Advertisement

Carrier-Mediated Transport Processes

  • H. R. Wyssbrod
  • W. N. Scott
  • W. A. Brodsky
  • I. L. Schwartz

Abstract

In Chapter 20(1) the movement of solutes across biological membranes is treated in relation to processes which do not, in general, involve a chemical interaction between the permeant and the membrane, and which are thermo-dynamically dissipative in character—i.e., the free energy of the matter under observation decreases during transport.

Keywords

Adenosine Triphosphatase Electrical Potential Difference Apparent Dissociation Constant Ehrlich Ascites Carcinoma Cell Secondary Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. A. Brodsky, A. E. Shamoo, and I. L. Schwartz, Dissipative transport processes, in Handbook of Neuro chemistry (A. Lajtha, ed.). Vol. 5, Plenum Press, New York (1971).Google Scholar
  2. 2.
    E. A. Guggenheim, Thermodynamics, An Advanced Treatment for Chemists and Physicists, 5th ed. pp. 298–302, North-Holland, Amsterdam (1967).Google Scholar
  3. 3.
    T. Rosenberg, On accumulation and active transport in biological systems I. Thermodynamic considerations, Acta Chem. Scand. 2:14–33 (1948).Google Scholar
  4. 4.
    O. Kedem, Criteria of active transport, in Membrane Transport and Metabolism (A.Google Scholar
  5. Kleinzeller and A. Kotyk, eds.), pp. 87–93, Academic Press, New York (1961).Google Scholar
  6. 5.
    T. Rosenberg, The concept and definition of active transport, Symp. Soc. Exp. Biol. 8:27–41 (1954).Google Scholar
  7. 6.
    P. J. Garrahan and I. M. Glynn, The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump. J. Physiol. (London) 192:237–256 (1967).Google Scholar
  8. 7.
    I. M. Glynn and V. L. Lew, Affinities or apparent affinities of the transport adenosine triphosphatase system, J. Gen. Physiol. 54 (pt. 2):289s–305s (1969); also in Membrane Proteins, Proceedings of a Symposium sponsored by the New York Heart Association, pp. 289–305. Little Brown, Boston (1969).Google Scholar
  9. 8.
    A. Fick, IV. Ueber diffusion, Poggendorf’s Ann. Phys. Chem. 94:59–86 (1855).Google Scholar
  10. 9.
    A. Fick, V. On liquid diffusion, Philosoph. Mag. & J. Science (London, Edinburgh, and Dublin) 10:30–39 (1855).Google Scholar
  11. 10.
    P. G. LeFevre and G. F. McGinniss, Tracer exchange vs net uptake of glucose through human red cell surface, J. Gen. Physiol. 44:87–103 (1960).PubMedGoogle Scholar
  12. 11.
    T. Rosenberg and W. Wilbrandt, Enzymatic processes in cell membrane penetration, Internat. Rev. Cytol. 1:65–95 (1952).Google Scholar
  13. 12.
    E. Heinz, Kinetic studies on the “influx” of glycine-1-C14 into the Ehrlich mouse ascites carcinoma cell, J. Biol. Chem. 211:781–790 (1954).PubMedGoogle Scholar
  14. 13.
    J. F. Danielli, Morphological and molecular aspects of active transport, Symp. Soc. Exp. Biol. 8:502–516(1954).Google Scholar
  15. 14.
    W. D. Stein, Facilitated diffusion, Recent Progr. Surface Sci. 1:300–337 (1964).Google Scholar
  16. 15.
    W. D. Stein, The Movement of Molecules across Cell Membranes, pp. 127–128, Academic Press, New York and London (1967).Google Scholar
  17. 16.
    R. M. Dowben, General PhysiologyA Molecular Approach, pp. 448–449, Harper & Row, New York (1969).Google Scholar
  18. 17.
    R. Höber, Über Resorption im Dünndarm, Pflüg. Arch. ges. Physiol. 74:246–271 (1899).Google Scholar
  19. 18.
    R. Höber, Correlation between the molecular configuration of organic compounds and their active transfer in living cells, Cold Spring Harbor Symp. Quant. Biol. 8:40–50 (1940).Google Scholar
  20. 19.
    R. Höber, Physical Chemistry of Cells and Tissues, 2nd ed., pp. 615–620, Blakiston, Philadelphia and Toronto (1945).Google Scholar
  21. 20.
    F. Verzàr, Probleme und Ergebnisse auf dem Gebiete der Darmresorption, Ergebn. Physiol. 32:391–471 (1931).Google Scholar
  22. 21.
    F. Verzàr, Die Rolle von Diffusion und Schleimhautaktivität bei der Resorption von verschiedenen Zuckern aus dem Darm, Biochem. Z. 276:17–27 (1935).Google Scholar
  23. 22.
    J. A. Shannon and S. Fisher, The renal tubular reabsorption of glucose in the normal dog, Am. J. Physiol. 122:765–774 (1938).Google Scholar
  24. 23.
    J. A. Shannon, The tubular reabsorption of xylose in the normal dog, Am. J. Physiol. 122:775–781 (1938).Google Scholar
  25. 24.
    J. A. Shannon, Renal tubular excretion, Physiol. Rev. 19:63–93 (1939).Google Scholar
  26. 25.
    J. Franck and J. E. Mayer, An osmotic diffusion pump, Arch. Biochem. Biophys. 14:297–313 (1947).Google Scholar
  27. 26.
    J. B. Wittenberg, Oxygen transport—a new function proposed for myoglobin, Biol. Bull. (Woods Hole) 117 (abstract):402–403 (1959).Google Scholar
  28. 27.
    J. B. Wittenberg, The molecular mechanism of hemoglobin-facilitated oxygen diffusion, J. Biol. Chem. 241:104–114 (1966).PubMedGoogle Scholar
  29. 28.
    P. F. Scholander, Oxygen transport through hemoglobin solutions, Science 131.585–590 (1960).PubMedGoogle Scholar
  30. 29.
    F. M. Snell, Facilitated transport of oxygen through solutions of hemoglobin, J. Theoret. Biol. 8:469–479 (1965).Google Scholar
  31. 30.
    J. Wyman, Facilitated diffusion and the possible role of myoglobin as a transport mechanism, J. Biol. Chem. 241:115–121 (1966).PubMedGoogle Scholar
  32. 31.
    P. Mitchell, Active transport and ion accumulation, in Comprehensive Biochemistry (M. Florkin and E. H. Stotz, eds.), Vol. 22, pp. 167–197, Elsevier, Amsterdam (1967).Google Scholar
  33. 32.
    P. Mitchell, Translocations through natural membranes, Adv. Enzymol. 29:33–87 (1967).PubMedGoogle Scholar
  34. 33.
    W. J. V. Osterhout and W. M. Stanley, The accumulation of electrolytes. V. Models showing accumulation and a steady state, J. Gen. Physiol. 15:667–689 (1932).PubMedGoogle Scholar
  35. 34.
    W. J. V. Osterhout, Permeability in large plant cells and in models, Ergebn. Physiol. 35:967–1021 (1933).Google Scholar
  36. 35.
    W. J. V. Osterhout, How do electrolytes enter cells? Proc. Nat. Acad. Sci. U.S. 21:125–132(1935).Google Scholar
  37. 36.
    H. Lundegårdh, Theorie der Ionenaufnahme in lebende Zellen, Naturwissenschaften 23:313–318(1935).Google Scholar
  38. 37.
    H. Lundegårdh, Investigations as to the absorption and accumulation of inorganic ions, Ann. Agric. Coll. Sweden 8:234–404 (1940).Google Scholar
  39. 38.
    E. Guensberg, Die Glukose Aufnahme in menschliche rote Blut Körperchen. Inauguraldissertation. Bern, Gerber-Buchdruck, Schwartzenberg (1947).Google Scholar
  40. 39.
    A. L. Hodgkin, The effect of potassium on the surface membrane of an isolated axon, J. Physiol. (London) 106: 319–340 (1947).Google Scholar
  41. 40.
    H. H. Ussing, Interpretation of the exchange of radio-sodium in isolated muscle, Nature (London) 160:262–263 (1947).Google Scholar
  42. 41.
    H. H. Ussing, Transport of ions across cellular membranes, Physiol. Rev. 29:127–155 (1949).PubMedGoogle Scholar
  43. 42.
