Skip to main content

Biochemical Effects of Adrenocortical Steroids on the Central Nervous System

  • Chapter
Handbook of Neurochemistry

Abstract

Ever since Addison in 1855 first described the clinical manifestations of adrenocortical insufficiency, it has become increasingly evident that the adrenocortical hormones exert a profound influence on the functions of the central nervous system. Several of the cases reported by Addison exhibited neurological and psychological symptoms, which included depression, anxiety, vocal weakness, delirium, “mind-wandering,” etc. Thus Addison was aware of the characteristic psychological and neurological alterations which occur in adrenocortical insufficiency. Similar, but incomplete, studies of adrenocortical hyperfunction emphasized the psychic effects of the adrenocortical steroids. However, despite the fact that the early investigators recognized the important relationship between adrenocortical function and the central nervous system, systematic studies of this relationship had to await parallel advances in the physiology and biochemistry of the adrenal cortex. This chapter will summarize the biochemical effects of adrenocortical steroids on the central nervous system. However, a short review of the neurophysiological and neuropharmacological effects of corticoids on the central nervous system will first be given (see Ref. 1 for a review of this aspect).

This study was supported by grant No. 2-PO1-NS-04553 from the National Institutes of Health, U.S. Public Health Service.

Recipient of Public Health Service Research Career Program Award 5-K6-NS-13-838.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. M. Woodbury, Relation between the adrenal cortex and the central nervous system, Pharmac. Rev. 10: 275–357 (1958).

    CAS  Google Scholar 

  2. G. H. Glaser and H. H. Merritt, Effects of corticotropin (ACTH) and cortisone on disorders of the nervous system, J. Amer. Med. Ass. 148: 898–904 (1952).

    CAS  Google Scholar 

  3. M. Streifler and S. Feldman, On effect of cortisone on electroencephalogram, Confin. Neurol. 13: 16–27 (1953).

    PubMed  CAS  Google Scholar 

  4. W. H. Trethowan and S. Cobb, Neuropsychiatric aspects of Cushing’s syndrome, Arch. Neurol. Psychiat., Chicago 67: 283–309 (1952).

    CAS  Google Scholar 

  5. K. B. Eik-Ness and K. R. Brizzee, Concentration of tritium in brain tissue of dogs given (l,2-3H2)cortisol intravenously, Biochim. Biophys. Acta 97: 320–333 (1965).

    Google Scholar 

  6. N. A. Peterson and I. L. Chaikoff, Uptake of intravenously-injected (4-14C)cortisol by adult rat brain, J. Neurochem. 10: 17–23 (1963).

    CAS  Google Scholar 

  7. B. S. McEwen, J. M. Weiss, and L. S. Schwartz, Selective retention of corticosterone by limbic structures in rat brain, Nature 220: 911–912 (1968).

    PubMed  CAS  Google Scholar 

  8. G. Bottoms and D. D. Goetsch, Subcellular distribution of the (3H)corticosterone fraction in brain, thymus, heart, and liver of the rat, Proc. Soc. Exp. Biol. Med. 124: 662–665 (1967).

    PubMed  CAS  Google Scholar 

  9. F. De Venuto and G. Chader, Interactions between Cortisol or corticosterone and fractions of rat thymus, brain, and heart cell, Biochim. Biophys. Acta, 121: 151–158 (1966).

    Google Scholar 

  10. J. C. Toughstone, M. Kasparow, P. A. Hughes, and M. R. Horwitz, Corticosteroids in human brain, Steroids 7: 205–211 (1966).

    Google Scholar 

  11. D.N. Baron and D. Abelson, Cortisone and hydrocortisone in cerebrospinal fluid, Nature 173: 174 (1954).

    PubMed  CAS  Google Scholar 

  12. B. E. P. Murphy, J. B. Cosgrove, M. C. Mcllquhan, and C. J. Pattee, Adrenal corticoid levels in human cerebrospinal fluid, Can. Med. Ass. J. 97: 13–17 (1967).

    PubMed  CAS  Google Scholar 

  13. R. A. Fishman and N. P. Christy, Fate of adrenal cortical steroids following intrathecal injection, Neurology 15: 1–6 (1965).

    PubMed  CAS  Google Scholar 

  14. L. J. Sholiton, E. E. Werk, Jr., and J. MacGee, Metabolism of cortisol-4-14C and cortisone-4-14C by rat brain homogenates, Metabolism 14: 1122–1127 (1965).

    PubMed  CAS  Google Scholar 

  15. N. A. Peterson, I. L. Chaikoff, and C. Jones, The in vitro conversion of Cortisol to cortisone by subcellular brain fractions of young and adult rats, J. Neurochem. 12: 273–278 (1965).

    PubMed  CAS  Google Scholar 

  16. V. B. Mahesh and F. Ulrich, Metabolism of Cortisol and cortisone by various tissues and subcellular particles, J. Biol. Chem. 235: 356–360 (1960).

    PubMed  CAS  Google Scholar 

  17. B. I. Grosser and E. L. Bliss, Metabolism of 11-hydroxysteroids by rat cerebral cortex in vitro, Fed. Proc. 22: 271 (1963).

    Google Scholar 

  18. B. I. Grosser and E. L. Bliss, Metabolism of 11-hydroxysteroids by cerebral tissues in vitro, Steroids 8: 915–928 (1966).

    PubMed  CAS  Google Scholar 

  19. B. I. Grosser, 11β-Hydroxysteroid metabolism by mouse brain and glioma 261, J. Neurochem. 13: 475–478 (1966).

    PubMed  CAS  Google Scholar 

  20. B. I. Grosser and L. R. Axelrod, Acetylation of Cortisol by neonatal rat brain in vitro, Steroids 9: 229–234 (1967).

    PubMed  CAS  Google Scholar 

  21. V. D. Davenport, Relation between brain and plasma electrolytes and electroshock seizure thresholds in adrenalectomized rats, Am. J. Physiol. 156: 322–327 (1949).

    PubMed  CAS  Google Scholar 

  22. P. S. Timiras, D. M. Woodbury, and L. S. Goodman, Effect of adrenalectomy, hydrocortisone acetate, and desoxycorticosterone acetate on brain excitability and electrolyte distribution in mice, J. Pharmacol. Exp. Therap. 112: 80–93 (1954).

    CAS  Google Scholar 

  23. B. B. Gallagher and G. H. Glaser, Seizure threshold, adrenalectomy and sodium-potassium stimulated ATPase in rat brain, J. Neurochem. 15: 525–528 (1968).

    PubMed  CAS  Google Scholar 

  24. J. R. Bergen and H. Hoagland, Brain and muscle potassium in normal and in adrenalectomized rats, Am. J. Physiol 164: 23–25 (1951).

    PubMed  CAS  Google Scholar 

  25. T. N. Stern, V. V. Cole, A. C. Bass, and R. R. Overman, Dynamic aspects of sodium metabolism in experimental adrenal insufficiency using radioactive sodium, Am. J. Physiol. 164: 437–449 (1951).

    PubMed  CAS  Google Scholar 

  26. J. B. Flanagan, A. K. Davis, and R. R. Overman, Mechanisms of extracellular sodium and chloride depletion in the adrenalectomized dog. Am. J. Physiol. 160: 89–102 (1950).

    PubMed  CAS  Google Scholar 

  27. J. R. Bergen and H. Hoagland, Brain and muscle potassium in normal and in adrenalectomized rats, Amer. J. Physiol. 164: 23–25 (1951).

    PubMed  CAS  Google Scholar 

  28. J. R. Bergen, D. Stone, and H. Hoagland, Studies on brain potassium in relation to the adrenal cortex, Inter. Conf. on the Peaceful Uses of Atomic Energy, United Nations, New York (1955).

    Google Scholar 

  29. H. Hoagland, Studies of brain metabolism and electrical activity in relation to adrenocortical physiology, Recent Prog. Hormone Res. 10: 29–63 (1954).

    CAS  Google Scholar 

  30. H. Hoagland and D. Stone, Brain and muscle potassium in relation to stressful activities and adrenal cortex function, Am. J. Physiol. 152: 423–435 (1948).

    PubMed  CAS  Google Scholar 

  31. P. H. Leiderman and R. Katzman, Effect of adrenalectomy, desoxycorticosterone, and cortisone on brain potassium exchange, Am. J. Physiol. 175: 271–275 (1953).

    PubMed  CAS  Google Scholar 

  32. T. Fukuda and J. Ui, Breakdown of blood-cerebrospinal fluid barrier for calcium ions in the absence of glucosteroids, Nature 214: 598–599 (1967).

    CAS  Google Scholar 

  33. D. M. Woodbury and V. D. Davenport, Brain and plasma cations and experimental seizures in normal and desoxycorticosterone treated rats, Am. J. Physiol. 157: 234–240 (1949).

    CAS  Google Scholar 

  34. H. F. Colfer, Studies on the relationship between electrolytes of the cerebral cortex and the mechanism of convulsions, Proc. Ass. Res. Nerv. Diseases 26: 98–117 (1947).

    CAS  Google Scholar 

  35. R. R. Overman, A. K. Davis, and A. C. Bass, Effects of cortisone and DCA on radiosodium transport in normal and adrenalectomized dogs, Am. J. Physiol. 167: 333–340 (1951).

    PubMed  CAS  Google Scholar 

  36. D. M. Woodbury and A. Koch, Effects of aldosterone and desoxycorticosterone on tissue electrolytes, Proc. Soc. exp. Biol., N.Y. 94: 720–723 (1957).

    PubMed  CAS  Google Scholar 

  37. C. D. Withrow and D. M. Woodbury, Direct and indirect effects of deoxycorticosterone (DOC) on skeletal muscle electrolyte and acid-base metabolism, First Int. Cong. Horm. Steroids 1: 503–513 (1964).

    Google Scholar 

  38. D. M. Woodbury, Effects of hormones on brain excitability and electrolytes, Recent Prog. Hormone Res. 10: 65–107 (1954).

    CAS  Google Scholar 

  39. J. H. Galicich and L. A. French, Use of dexamethasone in the treatment of cerebral edema resulting from brain tumors and brain surgery, Am. Practnr. Dig. Treat. 12: 169–174 (1961).

    CAS  Google Scholar 

  40. T. Rasmussen and D. R. Gulati, Cortisone in the treatment of post-operative cerebral edema, J. Neurosurg. 19: 535–544 (1962).

    PubMed  CAS  Google Scholar 

  41. R. G. Lippert, H. J. Svien, J. H. Grindlay, N. P. Goldstein, and C. F. Gastineau, Effect of cortisone on experimental cerebral edema, J. Neurosurg. 17: 583–589 (1960).

    PubMed  CAS  Google Scholar 

  42. J. M. Taylor, W. A. Levy, I. Herzog, and L. C. Scheinberg, Prevention of experimental cerebral edema by corticosteroids. Biochemical and ultrastructural studies, Neurology 15: 667–674 (1965).

    PubMed  CAS  Google Scholar 

  43. H. M. Eisenberg, C. F. Barlow, and A. V. Lorenzo, Effect of dexamethasone on altered brain vascular permeability, Arch. Neurol. 23: 18–22 (1970).

    PubMed  CAS  Google Scholar 

  44. D. M. Woodbury, P. S. Timiras, and A. Vernadakis, Influence of adrenocortical steroids on brain function and metabolism, in Hormones, Brain Function and Behavior (H. Hoagland, ed.), pp. 27–54, Academic Press, New York (1957).

    Google Scholar 

  45. H. Hoagland, J. R. Bergen, R. A. Slocombe, and C. Hung, Head blood flow, oxygen consumption, and electrical activity in relation to the adrenal cortex, Ann. N.Y. Acad. Sci. 56: 659–665 (1953).

    PubMed  CAS  Google Scholar 

  46. H. Hoagland, J. R. Bergen, A. G. Slocombe, and C. A. Hunt, Studies of adrenocortical physiology in relation to the nervous system. Metabolic and toxic disease of the nervous system, Proc. Ass. Res. Nerv. Diseases 32: 40–60 (1953).

    CAS  Google Scholar 

  47. J. H. Hafkenschiel, C. K. Friedland, and H. A. Zintel, The blood flow and oxygen consumption of the brain in patients with essential hypertension before and after adrenalectomy, J. Clin. Invest. 33: 57–62 (1954).

    PubMed  CAS  Google Scholar 

  48. G. S. Gordan, R. C. Bentinck, and E. Eisenberg, The influence of steroids on cerebral metabolism, Ann. N. Y. Acad. Sci. 54: 575–607 (1951).

    PubMed  CAS  Google Scholar 

  49. F. L. Engel, in discussion: R. A. Cleghorn and B. F. Graham, III, Neurohumoral-hypothalamic relationships. 12 Manifestations of altered autonomic and humoral function in psychoneurosis, Recent Prog. Hormone Res. 4: 323–362 (1949).

    Google Scholar 

  50. H. E. Himwich, J. F. Fazekas, S. B. Barker, and M. H. Hurlburt, The metabolism of tissues excised from adrenalectomized rats, Am. J. Physiol. 110: 348–351 (1934).

    CAS  Google Scholar 

  51. J. R. Bergen, C. A. Hunt, and H. Hoagland, In vitro oxygen consumption of tissues from normal and adrenalectomized rats, Am. J. Physiol. 171: 624–629 (1952).

    PubMed  CAS  Google Scholar 

  52. J. M. Crismon and J. Field II, The oxygen consumption in vitro of brain cortex, kidney, and skeletal muscle from adrenalectomized rats, Am. J. Physiol. 130: 231–238 (1940).

    CAS  Google Scholar 

  53. S. R. Tipton, The effect of extracts of the adrenal glands on the respiration of isolated brain and liver slices, Am. J. Physiol. 127: 710–714 (1939).

    CAS  Google Scholar 

  54. J. F. Schieve, P. Scheinberg, and W. P. Wilson, The effect of adrenocorticotrophic hormone (ACTH) on cerebral blood flow and metabolism, J. Clin. Invest. 30: 1527–1529 (1951).

    PubMed  CAS  Google Scholar 

  55. R. W. Alman and J. F. Fazekas, Effects of ACTH on cerebral blood flow and oxygen consumption, Arch. Neurol. Psychiat., Chicago 65: 680–682 (1951).

    CAS  Google Scholar 

  56. W. Sensenbach, L. Madison, and L. Ochs, The effect of ACTH and cortisone on cerebral blood flow and metabolism, J. Clin. Invest. 32: 372–380 (1953).

    PubMed  CAS  Google Scholar 

  57. R. C. Bentinck, G. S. Gordan, J. E. Adams, C. H. Arnstein, and T. B. Leake, Effect of desoxycorticosterone glucoside upon cerebral blood flow and metabolism of human subjects, J. Clin. Invest. 30: 200–205 (1951).

    PubMed  CAS  Google Scholar 

  58. G. S. Gordan, Influence of steroids on cerebral metabolism in man, Recent Progr. Hormone Res. 12: 153–174 (1956).

    PubMed  CAS  Google Scholar 

  59. J. F. Schieve and W. P. Wilson, Failure of desoxycorticosterone glucoside to alter cerebral venous sugar concentration in man, J. Clin. Invest. 31: 984–985 (1952).

    PubMed  CAS  Google Scholar 

  60. G. S. Gordan, J. E. Adams, R. C. Bentinck, E. Eisenberg, H. Harber, and Q. J. G. Hobson, Studies in cerebral metabolism, Calif. Med. 78: 87–90 (1953).

    PubMed  CAS  Google Scholar 

  61. G. S. Gordan and H. W. Elliott, The action of diethylstilbestrol and some steroids on the respiration of rat brain homogenates, Endocrinology 41: 517–518 (1947).

    PubMed  CAS  Google Scholar 

  62. A. Vernadakis and D. M. Woodbury, Effects of Cortisol on maturation of the central nervous system, Proc. 1st Congr. Int. soc. Psychoneuroendocrinology on Influence of Hormones on the Nervous System, in press (1971).

    Google Scholar 

  63. A. Vernadakis and D. M. Woodbury, Effects of diphenylhydantoin and adrenocortical steroids on free glutamic acid, glutamine, and GABA concentrations of rat cerebral cortex, Inhibition in the Nervous System and γ-Aminobutyric Acid, pp. 242–248. Pergamon Press, Oxford (1960).

    Google Scholar 

  64. E. G. Eisenberg, G. S. Gordan, H. W. Elliott, and J. Talbot, Inhibition of aerobic respiration of rat brain by desoxycorticosterone in vitro, Proc. Soc. Exp. Biol., N.Y. 73: 140–143 (1950).

    PubMed  CAS  Google Scholar 

  65. M. Hayano, S. Schiller, and R. I. Dorfman, Influence of various steroids on the oxidative function of rat tissue preparations, Endocrinology 46: 387–391 (1950).

    PubMed  CAS  Google Scholar 

  66. S. Roberts and M. R. Keller, Influence of epinephrine and cortisone on the metabolism of the hypophysis and hypothalamus of the rat, Endocrinology 57: 64–69 (1955).

    PubMed  CAS  Google Scholar 

  67. F. Vaccari and M. Rossanda, Sulle modificazioni indotte dal cortisone e dal desossicorticosterone sul glicogeno e sui carboidrati totali del cervello nell’ animale normale e surrenalectomizzato, Boll. Soc. Ital. Biol. Sper. 27: 734–736 (1951).

    PubMed  CAS  Google Scholar 

  68. E. Sass-Kortsak, Dehydrierungsvermögen und Glykogengehalt des Hirns epinephrektomierter Ratten, Hoppe-Seyl. Z. 280: 129–135 (1944).

    CAS  Google Scholar 

  69. L. G. Abood and J. J. Kocsis, Effect of ACTH on glycogenesis and glycolysis in hypophysectomized rats, Proc. Soc. Exp. Biol., N.Y. 75: 55–58 (1950).

    PubMed  CAS  Google Scholar 

  70. D. Criscuolo and C. Biddulph, Influence of adrenal hormones on lactic acid content of rat brain tissue, Proc. Soc. Exp. Biol. N. Y. 98: 118–120 (1958).

    CAS  Google Scholar 

  71. J. De Vellis and D. Inglish, Hormonal control of glycerophosphate dehydrogenase in the rat brain, J. Neurochem. 15: 1061–1070 (1968).

    PubMed  Google Scholar 

  72. M. Reiss and D. S. Rees, Pituitary and carbohydrate metabolism of the brain, Endocrinology 41: 437–440 (1947).

    PubMed  CAS  Google Scholar 

  73. F. Vaccari and G. Malaguti, Sul comportamento dei carboidrati encelfalici sotto l’influsso del desossicoticosterone in dose narcotica, del cortisone e del pregnenolone in dosi corrispondenti, Boll. Soc. Ital. Biol. Sper. 27: 1627–1629 (1951).

    PubMed  CAS  Google Scholar 

  74. R. Fegni, G. Malagute, and F. Vaccari II, Metabolismo glucidico cerebrale in corso di narcosi, Atti Soc. Lombarda Med. 8: 1–2 (1953).

    Google Scholar 

  75. P. S. Timiras, D. M. Woodbury, and D. H. Baker, Effect of hydrocortisone acetate, desoxycorticosterone acetate, insulin, glucagon and dextrose, alone or in combination, on experimental convulsions and carbohydrate metabolism, Arch. int. Pharmacodyn. 105: 450–467 (1956).

    PubMed  CAS  Google Scholar 

  76. F. Vaccari and M. Rossanda, Influsso della stress, dell’ ACTH e degli ormoni corticosurrenalici sul metabolismo dell’acido ascorbico, Atti Soc. Lombarda Med. 7: 21–22 (1951).

    CAS  Google Scholar 

  77. G. H. Bourne and H. A. Malaty, The effect of adrenalectomy, cortisone, and other steroid hormones on the histochemical reaction for succinic dehydrogenase, J. Physiol. 122: 17–187(1953).

    Google Scholar 

  78. K. W. Cochran and K. P. DuBois, Inhibitory action of steroid hormones on citrate synthesis in vitro, Fed. Proc. 11: 333 (1952).

    Google Scholar 

  79. D. H. Henneman, M. D. Altschule, and R. Goncz, Carbohydrate metabolism in brain disease. IV. Effects of hydrocortisone and corticotropin (ACTH) on the metabolic effects of administered glucose in patients with chronic schizophrenia and manic-depressive psychoses, Arch. Intern. Med. 95: 241–246 (1955).

    CAS  Google Scholar 

  80. C. Torda, Effects of corticotropin and various convulsion-inducing agents on the 32P content of brain phospholipids, nucleoproteins and total acid-soluble phosphorus compounds, Am. J. Physiol. 177: 179–182 (1954).

    PubMed  CAS  Google Scholar 

  81. C. Torda and H. G. Wolff, Effects of various hormones on the amounts of phosphorus containing fractions of the brain (phospholipid, nucleoprotein, total acid-soluble phosphorus compounds), Endocrinology 54: 649–653 (1954).

    PubMed  CAS  Google Scholar 

  82. H. G. Loeb, R. S. Cleland, and J. A. Anderson, The effect of adrenocorticotrophic hormone (ACTH) on phosphorus metabolism in selected areas of monkey brain, Stanf. Med. Bull. 11: 106–109 (1953).

    CAS  Google Scholar 

  83. M. Reiss, F. E. Badrick, and J. H. Halkerston, The influence of the pituitary on phosphorus metabolism of brain, Biochem. J. 44: 257–260 (1949).

    CAS  Google Scholar 

  84. J. J. Kocsis, Uptake of 32P into various phosphorus-containing fractions in the brain of normal, hypophysectomized and ACTH-treated hypophysectomized rats, Endocrinology 59: 591–593 (1956).

    Google Scholar 

  85. D. R. Curtis, Central synaptic transmitters, in Basic Mechanisms of the Epilepsies (H. H. Jasper, A. A. Ward, and A. Pope, eds.), pp. 105–129, Little Brown & Co., Boston (1969).

    Google Scholar 

  86. C. Terner, L. V. Eggleston, and H. A. Krebs, The role of glutamic acid in the transport of potassium in brain and retina, Biochem. J. 47: 139–149 (1950).

    PubMed  CAS  Google Scholar 

  87. D. M. Woodbury and D. W. Esplin, Neuropharmacology and neurochemistry of anticonvulsant drugs, Proc. Ass. Res. Nerv. Dis. 37: 24–56 (1959).

    CAS  Google Scholar 

  88. D. M. Woodbury and A. Vernadakis, Relation of brain excitability to brain γ-aminobutyric acid concentration, Fed. Proc. 17: 420 (1958).

    Google Scholar 

  89. B. Jakoubek, B. Semiginovsky, M. Kraus, and R. Erdossova, The alteration of protein metabolism of the brain cortex induced by anticipation stress and ACTH, Life Sciences 9: 1169–1179 (1970).

    CAS  Google Scholar 

  90. E. C. Azmitia, Jr. and B. S. McEwen, Corticosterone regulation of tryptophan hydroxylase in midbrain of the rat, Science 166: 1274–1276 (1969).

    PubMed  CAS  Google Scholar 

  91. F. Bernheim, Analgesics and the adrenal cortex, in Biology of Mental Health and Disease, pp. 82–83. Hoeber, New York (1952).

    Google Scholar 

  92. R. Casper, A. Vernadakis, and P. S. Timiras, Influence of estradiol and Cortisol on lipids and cerebrosides in the developing brain and spinal cord of the rat, Brain Res. 5: 524–526 (1967).

    PubMed  CAS  Google Scholar 

  93. W. H. Gispen and D. de Wied, Effects of hypophysectomy on RNA metabolism in rat brain stem, J. Neurochem. 17: 751–761 (1970).

    PubMed  CAS  Google Scholar 

  94. R. Piddington and A. A. Moscona, Precocious induction of retinal glutamine synthetase by hydrocortisone in the embryo and in culture. Age-dependent differences in tissue response, Biochim. Biophys. Acta 141: 429–432 (1967).

    PubMed  CAS  Google Scholar 

  95. R. Greenberg, Variation of choline acetylase content of brain in stressed and unstressed normal and adrenalectomized rats, Fed. Proc. 8: 61 (1949).

    Google Scholar 

  96. C. Torda and H. G. Wolff, Effect of pituitary hormones, cortisone, and adrenalectomy on some aspects of neuromuscular function and acetylcholine synthesis, Am. J. Physiol. 169: 140–149 (1952).

    PubMed  CAS  Google Scholar 

  97. C. Torda, Effects of a single injection of corticotropin (ACTH) on ammonium ion and acetylcholine content of the brain, Am. J. Physiol. 173: 176–178 (1953).

    PubMed  CAS  Google Scholar 

  98. C. Torda and H. G. Wolff, Effect of adrenotrophic hormone of pituitary gland on ability of tissue to synthesize acetylcholine, Proc. Soc. Exp. Biol., N. Y. 57: 137–139 (1944).

    Google Scholar 

  99. C. Torda and H. G. Wolff, Effect of steroid substances on synthesis of acetylcholine, Proc. Soc. Exp. Biol, N.Y. 57: 327–330 (1944).

    CAS  Google Scholar 

  100. C. Torda and H. G. Wolff, Effects of adrenocorticotrophic hormone, cortisone acetate, and 17-hydroxycorticosterone-21 acetate on acetylcholine metabolism, Am. J. Physiol. 169: 150–158 (1952).

    PubMed  CAS  Google Scholar 

  101. A. Vernadakis and P. S. Timiras, Effects of estradiol and Cortisol on neural tissue in culture, Experientia 23: 467–468 (1967).

    CAS  Google Scholar 

  102. D. DeMaio, Influence of adrenalectomy and hypophysectomy on cerebral serotonin, Science 129: 1678–1679 (1959).

    Google Scholar 

  103. S. Sofer and C. J. Gubler, Studies on the effect of various procedures on the 5-OH tryptamine (5-HT) levels in the brain of rats, Fed. Proc. 21: 340 (1962).

    Google Scholar 

  104. J. C. Towne and J. O. Sherman, Failure of acute bilateral adrenalectomy to influence brain serotonin levels in the rat, Proc. Soc. Exp. Biol., N. Y. 103: 721–722 (1960).

    PubMed  CAS  Google Scholar 

  105. N. S. Shah, S. Stevens, and H. E. Him wich, Effect of chronic administration of cortisone on the tryptophan induced changes in amine levels in the rat brain, Arch. int. Pharmacodyn. 171: 285–295 (1968).

    PubMed  CAS  Google Scholar 

  106. S. Garattini, L. Lamesta, A. Mortari, V. Palma, and L. Valzelli, Pharmacological and biochemical effects of 5-hydroxytryptamine in adrenalectomized rats, J. Pharm. Pharmacol. 13: 385–388 (1961).

    PubMed  CAS  Google Scholar 

  107. R. H. Resnick, G. T. Smith, and S. J. Gray, Endocrine influences on tissue serotonin content of the rat, Amer. J. Physiol. 201: 571–573 (1961).

    PubMed  CAS  Google Scholar 

  108. C. T. McKennee, P. S. Timiras, and W. B. Quay, Concentration of 5-hydroxytryptamine in rat brain and pineal after adrenalectomy and Cortisol administration, Neuroendocrinology 1: 251–256 (1965/1966).

    Google Scholar 

  109. R. Kato and L. Valzelli, Cortisone e 5-idrossitriptamina cerebrale, Bull. Soc. ital. Biol. Sper. 34: 369 (1961).

    Google Scholar 

  110. D. DeMaio and C. Marbbrio, Influenza di taluni ormoni sul contenuto in serotonia del cervello di ratto (normale e surrenectomizzato), Arch. Sci. Med. 111: 369–373 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Woodbury, D.M. (1972). Biochemical Effects of Adrenocortical Steroids on the Central Nervous System. In: Lajtha, A. (eds) Handbook of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7172-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7172-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7174-2

  • Online ISBN: 978-1-4615-7172-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics