandler, L. L. Levy, and G. H. Glaser, Familial Alzheimer’s disease, Neurology 13: 811–824 (1963).

    PubMed  CAS  Google Scholar 

  16. M. Kidd, Alzheimer’s disease—an electron microscopical study, Brain 87: 307–320 (1964).

    Article  PubMed  CAS  Google Scholar 

  17. S. A. Luse and K. R. Smith, Jr., The ultrastructure of senile plaques, Am. J. Path. 44: 553–563 (1964).

    PubMed  CAS  Google Scholar 

  18. R. D. Terry, N. K. Gonatas, and M. Weiss, Ultrastructural studies in Alzheimer’s presenile dementia, Amer. J. Path. 44: 269–282 (1964).

    PubMed  CAS  Google Scholar 

  19. M. R. Krigman, R. G. Feldman, and K. Bensch, Alzheimer’s presenile dementia, Lab. Invest.14: 381–396 (1965).

    PubMed  CAS  Google Scholar 

  20. N. K. Gonatas, W. Anderson, and I. Evangelista, The contribution of altered synapses in the senile plaque: an electron microscopic study in Alzheimer’s dementia, J. Neuropath. Exper. Neurol. 26: 25–39 (1967).

    Article  CAS  Google Scholar 

  21. N. K. Gonatas, Neocortical synapses in a presenile dementia, J. Neuropath. Exper. Neurol. 26: 150–151 (1967).

    CAS  Google Scholar 

  22. K. Suzuki and R. D. Terry, Fine structural localization of acid phosphatase in senile plaques in Alzheimer’s presenile dementia, Acta Neuropath. 8: 276–284 (1967).

    Article  PubMed  CAS  Google Scholar 

  23. R. D. Terry, in The Central Nervous System (O. T. Bailey and D. E. Smith, eds.) Chap. 12, pp. 213–224, Williams and Wilkins, Baltimore (1968).

    Google Scholar 

  24. T. Simchowicz, Histologische Studien über die senile demenz, Histol. Histopath. Arb. Grosshirnrinde (Jena) 4: 267–444 (1911).

    Google Scholar 

  25. A. Pope, H. H. Hess, and E. Lewin, Microchemical pathology of the cerebral cortex in pre-senile dementias, Trans. Amer. Neurol. Assn. 89: 15–16 (1964).

    CAS  Google Scholar 

  26. A. Pope, H. H. Hess, and E. Lewin, in Morphological and Biochemical Correlates of Neural Activity (M. M. Cohen and R. S. Snider, eds.) pp. 98–111, Hoeber Medical Division, Harper and Row, New York (1964).

    Google Scholar 

  27. G. Rouser, C. Galli, and G. Kritchevsky, Lipid class composition of normal human brain and variations in metachromatic leucodystrophy, Tay-Sachs, Niemann-Pick, chronic Gaucher’s and Alzheimer’s disease, J. Amer. Oil Chemists’ Soc. 42: 404–410 (1965).

    Article  CAS  Google Scholar 

  28. K. Suzuki, R. Katzman, and S. R. Korey, Chemical studies on Alzheimer’s disease, J. Neuropath. Exper. Neurol 24: 211–224 (1965).

    Article  CAS  Google Scholar 

  29. K. Suzuki and G. Chen, Chemical studies on Jakob-Creutzfeldt disease, J. Neuropath. Exper. Neurol. 25: 396–408 (1966).

    Article  CAS  Google Scholar 

  30. G. Rouser, G. Feldman, and C. Galli, Fatty acid composition of human brain lecithin and sphingomyelin in normal individuals, senile cerebral cortical atrophy, Alzheimer’s disease, metachromatic leucodystrophy, Tay-Sachs and Niemann-Pick diseases, J. Amer. Oil Chemists’ Soc. 42: 411–412 (1965).

    Article  CAS  Google Scholar 

  31. G. Rouser, G. Kritchevsky, and C. Galli, Speculations on the nature of the metabolic defects in Tay-Sachs, Niemann-Pick, Gaucher’s and Alzheimer’s diseases and metachromatic leucodystrophy, J. Amer. Oil Chemists’ Soc. 42: 412–416 (1965).

    Article  CAS  Google Scholar 

  32. G. Rouser and A. Yamamoto, in Handbook of Neurochemistry (A. Lajtha, ed.) Vol. I, Ch. 8, pp. 121–169, Plenum Press, New York (1969).

    Google Scholar 

  33. G. D. Cherayil, Estimation of glycolipids in four selected lobes of human brain in neurological diseases, J. Neurochem. 16: 913–920 (1969).

    Article  PubMed  CAS  Google Scholar 

  34. G. D. Cherayil, Fatty acid composition of brain glycolipids in Alzheimer’s disease, senile dementia, and cerebrocortical atrophy, J. Lipid Res. 9: 207–214 (1968).

    PubMed  CAS  Google Scholar 

  35. G. D. Cherayil and A. E. Cyrus, The quantitative estimation of glycolipids in Alzheimer’s disease, J. Neurochem. 13: 579–590 (1966).