    H. H. Ussing, Some aspects of the application of tracers in permeability studies, Adv. Enzymol. 13:21–65(1952).Google Scholar
  44. 43.
    P. G. LeFevre, Evidence of active transfer of certain non-electrolytes across the human red cell membrane, J. Gen. Physiol. 31:505–527 (1948).PubMedGoogle Scholar
  45. 44.
    P. G. LeFevre, The evidence for active transport of monosaccharides across the red cell membrane, Symp. Soc. Exp. Biol. 8:118–135 (1954).Google Scholar
  46. 45.
    P. G. LeFevre and R. I. Davies, Active transport into the human erythrocyte: evidence from comparative kinetics and competition among monosaccharides, J. Gen. Physiol. 34:515–524(1951).PubMedGoogle Scholar
  47. 46.
    P. G. LeFevre and M. E. LeFevre, The mechanism of glucose transfer into and out of the human red cell, J. Gen. Physiol. 35:891–906 (1952).PubMedGoogle Scholar
  48. 47.
    W. F. Widdas, Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer, J. Physiol. (London) 118:23–39(1952).Google Scholar
  49. 48.
    W. F. Widdas, Comment on Professor Wilbrandt’s and Dr. LeFevre’s papers, Symp. Soc. Exp. Biol. 8:163–164 (1954).Google Scholar
  50. 49.
    W. F. Widdas, Facilitated transfer of hexoses across the human erythrocyte membrane, J. Physiol (London) 125:163–180 (1954).Google Scholar
  51. 50.
    W. Wilbrandt, Secretion and transport of non-electrolytes, Symp. Soc. Exp. Biol. 8:136–162 (1954).Google Scholar
  52. 51.
    C. S. Patlak, Contributions to the theory of active transport, Bull. Math. Biophys. 18:271–315 (1956).Google Scholar
  53. 52.
    C. S. Patlak, Contributions to the theory of active transport: II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency, and measurement of energy expenditure, Bull. Math. Biophys. 19:209–235 (1957).Google Scholar
  54. 53.
    W. D. Stein, Intra-protein interactions across a fluid membrane as a model for biological transport, J. Gen. Physiol. 54 (pt. 2):81s–90s (1969); also in Membrane Proteins, Proceedings of a Symposium sponsored by the New York Heart Association, pp. 81–90, Little Brown, Boston (1969).Google Scholar
  55. 54.
    J. D. Robertson, New observations on the ultrastructure of the membranes of frog peripheral nerve fibers, J. Biophys. Biochem. Cytol. 3:1043–1047 (1957).PubMedGoogle Scholar
  56. 55.
    J. D. Robertson, Structural alterations in nerve fibers produced by hypotonic and hypertonic solutions, J. Biophys. Biochem. Cytol. 4:349–364 (1958).PubMedGoogle Scholar
  57. 56.
    J. D. Robertson, The ultrastructure of cell membranes and their derivatives, Biochem. Soc. Symp. (Cambridge, England) 16:3–43 (1959).Google Scholar
  58. 57.
    J. D. Robertson, The molecular structure and contact relationships of cell membranes,Google Scholar
  59. Progr. Biophys. Biophys. Chem. 10:343–418 (1960).Google Scholar
  60. 58.
    J. F. Danielli and H. Davson, A contribution to the theory of permeability of thin films, J. Cell. Comp. Physiol. 5:495–508 (1935).Google Scholar
  61. 59.
    J. F. Danielli, The present position in the field of facilitated diffusion and selective active transport, in Recent Developments in Cell Physiology, Proceedings of the Seventh Symposium of the Colston Research Society (J. A. Kitching, ed.), pp. 1–14, Butterworths, London; Academic Press, New York (1954).Google Scholar
  62. 60.
    D. E. Green, An introduction to membrane biochemistry, Israel J. Med. Sci. 1:1187–1200 (1965).Google Scholar
  63. 61.
    D. E. Green and J. F. Perdue, Membranes as expressions of repeating units, Proc. Nat. Acad. Sci. U.S. 55:1295–1302 (1966).Google Scholar
  64. 62.
    G. Vanderkooi and D. E. Green, Biological membrane structure, I. The protein crystal model for membranes, Proc. Nat. Acad. Sci. U.S. 66:615–621 (1970).Google Scholar
  65. 63.
    G. Vanderkooi and M. Sundaralingam, Biological membrane structure, II. A detailed model for the retinal rod outer segment membrane, Proc. Nat. Acad. Sci. U.S. 67:233–238 (1970).Google Scholar
  66. 64.
    S. Roseman, The transport of carbohydrates by a bacterial phosphotransferase system, J. Gen.Physiol. 54 (pt. 2):138s–184s (1969); also in Membrane Proteins, Proceedings of a Symposium sponsored by the New York Heart Association, pp. 138–184, Little Brown, Boston (1969).Google Scholar
  67. 65.
    P. Mitchell and J. Moyle, Group-translocation: a consequence of enzyme-catalyzed group-transfer, Nature (London) 182:372–373 (1958).Google Scholar
  68. 66.
    P. Mitchell, Molecule, group and electron translocation through natural membranes, Biochem. Soc. Symp. (Cambridge, England) 22:142–169 (1962).Google Scholar
  69. 67.
    B. C. Pressman, Ionophorous antibiotics as models for biological transport, Fed. Proc. 27:1283–1288(1968).PubMedGoogle Scholar
  70. 68.
    B. C. Pressman, Mechanism of action of transport-mediating antibiotics, Ann. N.Y. Acad. Sci. 147:829–841 (1969).PubMedGoogle Scholar
  71. 69.
    B. C. Pressman, Control of mitochondrial substrate metabolism by regulation of cation transport, FEBS Symp. 17:315–333 (1969).Google Scholar
  72. 70.
    B. C. Pressman and D. H. Haynes, Ionophorous agents as mobile ion carriers, in The Molecular Basis of Membrane Function (D. C. Tosteson, ed.), pp. 221–246, Prentice-Hall, Englewood Cliffs, N.J. (1969).Google Scholar
  73. 71.
    S. Ciani, G. Eisenman, and G. Szabo, A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electrical properties of bilayer membranes, J. Memb.Biol. 1:1–36(1969).Google Scholar
  74. 72.
    G. Eisenman, S. Ciani, and G. Szabo, The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents, J. Memb. Biol. 1:294–345(1969).Google Scholar
  75. 73.
    G. Szabo, G. Eisenman, and S. Ciani, The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes, J. Memb. Biol. 1:346–382 (1969).Google Scholar
  76. 74.
    H. H. Ussing, The distinction by means of tracers between active transport and diffusion. The transfer of iodide across the isolated frog skin, Acta Physiol. Scand. 19:43–56 (1949).Google Scholar
  77. 75.
    A. K. Solomon, The kinetics of biological processes. Special problems connected with the use of tracers, Adv. Biol. Med. Phys. 3:65–97 (1953).PubMedGoogle Scholar
  78. 76.
    C. W. Sheppard, Basic Principles of the Tracer Method, John Wiley, New York (1962).Google Scholar
  79. 77.
    T. Rosenberg and W. Wilbrandt, The kinetics of membrane transports involving chemical reactions, Exp. Cell Res. 9:49–67 (1955).PubMedGoogle Scholar
  80. 78.
    W. Wilbrandt, S. Frei and T. Rosenberg, The kinetics of glucose transport through the human red cell membrane, Exp. Cell. Res. 11:59–66 (1956).PubMedGoogle Scholar
  81. 79.
    F. Bowyer, The kinetics of penetration of nonelectrolytes into the mammalian erythrocyte, Internat. Rev. Cytol. 6:469–511 (1957).Google Scholar
  82. 80.
    W. Wilbrandt and T. Rosenberg, The concept of carrier transport and its corollaries in pharmacology, Pharmacol. Rev. 13:109–183 (1961).PubMedGoogle Scholar
  83. 81.
    T. Rosenberg, Membrane transport of sugars. A survey of kinetical and chemical approaches, Path. Biol. 9:795–802 (1961).Google Scholar
  84. 82.
    G. A. Vidaver, Inhibition of parallel flux and augmentation of counter flux shown by transport models not involving a mobile carrier, J. Theoret. Biol. 10:301–306 (1966).Google Scholar
  85. 83.
    H. Lineweaver and D. Burk, The determination of enzyme dissociation constants, J. Am. Chem. Soc. 56:658–666 (1934).Google Scholar
  86. 84.
    C. S. Hanes, Studies on plant amylases. The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley, Biochem. J. (London) 26:1406–1421 (1932).Google Scholar
  87. 85.
    K. Ahmed and P. G. Scholefield, Biochemical studies on l-aminocyclopentane carboxylic acid, Canad. J. Biochem. Physiol. 40:1101–1110 (1962):PubMedGoogle Scholar
  88. 86.
    M. Dixon, The determination of enzyme inhibitor constants, Biochem. J. (London) 55:170–171 (1953).Google Scholar
  89. 87.
    J. A. Jacquez, The kinetics of carrier-mediated active transport of amino acids, Proc. Nat. Acad. Sci. U.S. 47:153–163 (1961).Google Scholar
  90. 88.
    T. Rosenberg and W. Wilbrandt, Carrier transport uphill. I. General, J. Theoret. Biol. 5:288–305 (1963).Google Scholar
  91. 89.
    D. M. Miller, The kinetics of selective biological transport. I. Determination of transport constants for sugar movements in human erythrocytes, Biophys. J. 5:407–415 (1965).PubMedGoogle Scholar
  92. 90.
    D. M. Miller, The kinetics of selective biological transport. II. Equations for induced uphill transport of sugars in human erythrocytes, Biophys. J. 5:417–423 (1965).PubMedGoogle Scholar
  93. 91.
    T. Rosenberg and W. Wilbrandt, Uphill transport induced by counterflow, J. Gen. Physiol. 41:289–296(1957).PubMedGoogle Scholar
  94. 92.
    H. G. Britton, Permeability of the human red cell to labelled glucose, J. Physiol. (London) 170:1–20(1964).Google Scholar
  95. 93.
    D. M. Regen and H. E. Morgan, Studies of the glucose-transport system in the rabbit erythrocyte, Biochim. Biophys. Acta 79:151–166 (1964).PubMedGoogle Scholar
  96. 94.
    M. Levine, D. L. Oxender, and W. D. Stein, The substrate-facilitated transport of the glucose carrier across the human erythrocyte membrane, Biochim. Biophys. Acta 109:151–163 (1965).PubMedGoogle Scholar
  97. 95.
    M. Levine and W. D. Stein, The kinetic parameters of the monosaccharide transfer system of the human erythrocyte, Biochim. Biophys. Acta 127:179–193 (1966).PubMedGoogle Scholar
  98. 96.
    W. D. Stein, The Movement of Molecules across Cell Membranes, pp. 152–157 and 162–174, Academic Press, New York and London (1967).Google Scholar
  99. 97.
    H. R. Wyssbrod, Kinetics of a carrier system displaying trans-effects, (in preparation).Google Scholar
  100. 98.
    E. Heinz and P. M. Walsh, Exchange diffusion, transport, and intracellular level of amino acids in Ehrlich carcinoma cells, J. Biol. Chem. 233:1488–1493 (1958).PubMedGoogle Scholar
  101. 99.
    R. M. Johnstone and P. G. Scholefield, The influence of amino acids and antimetabolites on glycine retention by Ehrlich ascites carcinoma cells, Cancer Res. 19:1140–1149 (1959).PubMedGoogle Scholar
  102. 100.
    J. A. Jacquez, Transport and exchange diffusion of L-tryptophan in Ehrlich cells, Am. J. Physiol. 200:1063–1068 (1961).PubMedGoogle Scholar
  103. 101.
    A. Lajtha and P. Mela, The brain barrier system—I. The exchange of free amino acids between plasma and brain, J. Neurochem. 7:210–217 (1961).Google Scholar
  104. 102.
    R. M. Johnstone and J. H. Quastel, Effects of lipotropic agents on exchange diffusion in Ehrlich ascites carcinoma cells, Biochim. Biophys. Acta 46:527–532 (1961).PubMedGoogle Scholar
  105. 103.
    R. M. Johnstone and P. G. Scholefield, Factors controlling the uptake and retention of methionine and ethionine by Ehrlich ascites carcinoma cells, J. Biol. Chem. 236:1419–1424 (1961).PubMedGoogle Scholar
  106. 104.
    A. Lajtha and J. Toth, The brain barrier system—V. Stereospecificity of amino acid uptake, exchange and efflux, J. Neurochem. 10:909–920 (1963).PubMedGoogle Scholar
  107. 105.
    D. L. Oxender and H. N. Christensen, Evidence for two types of mediation of neutral amino-acid transport in Ehrlich cells, Nature (London) 197:765–767 (1963).Google Scholar
  108. 106.
    J. A. Jacquez and J. H. Sherman, The effect of metabolic inhibitors on transport and exchange of amino acids in Ehrlich ascites cells, Biochim. Biophys. Acta 109:128–141 (1965).PubMedGoogle Scholar
  109. 107.
    A. Lajtha, Transport as control mechanism of cerebral metabolite levels, in Brain Barrier Systems (Progress in Brain Research, Vol. 29), (A. Lajtha and D. H. Ford, eds.), pp. 201–218, Elsevier, Amsterdam (1968).Google Scholar
  110. 108.
    L. Battistin and A. Lajtha, Regional distribution and movement of amino acids in the brain, J. Neurol. Sci. 10:313–322 (1970).PubMedGoogle Scholar
  111. 109.
    R. Blasberg, G. Levi, and A. Lajtha, A comparison of inhibition of steady state, net transport, and exchange fluxes of amino acids in brain slices, Biochim. Biophys. Acta 203:464–483(1970).PubMedGoogle Scholar
  112. 110.
    D. E. Gentile, A. E. Shamoo, H. R. Wyssbrod, and W. A. Brodsky, Counterflow of sodium across short-circuited acid-killed turtle bladder, Am. J. Physiol. 219:1192–1199 (1970).PubMedGoogle Scholar
  113. 111.
    W. Gross, K. Ring, and E. Heinz, Positive feedback regulation of amino acid transport in Streptomyces hydrogenans, Arch. Biochem. Biophys. 137:253–261 (1970).Google Scholar
  114. 112.
    C. M. Paine and E. Heinz, The structural specificity of the glycine transport system of Ehrlich carcinoma cells, J. Biol. Chem. 235:1080–1085 (1960).PubMedGoogle Scholar
  115. 113.
    K. Ring and E. Heinz, Active amino acid transport in Streptomyces hydrogenans I. Kinetics of uptake of α-aminoisobutyric acid, Biochem. Z. 344:446–461 (1966).Google Scholar
  116. 114.
    G. A. Vidaver and S. L. Shepherd, Transport of glycine by hemolyzed and restored pigeon red blood cells, J. Biol. Chem. 243:6140–6150 (1968).PubMedGoogle Scholar
  117. 115.
    M. L. Belkhode and P. G. Scholefield, Interactions between amino acids during transport and exchange diffusion in Novikoff and Ehrlich ascites tumor cells, Biochim. Biophys. Acta 173:290–301 (1969).PubMedGoogle Scholar
  118. 116.
    K. Ring, W. Gross, and E. Heinz, Negative feedback regulation of amino acid transport in Streptomyces hydrogenans, Arch. Biochem. Biophys. 137:243–252 (1970).PubMedGoogle Scholar
  119. 117.
    J. T.-F. Wong, The possible role of polyvalent carriers in cellular transports, Biochim. Biophys. Acta 94:102–113 (1965).PubMedGoogle Scholar
  120. 118.
    W. D. Stein, Spontaneous and enzyme-induced dimer formation and its role in membrane permeability. II. The mechanism of movement of glycerol across the human erythrocyte membrane, Biochim. Biophys. Acta 59:47–65 (1962).PubMedGoogle Scholar
  121. 119.
    W. D. Stein, Spontaneous and enzyme-induced dimer formation and its role in membrane permeability. III. The mechanism of movement of glucose across the human erythrocyte membrane, Biochim. Biophys. Acta 59:66–77 (1962).PubMedGoogle Scholar
  122. 120.
    W. Wilbrandt and A. Kotyk, Transport of sugar mono- and di-complexes in human erythrocytes, Naunyn-Schmiedebergs Arch. Exp. Path. Pharmak. 249:279–287 (1964).Google Scholar
  123. 121.
    H. G. Britton, Fluxes in passive, monovalent and polyvalent carrier systems, J. Theoret. Biol. 10:28–52(1965).Google Scholar
  124. 122.
    H. R. Wyssbrod, Kinetics of a carrier system displaying cis-stimulation, (in preparation).Google Scholar
  125. 123.
    D. E. Atkinson, J. A. Hathaway, and E. C. Smith, Kinetics of regulatory enzymes. Kinetic order of the yeast diphosphopyridine nucleotide isocitrate dehydrogenase reaction and a model for the reaction, J. Biol. Chem. 240:2682–2690 (1965).PubMedGoogle Scholar
  126. 124.
    W. R. Lieb and W. D. Stein, Quantitative predictions of a noncarrier model for glucose transport across the human red cell membrane, Biophys. J. 10:585–609 (1970).PubMedGoogle Scholar
  127. 125.
    J. Monod, J. Wyman, and J.-P. Changeux, On the nature of allosteric transitions: a plausible model, J. Mol. Biol. 12:88–118 (1965).PubMedGoogle Scholar
  128. 126.
    D. E. Koshland, Jr., G. Némethy, and D. Filmer, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry 5:365–385 (1966).PubMedGoogle Scholar
  129. 127.
    L. Pauling, The oxygen equilibrium of hemoglobin and its structural interpretation, Proc. Nat. Acad. Sci. U.S. 21:186–191 (1935).Google Scholar
  130. 128.
    J.-P. Changeux, J. Thiéry, Y. Tung, and C. Kittel, On the cooperativity of biological membranes, Proc. Nat. Acad. Sci. U.S. 57:335–341 (1967).Google Scholar
  131. 129.
    J.-P. Changeux and J. Thiéry, On the excitability and cooperativity of biological membranes, in Regulatory Functions of Biological Membranes (J. Järnefelt, ed.), BBA Library, Vol. 11, pp. 116–138, Elsevier, Amsterdam (1968).Google Scholar
  132. 130.
    J. A. Jacquez, Carrier-amino acid stoichiometry in amino acid transport in Ehrlich ascites cells, Biochim. Biophys. Acta 71:15–33 (1963).PubMedGoogle Scholar
  133. 131.
    D. L. Oxender and H. N. Christensen, Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell, J. Biol. Chem. 238:3686–3699 (1963).PubMedGoogle Scholar
  134. 132.
    G. Guroff, G. R. Fanning, and M. A. Chirigos, Stimulation of aromatic amino acid transport by p-fluorophenylalanine in the Sarcoma 37 cell, J. Cell. Comp. Physiol. 63:323–331 (1964).Google Scholar
  135. 133.
    J. A. Jacquez, Competitive stimulation: further evidence for two carriers in the transport of neutral amino acids, Biochim. Biophys. Acta 135:751–755 (1967).PubMedGoogle Scholar
  136. 134.
    J. R. Sachs and L. G. Welt, The concentration dependence of active potassium transport in the human red blood cell, J. Clin. Invest. 46:65–76 (1967).PubMedGoogle Scholar
  137. 135.
    N. Magaña-Schwencke and J. Schwencke, A proline transport system in Saccharomyces chevalieri, Biochim. Biophys. Acta 173:313–323 (1969).PubMedGoogle Scholar
  138. 136.
    B. G. Munck and S. G. Schultz, Interactions between leucine and lysine transport in rabbit ileum, Biochim. Biophys. Acta 183:182–193 (1969).PubMedGoogle Scholar
  139. 137.
    F. Piccoli and A. Lajtha, Some aspects of uptake of non-metabolites in slices of mouse brain, Biochim. Biophys. Acta 225:356–369 (1971).PubMedGoogle Scholar
  140. 138.
    H. R. Wyssbrod, The effect of the electric field upon unidirectional fluxes of ions across membranes, (in preparation).Google Scholar
  141. 139.
    M. Planck, Über die Potentialdifferenz zwischen verdünnten Lösungen binärer Elektrolyte, Ann. Phys. Chem. N.F. 40:561–576 (1890).Google Scholar
  142. 140.
    W. Nernst, Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen, Z. Physik. Chem. 47:52–55(1904).Google Scholar
  143. 141.
    W. Nernst, Zur Theorie des elektrischen Reizes, Pflüg. Arch. ges. Physiol. 122:275–314 (1908).Google Scholar
  144. 142.
    D. E. Goldman, Potential, impedance, and rectification in membranes, J. Gen. Physiol. 27:37–60(1943).PubMedGoogle Scholar
  145. 143.
    H. H. Ussing and K. Zerahn, Active transport of sodium as the source of electric current in the short-circuited isolated frog skin, Acta Physiol. Scand. 23:110–127 (1951).PubMedGoogle Scholar
  146. 144.
    F. G. Donnan, Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie. Z. Elektrochem. 17:572–581 (1911).Google Scholar
  147. 145.
    P. Mitchell, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism, Nature (London) 191:144–148 (1961).Google Scholar
  148. 146.
    A. K. Solomon, The permeability of the human erythrocyte to sodium and potassium, J. Gen. Physiol 36:57–110 (1952).PubMedGoogle Scholar
  149. 147.
    T. I. Shaw, Sodium and potassium movements in red cells, Ph.D. Thesis. Cambridge University, England (1954).Google Scholar
  150. 148.
    P. C. Caldwell, Factors governing movement and distribution of inorganic ions in nerve and muscle, Physiol. Rev. 48:1–64 (1968).PubMedGoogle Scholar
  151. 149.
    H. N. Christensen, T. R. Riggs, and N. E. Ray, Concentrative uptake of amino acids by erythrocytes in vitro, J. Biol. Chem. 194:41–51 (1952).PubMedGoogle Scholar
  152. 150.
    G. A. Vidaver, Transport of glycine by pigeon red cells, Biochemistry 3:662–667 (1964).PubMedGoogle Scholar
  153. 151.
    G. A. Vidaver, Glycine transport by hemolyzed and restored pigeon red cells, Biochemistry 3:795–799(1964).PubMedGoogle Scholar
  154. 152.
    G. A. Vidaver, Some tests of the hypothesis that the sodium-ion gradient furnishes the energy for glycine-active transport by pigeon red cells, Biochemistry 3:803–808 (1964).PubMedGoogle Scholar
  155. 153.
    H. N. Christensen, T. R. Riggs, H. Fischer, and I. M. Palatine, Amino acid concentration by a free cell neoplasm: Relations among amino acids, J. Biol. Chem. 198:1–15 (1952).PubMedGoogle Scholar
  156. 154.
    H. N. Christensen, T. R. Riggs, H. Fischer, and I. M. Palatine, Intense concentration of α,γ-diaminobutyric acid by cells, J. Biol. Chem. 198:17–22 (1952).PubMedGoogle Scholar
  157. 155.
    T. R. Riggs, L. M. Walker, and H. N. Christensen, Potassium migration and amino acid transport, J. Biol. Chem. 233:1479–1484 (1958).PubMedGoogle Scholar
  158. 156.
    H. Kromphardt, H. Grobecker, K. Ring, and E. Heinz, Über den Einfluss von Alkali-Ionen auf den Glycintransport in Ehrlich-Ascites-Tumorzellen, Biochim. Biophys. Acta 74:549–551 (1963).PubMedGoogle Scholar
  159. 157.
    K. P. Wheeler, Y. Inui, P. F. Hollenberg, E. Eavenson, and H. N. Christensen, Relation of amino acid transport to sodium-ion concentration, Biochim. Biophys. Acta 109:620–622 (1965).PubMedGoogle Scholar
  160. 158.
    T. Z. Czáky and M. Thale, Effect of ionic environment on intestinal sugar transport, J. Physiol. (London) 151:59–65 (1960).Google Scholar
  161. 159.
    T. Z. Czáky and L. Zollicoffer, Ionic effect on intestinal transport of glucose in the rat, Am. J. Physiol. 198:1056–1058 (1960).Google Scholar
  162. 160.
    T. Z. Czáky, H. G. Hartzog III, and G. W. Fernald, Effect of digitalis on active intestinal sugar transport, Am. J. Physiol. 200:459–460 (1961).Google Scholar
  163. 161.
    T. Z. Czáky, Significance of sodium ions in active intestinal transport of nonelectrolytes, Am. J. Physiol. 201:999–1001 (1961).Google Scholar
  164. 162.
    R. K. Crane, D. Miller, and I. Bihler, The restrictions on possible mechanisms of intestinal active transport of sugars, in Membrane Transport and Metabolism (A. Kleinzeller and A. Kotyk, eds.), pp. 439–449, Academic Press, New York (1961).Google Scholar
  165. 163.
    I. Bihler and R. K. Crane, Studies on the mechanism of intestinal absorption of sugars. V. The influence of several cations and anions on the active transport of sugars, in vitro, by various preparations of hamster small intestine, Biochim. Biophys. Acta 59:78–93 (1962).PubMedGoogle Scholar
  166. 164.
    I. Bihler, K. A. Hawkins, and R. K. Crane, Studies on the mechanism of intestinal absorption of sugars. VI. The specificity and other properties of Na+-dependent entrance of sugars into intestinal tissue under anaerobic conditions, in vitro, Biochim. Biophys. Acta 59:94–102(1962).PubMedGoogle Scholar
  167. 165.
    S. G. Schultz and R. Zalusky, Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport, J. Gen. Physiol. 47:1043–1059 (1964).PubMedGoogle Scholar
  168. 166.
    S. G. Schultz and R. Zalusky, Ion transport in isolated rabbit ileum. I. Short-circuit current and Na fluxes, J. Gen. Physiol. 47:567–584 (1964).PubMedGoogle Scholar
  169. 167.
    R. K. Crane, Na+-dependent transport in the intestine and other animal tissues, Fed. Proc. 24:1000–1006(1965).PubMedGoogle Scholar
  170. 168.
    R. K. Crane, G. Forstner, and A. Eichholz, Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro, Biochim. Biophys. Acta 109:467–477 (1965).PubMedGoogle Scholar
  171. 169.
    W. D. Stein, The Movement of Molecules across Cell Membranes, pp. 192–206, Academic Press, New York and London (1967).Google Scholar
  172. 170.
    E. E. Crane and R. E. Davies, Chemical energy relations in gastric mucosa, Biochem. J. (London)43:xlii(1948).Google Scholar
  173. 171.
    E. E. Crane and R. E. Davies, Electric energy relations in gastric mucosa, Biochem. J. (London) 43: xlii-xliii (1948).Google Scholar
  174. 172.
    E. E. Crane and R. E. Davies, Chemical and electrical energy relations for the stomach, Biochem. J. (London) 49:169–175 (1951).Google Scholar
  175. 173.
    E. E. Crane, R. E. Davies, and N. M. Longmuir, Relations between hydrochloric acid secretion and electrical phenomena in frog gastric mucosa, Biochem. J. (London) 43:321–336 (1948).Google Scholar
  176. 174.
    E. E. Crane, R. E. Davies, and N. M. Longmuir, The effect of electrical current on HCl secretion by isolated frog gastric mucosa, Biochem. J. (London) 43:336–342 (1948).Google Scholar
  177. 175.
    R. E. Davies and A. G. Ogston, On the mechanism of secretion of ions by gastric mucosa and by other tissues, Biochem. J. (London) 46:324–333 (1950).Google Scholar
  178. 176.
    R. N. Robertson and M. J. Wilkins, Studies in the metabolism of plant cells, VII. The quantitative relation between salt accumulation and salt respiration, Austr. J. Sci. Res. Ser. B. 1:17–37(1948).Google Scholar
  179. 177.
    R. N. Robertson and M. Wilkins, Quantitative relation between salt accumulation and salt respiration in plant cells, Nature (London) 161:101 (1948).Google Scholar
  180. 178.
    E. J. Conway and J. G. Brady, Source of hydrogen ions in gastric juice, Nature (London) 162:456–457(1948).Google Scholar
  181. 179.
    E. J. Conway, The biological performance of osmotic work. A redox pump, Science 113:270–273(1951).PubMedGoogle Scholar
  182. 180.
    E. J. Conway, The Biochemistry of Gastric Acid Secretion, C. C. Thomas, Springfield, Ill. (1952).Google Scholar
  183. 181.
    E. J. Conway, A redox pump for the biological performance of osmotic work, and its relation to the kinetics of free ion diffusion across membranes, Internat. Rev. Cytol. 2:419–445(1953).Google Scholar
  184. 182.
    E. J. Conway, Some aspects of ion transport through membranes, Symp. Soc. Exp. Biol. 8:297–324(1954).Google Scholar
  185. 183.
    M. H. Jacobs, The influence of ammonium salts on cell reaction, J. Gen. Physiol. 5:181–188 (1922).PubMedGoogle Scholar
  186. 184.
    M. H. Jacobs, The exchange of material between the erythrocyte and its surroundings, Harvey Lectures 22:146–164 (1927).Google Scholar
  187. 185.
    M. H. Jacobs, Some aspects of cell permeability to weak electrolytes, Cold Spring Harbor Symp. Quant. Biol. 8:30–39 (1940).Google Scholar
  188. 186.
    W. J. V. Osterhout, Is living protoplasm permeable to ions? J. Gen. Physiol. 8:131–146 (1925).PubMedGoogle Scholar
  189. 187.
    J. Orloffand R. W. Berliner, Relationship between urine pH and weak electrolyte excretion in the dog, Fed. Proc. 13 (abstract): 107 (1954).Google Scholar
  190. 188.
    J. Orloffand, R. W. Berliner, The mechanism of the excretion of ammonia in the dog, J. Clin. Invest, 35:223–235(1956).Google Scholar
  191. 189.
    I. L. Schwartz, N. A. Thorn, J. H. Thaysen, and A. R. Feinstein, pH and p-aminohippurate in human sweat, Fed. Proc. 14(abstract): 135 (1955).Google Scholar
  192. 190.
    I. L. Schwartz, Extrarenal regulation with special reference to the sweat glands, in Mineral Metabolism, An Advanced Treatise (C. L. Comar and F. Bronner, eds.), Vol. I, Part A, Chap. 10, pp. 337–386, Academic Press, New York (1960).Google Scholar
  193. 191.
    G. Gardos, Accumulation of K+ ions in human blood cells, Acta Physiol. Acad. Sci. Hung. 6:191–199(1954).Google Scholar
  194. 192.
    P. G. LeFevre, Sugar transport in the red blood cell: Structure-activity relationships in substrates and antagonists, Pharmacol. Rev. 13:39–70 (1961).PubMedGoogle Scholar
  195. 193.
    R. D. Keynes, The energy source for active transport in nerve and muscle, in Membrane Transport and Metabolism (A. Kleinzeller and A. Kotyk, eds.), pp. 131–139, Academic Press, New York (1961).Google Scholar
  196. 194.
    A. Martonosi and R. Feretos, Sarcoplasmic reticulum. II. Correlation between adenosine triphosphatase activity and Ca++ uptake, J. Biol. Chem. 239:659–668 (1964).PubMedGoogle Scholar
  197. 195.
    H. N. Christensen, Methods for distinguishing amino acid transport systems of a given cell or tissue, Fed. Proc. 25:850–853 (1966).PubMedGoogle Scholar
  198. 196.
    R. H. Wasserman, R. A. Corradino, and A. N. Taylor, Binding proteins from animals with possible transport function, J. Gen. Physiol. 54 (pt.2): 114s–134s (1969);Google Scholar
  199. 196a.
    R. H. Wasserman, R. A. Corradino, and A. N. Taylor, Binding proteins from animals with possible transport function, also in Membrane Proteins, Proceedings of a Symposium sponsored by the New York Heart Association, pp. 114–134, Little, Brown, Boston (1969).Google Scholar
  200. 197.
    S. Uesugi, A. Kahlenberg, F. Medzihradsky, and L. E. Hokin, Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. IV. Properties of a Lubrol-solubilized beef brain microsomal enzyme, Arch. Biochem. Biophys. 130:156–163 (1969).PubMedGoogle Scholar
  201. 198.
    H. N. Christensen and A. B. Hastings, Phosphatides and inorganic salts, J. Biol. Chem. 136:387–398(1940).Google Scholar
  202. 199.
    A. K. Solomon, F. Lionetti, and P. F. Curran, Possible cation-carrier substances in blood, Nature (London) 178:582–583 (1956).Google Scholar
  203. 200.
    L. E. Hokin and M. R. Hokin, Phosphatidic acid metabolism and active transport of sodium, Fed. Proc. 22:8–18 (1963).PubMedGoogle Scholar
  204. 201.
    L. E. Hokin, On the molecular characterization of the sodium-potassium transport adenosine triphosphatase, J. Gen. Physiol. 54 (pt. 2):327s–342s (1969);Google Scholar
  205. 201a.
    L. E. Hokin, On the molecular characterization of the sodium-potassium transport adenosine triphosphatase, also in Membrane Protein, Proceedings of a Symposium sponsored by the New York Heart Association, pp. 327–342 Little, Brown, Boston (1969).Google Scholar
  206. 202.
    F. Bowyer, and W. F. Widdas, The action of inhibitors on the facilitated hexose transfer system in erythrocytes, J. Physiol. (London) 141:219–232 (1958).Google Scholar
  207. 203.
    W. D. Stein, N-terminal histidine at the active centre of a permeability mechanism, Nature (London) 181:1662–1663 (1958).Google Scholar
  208. 204.
    M. E. Koshland, F. Englberger, and D. E. Koshland, Jr., A general method for the labeling of the active site of antibodies and enzymes, Proc. Nat. Acad. Sci. U.S. 45:1470–1475 (1959).Google Scholar
  209. 205.
    H. Bobinski and W. D. Stein, Isolation of a glucose-binding component from human erythrocyte membranes, Nature (London) 211:1366–1368 (1966).Google Scholar
  210. 206.
    C. F. Fox and E. P. Kennedy, Specific labeling and partial purification of the M protein, a component of the β-galactoside transport system of Escherichia coli, Proc. Nat. Acad. Sci. U.S. 54:891–899(1965).Google Scholar
  211. 207.
    J. VanSteveninck, R. I. Weed, and A. Rothstein, Localization of erythrocyte membrane sulfhydryl groups essential for glucose transport, J. Gen. Physiol. 48:617–632 (1965).PubMedGoogle Scholar
  212. 208.
    W. D. Stein, The Movement of Molecules across Cell Membranes, pp. 289–295, Academic Press, New York and London (1967).Google Scholar
  213. 209.
    P. G. LeFevre, K. I. Habich, H. S. Hess, and M. R. Hudson, Phospholipid-sugar complexes in relation to cell membrane monosaccharide transport, Science 143:955–957 (1964).PubMedGoogle Scholar
  214. 210.
    W. Gross and K. Ring, Effect of chloramphenicol on active amino acid transport, FEBS Letters 4:319–322 (1969).PubMedGoogle Scholar
  215. 211.
    L. J. Elsas and L. E. Rosenberg, Inhibition of amino acid transport in rat kidney cortex by puromycin, Proc. Nat. Acad. Sci. U.S. 57:371–378 (1967).Google Scholar
  216. 212.
    I. S. Edelman, R. Bogoroch, and G. A. Porter, On the mechanism of action of aldosterone on sodium transport: The role of protein synthesis, Proc. Nat. Acad. Sci. U.S. 50:1169–1177(1963).Google Scholar
  217. 213.
    G. A. Porter, R. Bogoroch, and I. S. Edelman, On the mechanism of action of aldosterone on sodium transport: The role of RNA synthesis, Proc. Nat. Acad. Sci. U.S. 52:1326–1333 (1964).Google Scholar
  218. 214.
    D. D. Fanestil and I. S. Edelman, Characteristics of the renal nuclear receptors for aldosterone, Proc. Nat. Acad. Sci. U.S. 56:872–879 (1966).Google Scholar
  219. 215.
    T. S. Herman, G. M. Fimognari, and I. S. Edelman, Studies on renal aldosterone-binding proteins, J. Biol. Chem. 243:3849–3856 (1968).PubMedGoogle Scholar
  220. 216.
    G. M. Fimognari, D. D. Fanestil, and I. S. Edelman, Induction of RNA and protein synthesis in the action of aldosterone in the rat, Am. J. Physiol. 213:954–962 (1967).PubMedGoogle Scholar
  221. 217.
    S. M. Sabesin and K. J. Isselbacher, Protein synthesis inhibition: Mechanism for the production of impaired fat absorption, Science 147:1149–1151 (1965).PubMedGoogle Scholar
  222. 218.
    K. J. Isselbacher, Biochemical aspects of lipid malabsorption, Fed. Proc. 26:1420–1425 (1967).PubMedGoogle Scholar
  223. 219.
    M. Lubin and H. L. Ennis, On the role of intracellular potassium in protein synthesis, Biochim. Biophys. Acta 80:614–631 (1964).PubMedGoogle Scholar
  224. 220.
    M. Lubin, Intracellular potassium and macromolecular synthesis in mammalian cells, Nature (London) 213:451–453 (1967).Google Scholar
  225. 221.
    O. Jardetzky, Simple allosteric model for membrane pumps, Nature (London) 211:969–970(1966).Google Scholar
  226. 222.
    T. L. Hill, A proposed common allosteric mechanism for active transport, muscle contraction, and ribosomal translocation, Proc. Nat. Acad. Sci. U.S. 64:267–274 (1969).Google Scholar
  227. 223.
    W. D. Stein and J. F. Danielli, Structure and function in red cell permeability, Disc. Faraday Soc. 21:238–251 (1956).Google Scholar
  228. 224.
    M. Burger, L. Hejmová, and A. Kleinzeller, Transport of some mono- and di-saccharides into yeast cells, Biochem. J. (London) 71:233–242 (1959).Google Scholar
  229. 225.
    V. P. Cirillo, The mechanism of sugar transport into the yeast cell, Trans. N.Y. Acad. Sci. 23:725–734(1961).Google Scholar
  230. 226.
    D. Miller and R. K. Crane, The digestive function of the epithelium of the small intestine. I. An intracellular locus of disaccharide and sugar phosphate ester hydrolysis, Biochim. Biophys. Acta 52:281–293 (1961).PubMedGoogle Scholar
  231. 227.
    R. K. Crane, in Structural and functional organization of an epithelial cell brush border, in Intracellular Transport (K. B. Warren, ed.), pp. 97–99, Academic Press, New York (1966).Google Scholar
  232. 228.
    A. M. Ugolev, N. N. Jesuitova, and P. deLaey, Localization of invertase activity in small intestinal cells, Nature (London) 203:879–880 (1964).Google Scholar
  233. 229.
    G. A. Marzluf and R. L. Metzenberg, Studies on the functional significance of the transmembrane location of invertase in Neurospora crassa, Arch. Biochem. Biophys. 120:487–496(1967).Google Scholar
  234. 230.
    J. T. Edsall and J. Wyman, Biophysical Chemistry, Vol. I, pp. 594–595, Academic Press, New York (1958).Google Scholar
  235. 231.
    U. Westphal, Assay and properties of corticosteroid-binding globulin and other steroid-binding serum proteins, in Methods in Enzymology (R. B. Clayton, ed.) Vol. 15, pp. 761–796(1969).Google Scholar
  236. 232.
    C. Scatchard, The attraction of proteins for small molecules and ions, Ann. N. Y. Acad. Sci. 51:660–672(1949).Google Scholar
  237. 233.
    M. C. Meyer and D. E. Guttman, Novel method for studying protein binding, J. Pharmaceut. Sci. 57:1627–1629 (1968).Google Scholar
  238. 234.
    M. C. Meyer and D. E. Guttman, Dynamic dialysis as a method for studying protein binding II: Evaluation of the method with a number of binding systems, J. Pharmaceut. Sci. 59:39–48(1970).Google Scholar
  239. 235.
    A. B. Pardee and L. S. Prestidge, Cell-free activity of a sulfate binding site involved in active transport, Proc. Nat. Acad. Sci. U.S. 55:189–191(1966).Google Scholar
  240. 236.
    A. B. Pardee, L. S. Prestidge, M. B. Whipple, and J. Dreyfuss, A binding site for sulfate and its relation to sulfate transport into Salmonella typhimurium, J. Biol. Chem. 241:3962–3969 (1966).PubMedGoogle Scholar
  241. 237.
    R. H. Wasserman, R. A. Corradino, and A. N. Taylor, Vitamin D-dependent calcium-binding protein, J. Biol. Chem. 243:3978–3986 (1968).PubMedGoogle Scholar
  242. 238.
    G. H. Lathe and C. R. J. Ruthven, The separation of substances and estimation of their relative molecular sizes by the use of columns of starch in water, Biochem. J. (London) 62:665–674(1956).Google Scholar
  243. 239.
    J. Porath and P. Flodin, Gel filtration: A method for desalting and group separation, Nature (London) 183:1657–1659 (1959).Google Scholar
  244. 240.
    P. Andrews, Estimation of the molecular weights of proteins by Sephadex gel-filtration, Biochem. J. 91:222–233 (1964).PubMedGoogle Scholar
  245. 241.
    J. P. Hummel and W. J. Dreyer, Measurement of protein-binding phenomena by gel filtration, Biochim. Biophys. Acta 63:530–532 (1962).PubMedGoogle Scholar
  246. 242.
    G. F. Fairclough, Jr., and J.S. Fruton, Peptide-protein interaction as studied by gel filtration, Biochemistry 5:673–683 (1966).PubMedGoogle Scholar
  247. 243.
    G. C. Wood and P. F. Cooper, The application of gel filtration to the study of protein binding of small molecules, Chromatog. Rev. 12:88–107 (1970).Google Scholar
  248. 244.
    E. G. Rozantzev and M. B. Neiman, Organic radical reactions involving no free valence, Tetrahedron 20:131–137 (1964).Google Scholar
  249. 245.
    C. L. Hamilton and H. M. McConnell, Spin labels, in Structural Chemistry and Molecular Biology (A. Rich and N. Davidson, eds.), pp. 115–149, W. H. Freeman and Co., San Francisco and London (1968).Google Scholar
  250. 246.
    O. H. Griffith and A. S. Waggoner, Nitroxide free radicals: spin labels for probing bio-molecular structure, Accts. Chem. Res. 2:17–24 (1969).Google Scholar
  251. 247.
    W. C. Landgraf and G. Inesi, ATP dependent conformational change in “spin labelled” sarcoplasmic reticulum, Arch. Biochem. Biophys. 130:111–118 (1969).PubMedGoogle Scholar
  252. 248.
    W. L. Hubbell and H. M. McConnell, Orientation and motion of amphiphilic spin labels in membranes, Proc. Nat. Acad. Sci. U.S. 64:20–27 (1969).Google Scholar
  253. 249.
    J. C. Hsia and L. H. Piette, Spin-labeling as a general method in studying antibody active site, Arch. Biochem. Biophys. 129:296–307 (1969).PubMedGoogle Scholar
  254. 250.
    J. C. Hsia and L. H. Piette, Spin-labeled hapten studies of structure heterogeneity and cross-reactivity of the antibody active site, Arch. Biochem. Biophys. 132:466–469 (1969).PubMedGoogle Scholar
  255. 251.
    A. J. Murphy, J. A. Duke, and L. Stowring, Synthesis of 6-mercapto-9-β-D-ribofuranosyl-purine 5’-triphosphate, a sulfhydryl analog of ATP, Arch. Biochem. Biophys. 137:297–298 (1970).PubMedGoogle Scholar
  256. 252.
    F. Jacob, Genetics of the bacterial cell, Science 152:1470–1478 (1966).PubMedGoogle Scholar
  257. 253.
    J. Dreyfuss, Characterization of a sulfate- and thiosulfate-transporting system in Salmonella typhimurium, J. Biol. Chem. 239:2292–2297 (1964).PubMedGoogle Scholar
  258. 254.
    C. F. Fox, J. R. Carter, and E. P. Kennedy, Genetic control of the membrane protein component of the lactose transport system of Eschericha coli, Proc. Nat. Acad. Sci. U.S. 57:698–705(1967).Google Scholar
  259. 255.
    F. H. Epstein, A. I. Katz, and G. E. Pickford, Sodium- and potassium-activated adenosine triphosphatase of gills: role in adaptation of teleosts to salt water, Science 156:1245–1247(1967).PubMedGoogle Scholar
  260. 256.
    L. Wofsy, H. Metzger, and S. J. Singer, Affinity labeling—a general method for labeling the active sites of antibody and enzyme molecules, Biochemistry 1:1031–1039 (1962).PubMedGoogle Scholar
  261. 257.
    H. Metzger, L. Wofsy, and S. J. Singer, Affinity labeling of the active sites of antibodies to the 2,4-dinitrophenyl hapten, Biochemistry 2:979–988 (1963).PubMedGoogle Scholar
  262. 258.
    G. Schoellmann and E. Shaw, Direct evidence for the presence of histidine in the active center of chymotrypsin, Biochemistry 2:252–255 (1963).PubMedGoogle Scholar
  263. 259.
    P. L. Whitney, G. Fölsch, P. O. Nyman, and B. G. Malmström, Inhibition of human erythrocyte carbonic anhydrase B by chloroacetyl sulfonamides with labeling of the active site, J. Biol. Chem. 242:4206–4211 (1967).PubMedGoogle Scholar
  264. 260.
    W. N. Scott, Y. E. Shamoo, and W. A. Brodsky, Carbonic anhydrase content of turtle urinary bladder mucosal cells, Biochim. Biophys. Acta 219:248–250 (1970).PubMedGoogle Scholar
  265. 261.
    A. E. Ruoho, L. E. Hokin, R. J. Hemingway, and S. M. Kupchan, Hellebrigenin 3-haloacetates : potent site-directed alkylators of transport adenosine-triphosphatase, Science 159:1354–1355(1968).PubMedGoogle Scholar
  266. 262.
    A. E. Ruoho, P. A. Meitner, and L. E. Hokin, Studies on characterization of the sodium-potassium transport adenosine-triphosphatase III. Synthesis of strophanthidin 3-[1–14C]-bromoacetate for affinity labeling of the cardiotonic steroid site, Anal. Biochem. 28:119–129 (1969).PubMedGoogle Scholar
  267. 263.
    P. K. Nakane, G. E. Nichoalds, and D. L. Oxender, Cellular localization of leucinebinding protein from Escherichia coli, Science 161:182–183 (1968).PubMedGoogle Scholar
  268. 264.
    T. L. Whiteside and M. R. J. Salton, Antibody to adenosine triphosphatase from membranes of Micrococcus lysodeikticus, Biochemistry 9:3034–3040 (1970).PubMedGoogle Scholar
  269. 265.
    M.J. Melancon, Jr., and H. F. DeLuca, Vitamin D stimulation of calcium-dependent adenosine triphosphatase in chick intestinal brush borders, Biochemistry 9:1658–1664 (1970).PubMedGoogle Scholar
  270. 266.
    H. Harris, The Principles of Human Biochemical Genetics, pp. 177–183, North-Holland, Amsterdam and London (1970).Google Scholar
  271. 267.
    B. Rennick, B. Hamilton, and R. Evans, Development of renal tubular transports of TEA and PAH in the puppy and piglet, Am. J. Physiol. 201:743–746 (1961).PubMedGoogle Scholar
  272. 268.
    J. J. Deren, H. A. Padykula, and T. H. Wilson, Development of structure and function in the mammalian yolk sac. III. The development of amino acid transport by rabbit yolk sac, Develop. Biol. 13:370–384(1966).PubMedGoogle Scholar
  273. 269.
    J. H. Butt, II, and T. H. Wilson, Development of sugar and amino acid transport by intestine and yolk sac of the guinea pig, Am. J. Physiol. 215:1468–1477 (1968).PubMedGoogle Scholar
  274. 270.
    J. Dreyfuss and A. B. Pardee, Evidence for a sulfate-binding site external to the cell membrane of Salmonella typhimurium, Biochim. Biophys. Acta 104:308–310 (1965).PubMedGoogle Scholar
  275. 271.
    A. B. Pardee, Regulation of active transport, National Cancer Inst. Monograph No. 27: 249–257 (1967).Google Scholar
  276. 272.
    R. Langridge, H. Shinagawa, and A. B. Pardee, Sulfate-binding protein from Salmonella typhimurium: physical properties, Science 169:59–61 (1970).PubMedGoogle Scholar
  277. 273.
    D. Schachter and S. M. Rosen, Active transport of Ca45 by the small intestine and its dependence on vitamin D, Am. J. Physiol. 196:357–362 (1959).PubMedGoogle Scholar
  278. 274.
    D. Schachter, S. Kowarski, J. D. Finkelstein, and R. W. Ma. Tissue concentration differences during active transport of calcium by intestine, Am. J. Physiol. 211:1131–1136 (1966).PubMedGoogle Scholar
  279. 275.
    R. H. Wasserman and F. A. Kallfelz, Vitamin D3 and unidirectional calcium fluxes across the rachitic chick duodenum, Am. J. Physiol. 203:221–224 (1962).PubMedGoogle Scholar
  280. 276.
    R. H. Wasserman, A. N. Taylor, and F. A. Kallfelz, Vitamin D and transfer of plasma calcium to intestinal lumen in chicks and rats, Am. J. Physiol. 211:419–423 (1966).PubMedGoogle Scholar
  281. 277.
    R. Eisenstein and M. Passavoy, Actinomycin D inhibits parathyroid hormone and vitamin D activity, Proc. Soc. Exp. Biol. Med. 117:77–79 (1964).PubMedGoogle Scholar
  282. 278.
    R. H. Wasserman and A. N. Taylor, Vitamin D3-induced calcium-binding protein in chick intestinal mucosa, Science 152:791–793 (1966).PubMedGoogle Scholar
  283. 279.
    R. H. Wasserman, Interaction of vitamin D-dependent calcium binding protein with lysolecithin: Possible relevance to calcium transport, Biochim. Biophys. Acta 203:176–179 (1970).PubMedGoogle Scholar
  284. 280.
    J. R. Piperno and D. L. Oxender, Amino acid-binding protein released from Escherichia coli by osmotic shock, J. Biol. Chem. 241:5732–5734 (1966).PubMedGoogle Scholar
  285. 281.
    W. R. Penrose, G. E. Nichoalds, J. R. Piperno, and D. L. Oxender, Purification and properties of a leucine-binding protein from Escherichia coli, J. Biol. Chem. 243:5921–5928 (1968).PubMedGoogle Scholar
  286. 282.
    Y. Anraku, Transport of sugars and amino acids in bacteria. I. Purification and specificity of the galactose- and leucine-binding proteins. J. Biol. Chem. 243:3116–3122 (1968).PubMedGoogle Scholar
  287. 283.
    Y. Anraku, Transport of sugars and amino acids in bacteria. II. Properties of galactose-and leucine-binding proteins, J. Biol. Chem. 243:3123–3127 (1968).PubMedGoogle Scholar
  288. 284.
    Y. Anraku, Transport of sugars and amino acids in bacteria. III. Studies on the restoration of active transport, J. Biol. Chem. 243:3128–3135 (1968).PubMedGoogle Scholar
  289. 285.
    Y. Anraku, The reduction and restoration of galactose transport in osmotically shocked cells of Escherichia coli, J. Biol. Chem. 242:793–800 (1967).PubMedGoogle Scholar
  290. 286.
    C. Haskovec and A. Kotyk, Attempts at purifying the galactose carrier from galactoseinduced baker’s yeast, Eur. J. Biochem. 9:343–347 (1969).PubMedGoogle Scholar
  291. 287.
    W. Kundig, S. Ghosh, and S. Roseman, Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system, Proc. Nat. Acad. Sci. U.S. 52:1067–1074 (1964).Google Scholar
  292. 288.
    B. Anderson, W. Kundig, R. Simoni, and S. Roseman, Further studies of carbohydrate permeases, Fed. Proc. 27 (abstract):643 (1968).Google Scholar
  293. 289.
    W. Kundig and S. Roseman, Further studies on bacterial permeases, Fed. Proc. 28 (abstract):463 (1969).Google Scholar
  294. 290.
    S. Tanaka and E. C. C. Lin, Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phosphotransferase system, Proc. Nat. Acad. Sci. U.S. 57:913–919 (1967).Google Scholar
  295. 291.
    R. D. Simoni, M. Levinthal, F. D. Kundig, W. Kundig, B. Anderson, P. E. Hartman, and S. Roseman, Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport, Proc. Nat. Acad. Sci. U.S. 58:1963–1970 (1967).Google Scholar
  296. 292.
    S. Tanaka, S. A. Lerner, and E. C. C. Lin, Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol, J. Bacteriol. 93:642–648 (1967).PubMedGoogle Scholar
  297. 293.
    C. F. Fox and G. Wilson, The role of a phosphoenolpyruvate-dependent kinase system in β-glucoside catabolism in Escherichia coli, Proc. Nat. Acad. Sci. U.S. 59:988–995 (1968).Google Scholar
  298. 294.
    W. Kundig, F. D. Kundig, B. Anderson, and S. Roseman, Restoration of active transport of glycosides in Escherichia coli by a component of a phosphotransferase system, J. Biol. Chem. 241:3243–3246 (1966).PubMedGoogle Scholar
  299. 295.
    H. R. Kaback, The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli, J. Biol. Chem. 243:3711–3724(1968).PubMedGoogle Scholar
  300. 296.
    M. M. Weiser and K. Isselbacher, Phosphoenolpyruvate-activated phosphorylation of sugars by intestinal mucosa, Biochim. Biophys. Acta 208:349–359 (1970).PubMedGoogle Scholar
  301. 297.
    J. C. Skou, The influence of some cations on an adenosine triphosphatase from peripheral nerves, Biochim. Biophys. Acta 23:394–401 (1957).PubMedGoogle Scholar
  302. 298.
    R. L. Post, C. R. Merritt, C. R. Kinsolving, and C. D. Albright, Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte, J. Biol. Chem. 235:1796–1802 (1960).PubMedGoogle Scholar
  303. 299.
    I. M. Glynn, Activation of adenosinetriphosphatase activity in a cell membrane by external potassium and internal sodium, J. Physiol. (London) 160:18P–19P (1961).Google Scholar
  304. 300.
    G. J. Siegel and R. W. Albers, Nucleoside triphosphate phosphohydrolases, in Handbook of Neuro chemistry (A. Lajtha, ed.), Vol. 4, pp. 13–44, Plenum, New York (1971).Google Scholar
  305. 301.
    W. Schoner, C. von Ilberg, R. Kramer, and W. Seubert, On the mechanism of Na+ -and K+-stimulated hydrolysis of adenosine triphosphate. I. Purification and properties of a Na+ — and K+-activated ATPase from ox brain, Eur. J. Biochem. 1:334–343 (1967).PubMedGoogle Scholar
  306. 302.
    D. W. Towle and J. H. Copenhaver, Jr., Partial purification of a soluble (Na+ + K+)-dependent ATPase from rabbit kidney, Biochim. Biophys. Acta 203:124–132 (1970).PubMedGoogle Scholar
  307. 303.
    F. Medzihradsky, M. H. Kline, and L. E. Hokin, Studies on the characterization of the sodium-potassium transport adenosinetriphosphatase. I. Solubilization, stabilization, and estimation of apparent molecular weight, Arch. Biochem. Biophys. 121:311–316 (1967).PubMedGoogle Scholar
  308. 304.
    A. Kahlenberg, N. C. Dulak, J. F. Dixon, P. R. Galsworthy, and L. E. Hokin, Studies on the characterization of the sodium-potassium transport adenosine-triphosphatase. V. Partial purification of the Lubrol-solubilized beef brain enzyme, Arch. Biochem. Biophys. 131:253–262 (1969).PubMedGoogle Scholar
  309. 305.
    M. K. Jain, A. Strickholm, and E. H. Cordes, Reconstitution of an ATP-mediated active transport system across black lipid membranes, Nature (London) 222:871–872 (1969).Google Scholar
  310. 306.
    W. R. Redwood, H. Müldner, and T. E. Thompson, Interaction of a bacterial adenosine triphosphatase with phospholipid bilayers, Proc. Nat. Acad. Sci. U.S. 64:989–996 (1969).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • H. R. Wyssbrod
    • 1
    • 2
    • 3
  • W. N. Scott
    • 1
    • 2
    • 3
  • W. A. Brodsky
    • 1
    • 2
    • 3
  • I. L. Schwartz
    • 1
    • 2
    • 3
  1. 1.The Departments of Physiology, Biophysics and OphthalmologyMount Sinai Medical and Graduate Schools of the City University of New YorkNew YorkUSA
  2. 2.The Institute for Medical Research and StudiesNew YorkUSA
  3. 3.The Medical Research CenterBrookhaven National LaboratoryUptonUSA

Personalised recommendations