    Article  PubMed  CAS  Google Scholar 

  36. S. A. Korey, L. Scheinberg, R. Terry, and A. Stein, Studies in presenile dementia, Trans. Amer. Neurol. Assn. 86: 99–102 (1961).

    CAS  Google Scholar 

  37. R. Katzman and K. Suzuki, A search for a chemical correlate of amyloid in senile plaques of Alzheimer’s disease, Trans. Amer. Neurol. Assn. 89: 17–20 (1964).

    CAS  Google Scholar 

  38. C. G. Gottfries, I. Gottfries, and B. E. Roos, in The Present Status of Psychotropic Drugs: Proc. of the Internat. Cong, of the Coll. Internat. Neuro-Psychopharmacologicum (A. Cerletti and F. J. Bové, eds.) Ex. Med. Int. Cong. Ser. 180, pp. 310–312, 6th ed., Tarragona, Amsterdam (1969).

    Google Scholar 

  39. C. G. Gottfries, I. Gottfries, and B. E. Roos, Homovanillic acid and 5-hydroxyindoleacetic acid in the cerebrospinal fluid of patients with senile dementia, presenile dementia, and parkinsonism, J. Neurochem. 16: 1341–1345 (1969).

    Article  PubMed  CAS  Google Scholar 

  40. L. Goodman, Alzheimer’s disease, a clinico-pathologic analysis of twenty-three cases with a theory on pathogenesis, J. Nerv, and Ment. Dis. 117: 97–130 (1953).

    Article  Google Scholar 

  41. B. Hallgren and P. Sourander, The non-haemin iron in the cerebral cortex in Alzheimer’s disease, J. Neurochem. 5: 307–310 (1960).

    Article  PubMed  CAS  Google Scholar 

  42. K. Suzuki, S. R. Korey, and R. D. Terry, Studies on protein synthesis in brain microsomal system, J. Neurochem. 11: 403–412 (1964).

    Article  PubMed  CAS  Google Scholar 

  43. L. J. Embree and H. H. Hess, in Second International Meeting of the International Society for Neurochemistry (R. Paoletti, R. Fumagalli, and G. Galli, eds.) pp. 162, Tamburini Editore, Milano (1969).

    Google Scholar 

  44. L. J. Embree and H. H. Hess, Microchemistry of ATPases in normal and Alzheimer’s disease cortex, J. Neuropath. Exper. Neurol. 29: 136–137 (1970).

    Article  Google Scholar 

  45. W. D. Obrist, E. Chivian, S. Cronqvist, and D. H. Ingvar, Regional cerebral blood flow in senile and presenile dementia, Neurology 20: 315–322 (1970).

    PubMed  CAS  Google Scholar 

  46. N. A. Lassen, O. Munck, and E. R. Tottey, Mental function and cerebral oxygen consumption in organic dementia, Arch. Neurol. and Psychiat. 77: 126–133 (1957).

    CAS  Google Scholar 

  47. C. W. M. Adams, in Neurohistochemistry (C. W. M. Adams, ed.) pp. 414–416, Elsivier Publishing Co., Amsterdam (1965).

    Google Scholar 

  48. G. Margolis and J. P. Pickett, Senile cerebral disease, Lab. Invest. 8: 335–370 (1959).

    PubMed  CAS  Google Scholar 

  49. F. Morel and E. Wildi, in Proceedings of the First International Congress of Neuropathology, Rome, 1952, Vol. 2, pp. 347–374, Rosenberg and Sellier, Turin (1955).

    Google Scholar 

  50. G. Margolis, Observations on senile cerebral deposits using the periodic acid-Schiff’s technic, Amer. J. Path. 29: 588 (1953).

    Google Scholar 

  51. P. Divry, Etude histo-chemique des plaques seniles, J. Neurol. Psychiat. 27: 643–657 (1927).

    Google Scholar 

  52. P. Divry, De 1a nature de l’altération fibrillaire d’Alzheimer, J. Neurol. Psychiat. 34: 197–201 (1934).

    Google Scholar 

  53. R. L. Friede and K. R. Magee, Alzheimer’s disease, Neurology 12: 213–222 (1962).

    PubMed  CAS  Google Scholar 

  54. R. L. Friede, Enzyme histochemical studies of senile plaques, J. Neuropath. Exper. Neurol. 24: 477–4191 (1965).

    Article  CAS  Google Scholar 

  55. H. Josephy, Acid phosphatase in the senile brain, Arch. Neurol. Psychiat. Chicago) 61: 164–169 (1949).

    CAS  Google Scholar 

  56. A. B. Johnson, Apparent nucleoside phosphatase activity in the neurofibrillary tangles of Alzheimer’s disease, J. Neuropath. Exper. Neurol. 27: 155–156 (1968).

    CAS  Google Scholar 

  57. W. H. McMenemey, in Greenfield’s Neuropathology (W. Blackwood, W. H. McMenemey, A. Meyer, R. M. Norman, and D. S. Russell, eds.) Ch. 9, p. 576, Williams and Wilkins, Baltimore (1963).

    Google Scholar 

  58. C. G. Gottfries, I. Gottfries, and B. E. Roos, The investigation of homovanillic acid in the human brain and its correlation to senile dementia, Brit. J. Psychiat. 115: 563–574 (1969).

    Article  PubMed  CAS  Google Scholar 

  59. F. A. Freyhan, R. B. Woodford, and S. S. Kety, Cerebral blood flow and metabolism in psychoses of senility, J. Nerv. Ment. Dis. 113: 449–456 (1951).

    PubMed  CAS  Google Scholar 

  60. N. A. Lassen, I. Feinberg, and H. M. Lane, Bilateral studies of cerebral oxygen uptake in young and aged normal subjects and in patients with organic dementia, J. Clin. Invest. 39: 491-500 (1960).

    Google Scholar 

  61. S. Hedlund, V. Köhler, G. Nylin, R. Olsson, O. Regnström, E. Rothström, and K.-E. Åstrom, Cerebral blood circulation in dementia, Acta Psychiat. Scand. 40: 77–106 (1964).

    Article  PubMed  CAS  Google Scholar 

  62. L. Sololoff, in Cerebrovascular Disease, Res. Publ. Assn. Nerv. Ment. Dis. (C. H. Millikan, éd.) Vol. 41, pp. 237–251, Williams and Wilkins Co.,Baltimore (196

    Google Scholar 

  63. F. C. Stam, in Proc. Fifth Inter. Cong. Neuropath. (F. Luthy and A. Bischoff, eds.) Inter. Cong. Ser. 100, pp. 513–517, Excerpta Medica Foundation (1966).

    Google Scholar 

  64. H. Wisniewski, R. D. Terry, C. Peña, E. Streicher, and I. Klatzo, Experimental production of neurofibrillary degeneration, J. Neuropath. Exper. Neurol. 24: 139 (1965).

    Google Scholar 

  65. I. Klatzo, H. Wisniewski, and E. Streicher, Experimental production of neurofibrillary degeneration. I. Light microscopic observations, J. Neuropath. Exper. Neurol. 24: 187–199 (1965).

    Article  CAS  Google Scholar 

  66. R. D. Terry and C. Peña, Experimental production of neurofibrillary degeneration. 2. Electron microscopy, phosphatase histochemistry and electron probe analysis, J. Neuropath. Exper. Neurol. 24: 200–210 (1965).

    Article  CAS  Google Scholar 

  67. I. Klatzo, in The Central Nervous System (O. T. Bailey and D. E. Smith, eds.) Chap. 11, pp. 209–212, Williams and Wilkins, Baltimore (1968).

    Google Scholar 

  68. H. Wisniewski and R. D. Terry, Further studies on experimental neurofibrillary tangles, J. Neuropath. Exper. Neurol. 27: 149 (1968).

    CAS  Google Scholar 

  69. H. Wisniewski, W. Karczewski, and K. Wisniewski, Neurofibrillary degeneration of nerve cells after intracerebral injection of aluminium cream, Acta Neuropath. 6: 211–219 (1966).

    Article  PubMed  CAS  Google Scholar 

  70. F. J. Seil, P. W. Lampert, and I. Klatzo, Neurofibrillary spheroids induced by aluminum phosphate in dorsal root ganglia neurons in vitro, J. Neuropath. Exper. Neurol. 28: 74–85 (1969).

    Article  CAS  Google Scholar 

  71. L. J. Embree, A. Hamberger, and J. Sjöstrand, Quantitative cytochemical studies and histochemistry in experimental neurofibrillary degeneration, J. Neuropath. Exper. Neurol. 26: 427–436 (1967).

    Article  CAS  Google Scholar 

  72. L. J. Embree, Ribonucleic acid in experimental neurofibrillary degeneration studied by quantitative cytochemical methods, J. Neuropath. Exper. Neurol. 27: 148–149 (1968).

    CAS  Google Scholar 

  73. G. D. Cherayil and A. E. Cyrus, in Second International Meeting of the International Society for Neurochemistry (R. Paoletti, R. Fumagalli, and G. Falli, eds.) p. 124, Tamburini Editore, Milano (1969).

    Google Scholar 

  74. R. E. Exss and G. K. Summer, Effect of aluminum phosphate on neuraminic acid concentration in rabbit brain, Fed. Proc. 28: 480 (1969).

    Google Scholar 

  75. H. A. Hartmann, J. J. Lalich, and K. Akert, Lesions in the anterior motor horn cells of rats after administration of bis-b-cyanoethylamine, J. Neuropath. Exper. Neurol. 17: 298–304 (1958).

    Article  CAS  Google Scholar 

  76. G. Ule, Zur Ultrastruktur der ghost-cells beim experimentellen neurolathyrismus der ratte, Z. Zellforsch. 56: 130–142 (1962).

    Article  PubMed  CAS  Google Scholar 

  77. S. M. Chou and H. Hartmann, Electron microscopy of focal neuroaxonal lesions produced by β-β’-iminodipropionitrile (IDPN) in rats, Acta Neuropath. 4: 590–603 (1965).

    Article  PubMed  CAS  Google Scholar 

  78. P. B. Diezel and G. Ule, Histochemische Untersuchungen an den “ghost cells” beim experimentellen neurolathyrismus, Acta Neuropath. 3: 150–163 (1963).

    Article  PubMed  CAS  Google Scholar 

  79. H. A. Hartmann, J.-E. Edström, and H. Hydén, Weight, volume and ribonucleic acid content of nerve cells in rats made hyperactive with iminodipropionitrile, Fed. Proc. 18: 480 (1959).

    Google Scholar 

  80. D. E. Slagel, H. A. Hartmann, and J.-E. Edström, The effect of iminodipropionitrile on the ribonucleic acid content and composition of mesencephalic V cells, anterior horn cells, glial cells and axonal balloons, J. Neuropath. Exper. Neurol. 25: 244–253 (1966).

    Article  CAS  Google Scholar 

  81. H. A. Hartmann and M. C. Casapis, Cytoplasmic and axoplasmic density variations in relation to hyperactivity, Acta Neuropath. 7: 327–335 (1967).

    Article  PubMed  CAS  Google Scholar 

  82. J.-E. Edström, Quantitative determination of ribonucleic acid in the micromicrogram range, J. Neurochem. 3: 100–106 (1958).

    Article  PubMed  Google Scholar 

  83. J.-E. Edström, Extraction, hydrolysis and electrophoretic analysis of ribonucleic acid from microscopic tissue units (microphoresis), J. Biophys. Biochem. Cytol. 8: 39–43 (1960).

    Article  PubMed  Google Scholar 

  84. A. Edström. The ribonucleic acid in the Mauthner neuron of the goldfish, J. Neurochem. 11: 309–314 (1964).

    Article  Google Scholar 

  85. J.-E. Edström, D. Eichner, and A. Edström, The ribonucleic acid of axons and myelin sheaths from Mauthner neurons, Biochem. Biophys. Acta 61: 178–184 (1962).

    PubMed  Google Scholar 

  86. H. A. Hartmann, J. Lin, and M. C. Shively, RNA of nerve cell bodies and axons after β, β-iminodipropionitrile, Acta Neuropath. 11: 275–281 (1968).

    Article  PubMed  CAS  Google Scholar 

  87. H. A. Hartmann and J. Lin, Nuclear and cytoplasmic RNA in experimental neuroaxonal dystrophy, J. Neuropath. Exper. Neurol. 29: 135 (1970).

    Article  Google Scholar 

  88. N. A. Schor and H. A. Hartmann, NADPH generating enzymes after β-β iminodipropionitrile, J. Neuropath. Exper. Neurol. 28: 168 (1969).

    Google Scholar 

  89. E. R. Peterson and M. R. Murray, Serial observations in tissue cultures on neurotoxic effects of colchicine, Anat. Record 154: 401 (1966).

    Google Scholar 

  90. E. R. Peterson and M. B. Bornstein, The neurotoxic effects of colchicine on tissue cultures of cord-ganglia, J. Neuropath. Exper. Neurol. 27: 121–122 (1968).

    CAS  Google Scholar 

  91. E. R. Peterson, Neurofibrillar alterations in cord-ganglion cultures exposed to spindle inhibitors, J. Neuropath. Exper. Neurol. 28: 168 (1969).

    Google Scholar 

  92. R. P. Bunge and M. B. Bunge, A comparison of neuronal changes following colchicine treatment with observations on other conditions involving the accumulation of neurofilaments, J. Neuropath. Exper. Neurol. 28: 169 (1969).

    Article  Google Scholar 

  93. F. J. Seil and P. W. Lampert, Neurofibrillary tangles induced by vincristine and vinblastine sulfate in central and peripheral neurons in vitro, Exper. Neurol. 21: 219–230 (1968).

    Article  CAS  Google Scholar 

  94. W. Schlaepfer, In vitro alterations of neurotubules and neurofilaments in rat peripheral nerve, Fed. Proc. 29: 290 (1970).

    Google Scholar 

  95. H. Wisniewski and R. D. Terry, Experimental colchicine encephalopathy. I. Introduction of neurofibrillary tangles, Lab. Invest. 17: 577–587 (1967).

    PubMed  CAS  Google Scholar 

  96. H. Wisniewski, M. L. Shelanski, and R. D. Terry, Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells, J. Cell Biol. 38: 224–229 (1968).

    Article  PubMed  CAS  Google Scholar 

  97. H. Wisniewski, R. D. Terry, and M. L. Shelanski, Neurofibrillary degeneration of nerve cells after subarachnoid injection of mitotic spindle inhibitors, J. Neuropath. Exper. Neurol. 28: 168 (1969).

    Google Scholar 

  98. G. G. Borisy and E. W. Taylor, The mechanism of action of colchicine: binding of colchicine-3H to cellular protein, J. Cell Biol. 34: 525–533 (1967).

    Article  PubMed  CAS  Google Scholar 

  99. G. G. Borisy and E. W. Taylor, The mechanism of action of colchicine: colchicine binding to sea urchin eggs and the mitotic apparatus, J. Cell. Biol. 34: 535–548 (1967).

    Article  PubMed  CAS  Google Scholar 

  100. M. L. Shelanski and E. W. Taylor, Isolation of a protein subunit from microtubules, J. Cell Biol. 34: 549–554 (1967).

    Article  PubMed  CAS  Google Scholar 

  101. M. L. Shelanski and E. W. Taylor, Properties of the protein subunit of central-pair and outer-doublet microtubules of sea urchin flagella, J. Cell. Biol. 38: 304–306 (1968).

    Article  PubMed  CAS  Google Scholar 

  102. M. Ventilla, C. R. Cantor, and M. Shelanski, Vinblastine effect on GTP binding to microtubule protein, Fed. Proc. 29: 290 (1970).

    Google Scholar 

  103. R. C. Weisenberg, G. G. Borisy, and E. W. Taylor, The colchicine-binding protein of mammalian brain and its relation to microtubules, Biochemistry 7: 4466–4479 (1968).

    Article  PubMed  CAS  Google Scholar 

  104. F. L. Renaud, A. J. Rowe, and I. R. Gibbons, Some properties of the protein forming the outer fibers of cilia, J. Cell. Biol 36: 79–90 (1968).

    Article  CAS  Google Scholar 

  105. S. Puszkin, S. Berl, E. Puszkin, and D. D. Clark, Actomyosin-like protein isolated from mammalian brain, Science 161: 170–171 (1968).

    Article  PubMed  CAS  Google Scholar 

  106. S. Berl and S. Puszkin in Second International Meeting of the International Society for Neurochemistry (R. Paoletti, R. Fumagalli, and G. Galli, eds.) pp. 87–88, Tamurini Editore, Milano (1969).

    Google Scholar 

  107. F. O. Schmitt, Fibrous proteins—neuronal organelles, Proc. Nat. Acad. Sci. (U.S.) 60: 1092–1101 (1968); Neurosci. Res. Program Bull. 60:38-47 (1968).

    Article  PubMed  CAS  Google Scholar 

  108. J. Karlsson and J. Sjöstrand, The effect of colchicine on the axonal transport of protein in the optic nerve and tract of the rabbit, Brain Res. 13: 617–619 (1969).

    Article  PubMed  CAS  Google Scholar 

  109. W. W. Schlaepfer, Histochemical and structural changes in peripheral nerve following local injections of vincristine sulfate, J. Neuropath. Exper. Neurol. 29: 140–141 (1970).

    Article  Google Scholar 

  110. M. R. Adelman, G. G. Borisy, M. L. Shelanski, R. C. Weisenberg, and E. W. Taylor, Cytoplasmic filaments and tubules, Fed. Proc. 27: 1186–1193 (1968).

    PubMed  CAS  Google Scholar 

  111. F. O. Schmitt and F. E. Samson, Jr., Neuronal fibrous proteins, Neurosciences Res. Prog. Bull. 6: 113–219 (1968).

    Google Scholar 

  112. K. M. G. Keddie, Presenile dementia, clinically of the Pick’s disease variety, occurring in a mother and daughter, Int. J. Neuropsychiat. 3: 182–187 (1967).

    CAS  Google Scholar 

  113. A. Alzheimer, Über eigenartige krankheitsfalle des späteren alters, Z. Ges. Neurol. Psychiat. 4: 356–385 (1911).

    Article  Google Scholar 

  114. S. S. Schochet, Jr., P. W. Lampert, and R. Lindberg, Fine structure of the Pick and Hirano bodies in a case of Pick’s disease, Acta Neuropath., 11: 330–337 (1968).

    Article  PubMed  Google Scholar 

  115. N. B. Rewcastle and M. J. Ball, Electron microscopic structure of the “inclusion bodies” in Pick’s disease, Neurology 18, 1205–1213 (1968).

    PubMed  CAS  Google Scholar 

  116. L. Roizin, M. A. Kaufman, R. Wharton, R. Houspian, S. Keoseian, and J. C. Liu, Unusual histochemical and electron microscope findings in a cerebral biopsy of Pick’s psychosis, J. Neuropath. Exper. Neurol. 28: 153–154 (1969).

    Article  Google Scholar 

  117. G. Huntington, On chorea, Med. Surg. Rep. (Philadelphia) 26: 317–321 (1872).

    Google Scholar 

  118. E. Slater, in Biochemical Aspects of Neurological Disorders (J.N. Cumings and M. Kremer, eds.) Chap. 17, pp. 271–285, F. A. Davis Co., Philadelphia (1965).

    Google Scholar 

  119. N. C. Myrianthopoulos, Huntington’s chorea, J. Med. Genet. 3: 298–314 (1966).

    Article  PubMed  CAS  Google Scholar 

  120. P. F. Borri and G. J. M. Hooghwinkle, Biochemical changes in heredo-degenerative diseases, in Proc. Fifth Inter. Cong. Neuropath. (F. Luthy and A. Bischoff, eds.) Inter. Cong. Ser. 100, pp. 437–444, Excerpta Medica Foundation (1966).

    Google Scholar 

  121. P. F. Borri, W. M. Opden Velde, G. J. M. Hooghwinkel, and G. W. Bruyn, Biochemical studies in Huntington’s chorea. VI. Composition of striatal neutral lipids, phospholipids, glycolipids, fatty acids, and amino acids, Neurology 17: 172–178 (1967).

    PubMed  CAS  Google Scholar 

  122. G. J. M. Hooghwinkel, G. W. Bruyn, and R. E. de Rooy, Biochemical studies in Huntington’s chorea. VII. The lipid composition of the cerebral white and gray matter, Neurology 18: 408–412 (1968).

    PubMed  CAS  Google Scholar 

  123. H. Hydén, Cellular chemistry of cerebral biopsies, in Proc. Fifth Inter. Cong. Neuropath., (F. Luthy and A. Bischoff, eds.) Inter. Cong. Ser. 100, pp. 382–388, Excerpta Medica Foundation (1966).

    Google Scholar 

  124. W. H. McMenemey, Immunity mechanisms in neurological disease, Proc. Roy. Soc. Med. 54: 127–136 (1961).

    PubMed  CAS  Google Scholar 

  125. G. W. Bruyn, R. M. Lequin, Huntington’s chorea, Lancet 2: 1300 (1964).

    Article  Google Scholar 

  126. J. R. Shawver, T. V. Frank, and S. M. Tranowski, Biochemical findings in Huntington’s chorea, Amer. J. Psychiat. 120: 1108 (1964).

    PubMed  CAS  Google Scholar 

  127. V. C. Cowie and D. B. Gammack, Serum proteins in Huntington’s chorea, Brit. J. Psychiat. 112: 723–726 (1966).

    Article  PubMed  CAS  Google Scholar 

  128. H. Oepen and I. Oepen, Aminosäuren des blutes bei Huntingtonscher chorea, Humangenetik 1: 299–302 (1965).

    Article  PubMed  CAS  Google Scholar 

  129. G. W. Bruyn, Biochemical studies in Huntington’s chorea. Part 3. Aminoacids in serum and urine, Psychiat. Neurol. Neurochir. 69: 139–142 (1966).

    PubMed  CAS  Google Scholar 

  130. J. Bruck, F. Gerstenbrand, H. Gnad, E. Gründig, and P. Prosenz, Ueber Veranderungen der Zusammensetzung des liquor cerebrospinalis beim choreatischen syndrom, J. Neurol. Sci. 5: 257–265 (1967).

    Article  PubMed  CAS  Google Scholar 

  131. T. L. Perry, S. Diamond, S. Hansen, and D. Stedman, Plasma-amino-acid levels in Huntington’s chorea, Lancet 1: 806–808 (1969).

    Article  PubMed  CAS  Google Scholar 

  132. H. Oepen and F. H. Kreutz, Orientierende Untersuchung des fettstoffwechsels bei Huntingtonscher chorea, Humangenetik 1: 101–102 (1964).

    Article  PubMed  CAS  Google Scholar 

  133. G. J. M. Hooghwinkel, P. F. Borri, and G. W. Bruyn, Biochemical studies in Huntington’s chorea. II. Composition of blood lipids, Acta Neurol. Scand. 42: 213–220 (1966).

    Article  PubMed  CAS  Google Scholar 

  134. J. R. Wherrett and B. L. Brown, Erythrocyte glycolipids in Huntington’s chorea, Neurology 19: 489–493 (1969).

    PubMed  CAS  Google Scholar 

  135. P. F. Borri, G. J. M. Hooghwinkel, and G. W. Bruyn, Biochemical studies in Huntington’s chorea, Part 4. The fatty acid composition of plasma and erythrocyte lipids, Psychiat. Neurol. Neurochi. 69, 143–148 (1966).

    CAS  Google Scholar 

  136. G. J. M. Hooghwinkel, P. F. Borri, and G. W. Bruyn, Biochemical studies in Huntington’s chorea. V. Erythrocyte and plasma glycolipids and fatty acid composition of erythrocyte gangliosides, Neurology 16: 934–936 (1966).

    CAS  Google Scholar 

  137. H. J. Deiwick and H. Oepen, Hauptkettenenzyme im serum bei Huntingtonscher chorea, Humangenetik 1: 103–104 (1964).

    Article  PubMed  CAS  Google Scholar 

  138. A. Delbrück and H. Oepen, Mucopolysaccharidstoffwechsel bei Huntingtonscher chorea, Humangenetik 1: 105–106 (1964).

    Article  Google Scholar 

  139. F. E. Kenyon and S. M. Hardy, A biochemical study of Huntington’s chorea, J. Neurol. Neurosurg. Psychiat. 26: 123–126 (1963).

    Article  PubMed  CAS  Google Scholar 

  140. G. W. Bruyn, C. J. K. Mink, and J. F. Caljé, Biochemical studies in Huntington’s chorea, erythrocyte magnesium, Neurology 15: 455–461 (1965).

    PubMed  CAS  Google Scholar 

  141. M. T. Haslam, Cellular magnesium levels and the use of penicillamine in the treatment of Huntington’s chorea, J. Neurol. Neurosurg. Psychiat. 30: 185–188 (1967).

    Article  PubMed  CAS  Google Scholar 

  142. L. W. Fleming, M. G. Barker, and W. K. Stewart, Plasma and erythrocyte magnesium in Huntington’s chorea, J. Neurol. Neurosurg. Psychiat. 30: 374–378 (1967).

    Article  PubMed  CAS  Google Scholar 

  143. J. E. Jones, P. C. Desper, and E. B. Flink, Magnesium metabolism in Huntington’s chorea, Metabolism 14: 813–818 (1965).

    Article  CAS  Google Scholar 

  144. C. B. Courville, R. E. Nusbaum, and E. M. Butt, Changes in trace metals in brain in Huntington’s chorea, Arch. Neurol. 8: 481–489 (1963).

    Article  PubMed  CAS  Google Scholar 

  145. J. N. Cumings, Trace elements in the brain in health and in neurological disease, Sci. Basis Med. Ann. Rev., pp. 35–57 (1965).

    Google Scholar 

  146. G. K. Klintworth, in Second International Congress of Neuro-genetics and Neuroophthalmology of the World Federation of Neurology, Montreal, September 1967. Abstr. 86, Int. Cong. Series 154, pp. 42, Excerpta Medica Foundation, Amsterdam (1967).

    Google Scholar 

  147. T. L. Perry, Urinary excretion of trace metals in Huntington’s chorea, Neurology 11: 1086–1090 (1961).

    PubMed  CAS  Google Scholar 

  148. A. Barbeau, Preliminary observations on abnormal catecholamine metabolism in basal ganglia diseases, Neurology 10: 446–451 (1960).

    PubMed  CAS  Google Scholar 

  149. A. Barbeau, Dopamine and basal ganglia diseases, Arch. Neurol. 4: 97–102 (1961).

    Article  PubMed  CAS  Google Scholar 

  150. D. K. Lee, C. H. Markham, and W. G. Clark, in Second International Congress of Neurogenetics and Neuro-ophthalmology of the World Federation of Neurology, Montreal, September 1967. Abstr. 86, Int. Cong. Series 154, pp. 41–42, Excerpta Medica Foundation, Amsterdam (1967).

    Google Scholar 

  151. C. M. Williams, S. Maury, and R. F. Kibler, Normal excretion of homovanillic acid in the urine of patients with Huntington’s chorea, J. Neurochem. 6: 254–256 (1961).

    CAS  Google Scholar 

  152. T. L. Sourkes, D. Pivnicki, W. T. Brown, M. H. Wisemandistler, G. F. Murphy, I. Sankoff, and S. Saint Cyr, A clinical and metabolic study of dopa (3,4-dihydroxyphenylalanine) and methyldopa in Huntington’s chorea, Psychiat. Neurol., Basel 149: 7–27 (1965).

    Article  CAS  Google Scholar 

  153. J. Mills, A. Orr, and J. R. Whittier, Huntington’s chorea: Differentiation of brain tissue from non-hereditary degenerative disease by infrared spectra, J. Neurochem. 16: 1033–1035 (1969).

    Article  PubMed  CAS  Google Scholar 

  154. G. Creutzfeldt, Über eine eigenartige herdförmige erkrankung des Zentralnervensystems, Z. Ges. Neurol. Psychiat. 57: 1–18 (1920).

    Article  Google Scholar 

  155. A. Jakob, Über eigenartige erkrankungen des zentralnerven-systems mit bemarkenswerten anatomischen befunde, Z. Ges. Neurol. Psychiat. 64: 147–228 (1921).

    Article  Google Scholar 

  156. W. W. May, Creutzfeldt-Jakob disease: I. Survey of the literature and clinical diagnosis, Acta Neurol. Scand. 44: 1–32 (1968).

    Article  PubMed  CAS  Google Scholar 

  157. H. Siedler and N. Malamud, Creutzfeldt-Jakob disease: Clinicopathologic report of fifteen cases and review of the literature (with special reference to a related disorder designated as subacute spongioform encephalopathy), J. Neuropath. Exper. Neurol. 22: 381–402 (1963).

    Article  CAS  Google Scholar 

  158. S. Nevin, W. H. McMenemey, S. Behrman, and D. P. Jones, Subacute spongioform encephalopathy: a subacute form of encephalopathy attributable to vascular dysfunction (spongioform cerebral atrophy), Brain 83: 519–564 (1960).

    Article  PubMed  CAS  Google Scholar 

  159. W. R. Kirschbaum, Jakob-Creutzfeldt Disease, American Elsevier Publishing Co., New York (1968).

    Google Scholar 

  160. W. M. May, H. H. Itabashi, and R. N. De Jong, Creutzfeldt-Jakob disease: II. Clinical, pathologic, and genetic study of a family, Arch. Neurol. 19: 137–149 (1968).

    Article  PubMed  CAS  Google Scholar 

  161. C. M. Fisher, The clinical picture in Creutzfeldt-Jakob disease, Trans. Amer. Neurol. Assn.85: 147–150 (1960).

    CAS  Google Scholar 

  162. R. Katzman, E. H. Kagan, and H. M. Zimmerman, A case of Jakob-Creutzfeldt Disease, 1. Clinicopathological analysis, J. Neuropath. Exper. Neurol. 20: 78–94 (1961).

    Article  CAS  Google Scholar 

  163. S. Bornstein and G. A. Jervis, Presenile dementia of the Jakob type (cortico-striospinal degeneration), Arch. Neurol. Psychiat. 74: 598–610 (1955).

    CAS  Google Scholar 

  164. E. Christensen and A. Brun, Subacute spongioform encephalopathy: spongioform cerebral atrophy, Neurology (Minneap.) 13: 455–463 (1963).

    PubMed  CAS  Google Scholar 

  165. M. R. Crompton, A case of subacute spongioform encephalopathy supporting a vascular pathogenesis, Acta Neuropath. (Berlin) 2: 291–296 (1963).

    Article  Google Scholar 

  166. W. H. McMenemey, A critical review: dementia in middle age, J. Neurol. Psychiat. 4: 38–79 (1941).

    Article  Google Scholar 

  167. J. M. Foley and D. Denny-Brown, Subacute progressive encephalopathy with bulbar myoclonus, J. Neuropath Exper. Neurol. 16: 133–136 (1957).

    Google Scholar 

  168. J. H. Silberman, H. Cravioto, and I. Feigin, I. Corticostriatal degeneration of the Creutzfeldt-Jakob type, J. Neuropath Exper. Neurol. 20: 105–118 (1961).

    Article  Google Scholar 

  169. N. H. Bass, H. H. Hess, and A. Pope, Microchemical pathology of cerebral cortex in Creutzfeldt-Jakob disease, Trans. Amer. Neurol. Assn. 93: 108–110 (1968).

    CAS  Google Scholar 

  170. S. R. Korey, R. Katzman, and J. Orloff, A case of Jakob-Creutzfeldt disease: 2. Analysis of some constituents of the brain of a patient with Jakob-Creutzfeldt disease, J. Neuropath Exper. Neurol. 20: 95–104 (1961).

    Article  CAS  Google Scholar 

  171. J. Folch-Pi, The composition of nervous membranes, Progr. in Brain Res. 29: 1–17 (1968).

    Article  CAS  Google Scholar 

  172. N. K. Gonatas, R. D. Terry, and M. Weiss, Electron microscopic study in two cases of Jakob-Creutzfeldt disease, J. Neuropath. Exper. Neurol 24: 575–598 (1965).

    Article  CAS  Google Scholar 

  173. J. Abbott, The EEG in Jakob-Creutzfeldt’s disease, Electroenceph. Clin. Neurophysiol. 11: 184–185 (1959).

    Google Scholar 

  174. M. Rayport, Electroencephalographic, corticographic and intracerebral potentials in two anatomically verified cases of Creutzfeldt-Jakob disease, Electroenceph. Clin. Neurophysiol. 15: 922 (1963).

    Google Scholar 

  175. Y. Kishimoto, N. S. Radin, W. W. Tourtellotte, J. A. Parker, and H. H. Itabashi, Gangliosides and glycerophospholipids in multiple sclerosis white matter, Arch. Neurol. 16: 44–54 (1967).

    Article  CAS  Google Scholar 

  176. L. J. Embree, H. H. Hess, and H. M. Shein, Biochemical structural components of cloned N-nitrosomethylurea-induced astrocytomas grown subcutaneously, Neurology 19: 299 (1969).

    Google Scholar 

  177. H. H. Hess, L. J. Embree, and H. M. Shein, in Second Meeting Intern. Soc. for Neurochem., pp. 42–43, Tamburini Editore, Milano (1969).

    Google Scholar 

  178. O. Marin and J. D. Vial, Neuropathological and ultrastructural findings in two cases of subacute spongioform encephalopathy, Acta Neuropath. (Berlin) 4: 218–229 (1964).

    Article  Google Scholar 

  179. J. F. Foncin, J. Gashes, and J. Le Beau, Encephalopathie spongioforme (apparentée a la maladie de Creutzfeldt-Jakob): biopsie étudiée au microscope électronique confirmation autopsique, Rev. Neurol. (Paris) 111: 507–515 (1964).

    CAS  Google Scholar 

  180. G. L. Guazzi and F. Seitelberger, Symposium on presenile spongy encephalopathies, Acta Neuropath. Suppl. III, pp. 1–152 (1967).

    Google Scholar 

  181. R. L. Friede and R. N. De Jong, Neuronal enzymatic failure in Creutzfeldt-Jakob disease: A familial study, Arch. Neurol. 10: 181–195 (1964).

    Article  PubMed  CAS  Google Scholar 

  182. N. Robinson, Creutzfeldt-Jakob’s disease: a histochemical study, Brain 92: 581–588 (1969).

    Article  PubMed  CAS  Google Scholar 

  183. A. Hirano, L. T. Kurland, R. S. Krooth, and S. Lessell, Parkinsonism-dementia complex, an endemic disease on the island of Guam. I. Clinical features, Brain 84: 642–661 (1961).

    Article  PubMed  CAS  Google Scholar 

  184. I. Klatzo, D. C. Gadjusek, and V. Zigas, Pathology of kuru, Lab. Invest. 8: 799–847 (1959).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Embree, L.J., Bass, N.H., Pope, A. (1972). Biochemistry of Middle and Late Life Dementias. In: Lajtha, A. (eds) Handbook of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7172-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7172-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7174-2

  • Online ISBN: 978-1-4615-7172-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics