Advertisement

Dissipative Transport Processes

  • William A. Brodsky
  • Adil E. Shamoo
  • Irving L. Schwartz

Abstract

The earliest concept of the plasma membrane was that of an ultrathin porous film separating two aqueous solutions in physical as well as in biological systems. In physical systems, use of the porous film model led to the development of the laws of osmotic pressure and to the laws governing the equilibrium distribution of ions across membranes. In biological systems, use of the model has accounted for some, but not for all of the data on distribution and transfer rates of materials across cell membranes. Recent developments have been concerned with the chemical architecture of biological membranes as well as the material transfers across cell membranes.

Keywords

Flux Ratio Squid Axon Phenomenological Coefficient Electrochemical Equilibrium Osmotic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Stoeckenius and D. M. Engelman, Current models for the structure of biological membranes, J. Cell. Biol. 42:613–646 (1969).PubMedCrossRefGoogle Scholar
  2. 2.
    D. Chapman, (ed.), Biological Membranes, Academic Press, New York (1968).Google Scholar
  3. 3.
    J. T. Edsall and J. Wyman, Biophysical Chemistry, Vol. 1, Academic Press (1958).Google Scholar
  4. 4.
    S. L. Miller, Production of some organic compounds under possible primitive earth conditions, J. Am. Chem. Soc. 77:2351–2361 (1955).CrossRefGoogle Scholar
  5. 5.
    J. D. Bernai, The Physical Basis of Life, Routledge and Kegan Paul, London (1951).Google Scholar
  6. 6.
    A. Katchalsky, Biological organization and thermodynamics Symposium IV. Third International Biophysics Congress, IUPAB, Cambridge, Mass. (1969).Google Scholar
  7. 7.
    T. Rosenberg, Accumulation and active transport in biological systems I. Thermodynamic considerations, Acta Chem. Scand. 2:14–33 (1948).CrossRefGoogle Scholar
  8. 8.
    F. Jacob and J. Monod, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3:318–356(1961).PubMedCrossRefGoogle Scholar
  9. 9.
    H. Davson and J. F. Danielli, The Permeability of Natural Membranes, Cambridge Univ. Press, London (1952).Google Scholar
  10. 10.
    F. O. Schmitt, R. S. Bear, and K. J. Palmer, X-ray diffraction studies on the structure of the nerve myelin sheath, J. Cell. Comp. Physiol. 18:31–41 (1941).CrossRefGoogle Scholar
  11. 11.
    J. D. Robertson, New observations on the ultrastructure of the membranes of frog peripheral nerve fibers, J. Biophys. Biochem. Cytol. 3:1043–1047 (1957).PubMedCrossRefGoogle Scholar
  12. 12a.
    J. B. Finean, The nature and stability of nerve myelin, Intern. Rev. of Cytol. 12:303–336 (1961).CrossRefGoogle Scholar
  13. 12b.
    H. Fernandez-Moran, New approaches in the study of biological ultrastructure by high resolution electron microscopy, in Symposia of the International Society for Cell Biology (R. J. C. Harris, ed.), pp. 411–428, Vol. I, Academic Press, New York (1962).Google Scholar
  14. 13.
    E. D. Korn, II. Synthesis of bis(methyl 9, 10-dihydroxy-sterate) osmate from methyl oleate and osmium tetroxide under conditions used for fixation of biological material, Biochim. Biophys. Acta 116:317–324 (1966).PubMedCrossRefGoogle Scholar
  15. 14.
    E. D. Korn, III. Modification of oleic acid during fixation of amoebae by osmium tetroxide, Biochim. Biophys. Acta 116:325–335 (1966).PubMedCrossRefGoogle Scholar
  16. 15.
    D. F. H. Wallach, Membrane lipids and the conformations of membrane proteins, in Membrane Proteins, Proc. Sympos. N.Y. Heart Association, pp. 3–26, Little, Brown and Co., Boston (1969).Google Scholar
  17. 16.
    V. Luzzati, X-ray diffraction studies of lipid-water systems, in Biological Membranes (D. Chapman, ed.), pp. 71–124, Academic Press, New York (1968).Google Scholar
  18. 17.
    D. A. Haydon and J. Taylor, The stability and properties of bimolecular lipid leaflets in aqueous solutions, J. Theoret. Biol. 4:281–296 (1963).CrossRefGoogle Scholar
  19. 18.
    E. D. Korn, Structure and function of the plasma membrane, inBiological Interfaces: Flows and Exchanges, Proc. Sympos. N.Y. Heart Assoc, pp. 257–278, Little Brown and Co., Boston (1968).Google Scholar
  20. 19.
    L. L. M. van Deenen and J. de Gier, Chemical composition and metabolism of lipids in red cells of various animals species, in The Red Blood Cell (C. Bishop and D. M. Surgenor, eds.), pp. 243–308, Academic Press, New York (1964).Google Scholar
  21. 20.
    A. B. Pardee, Membrane transport proteins, Science 162:632–637 (1968).PubMedCrossRefGoogle Scholar
  22. 21.
    P. G. LeFevre, The behavior of phospholipid-glucose complexes at hexane/aqueous interfaces, in Currents in Modern Biology, Vol. I, pp. 29–38, North Holland Publishing Co., Amsterdam (1967).Google Scholar
  23. 22.
    C. Y. Jung, J. E. Chaney, and P. G. LeFevre, Enhanced migration of glucose from water into chloroform in the presence of phospholipids, Arch. Biochem. Biophys. 126:664–676 (1968).PubMedCrossRefGoogle Scholar
  24. 23.
    P. G. LeFevre, C. Y. Jung, and J. E. Chaney, Glucose transfer by red cell phospholipids in H2O/CHC13/H2O three layer systems, Arch. Biochem. Biophys. 126:677–691 (1968).PubMedCrossRefGoogle Scholar
  25. 24.
    R. L. Post, C. R. Merritt, C. R. Kinsolving, and C. D. Albright, Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte, J. Biol. Chem. 235:1796–1802 (1960).PubMedGoogle Scholar
  26. 25.
    E. T. Dunham and I. M. Glynn, Adenosinetriphosphatase activity and the active movements of alkali metal ions, J. Physiol. (London) 156:274–293 (1961).Google Scholar
  27. 26.
    R. E. Solinger, C. F. Gonzalez, Y. E. Shamoo, H. R. Wyssbrod, and W. A. Brodsky, Effect of ouabain on ion transport mechanisms in the isolated turtle bladder, Am. J. Physiol. 215:249–261 (1968).PubMedGoogle Scholar
  28. 27.
    Y. E. Shamoo and W. A. Brodsky, The Na + K dependent adenosine triphosphatase in the isolated mucosal cells of turtle bladder, Biochim. Biophys. Acta 203:111–123 (1970).PubMedCrossRefGoogle Scholar
  29. 28.
    H. Lardy, Influence of antibiotics and cyclic polyethers on ion transport in mitochondria, Fed. Proc. 27:1278–1282 (1968).PubMedGoogle Scholar
  30. 29.
    B. C. Pressman, Ionophorous antibiotics as models for biological transport, Fed. Proc. 27:1283–1288(1968).PubMedGoogle Scholar
  31. 30.
    P. Mueller, D. O. Rudin, H. T. Tien, and W. C. Westcott, Symposium on the plasma membrane. Reconstitution of excitable cell membrane structure in vitro, Circulation 26:1167–1177(1962).CrossRefGoogle Scholar
  32. 31.
    H. T. Tien and A. L. Diana, Biomolecular lipid membranes: a review and a summary of some recent studies, Chem. Physics Lipids 2:55–101 (1968).CrossRefGoogle Scholar
  33. 32.
    D. C. Tosteson, Effect of macrocyclic compounds on the ionic permeability of artificial and natural membranes, Fed. Proc. 27:1269–1277 (1968).PubMedGoogle Scholar
  34. 33.
    G. Eisenman, S. M. Ciani, and G. Szabo, Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions, Fed. Proc. 27:1289–1305 (1968).PubMedGoogle Scholar
  35. 34.
    C. J. Pedersen, Ionic complexes of macrocyclic polyethers, Fed. Proc. 27:1305–1309 (1968)PubMedGoogle Scholar
  36. 35.
    W. D. Stein, The Movement of Molecules across Cell Membranes (Chapter 6), Academic Press, New York (1967).Google Scholar
  37. 36.
    P. Mitchell, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. 41:445–502 (1966).PubMedCrossRefGoogle Scholar
  38. 37.
    I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Chapter 4), Interscience, John Wiley and Sons, New York (1961).Google Scholar
  39. 38.
    O. Kedem, and A. Essig, Isotope flows and flux ratios in biological membranes, J. Gen. Physiol. 48:1047–1070 (1965).PubMedCrossRefGoogle Scholar
  40. 39.
    H. Davson, A Textbook of General Physiology, J. & A. Churchill Ltd., London (1964).Google Scholar
  41. 40.
    J. Dainty and B. Z. Ginzburg, The permeability of the protoplasts of Chara aus trails and Nitella translucens to methanol, ethanol and isopropanol, Biochim. Biophys. Acta 79:122–128(1964).Google Scholar
  42. 41.
    D. A. Goldstein and A. K. Solomon, Determination of equivalent pore radius for human red cells by osmotic pressure measurement, J. Gen. Physiol. 44:11–17 (1960).CrossRefGoogle Scholar
  43. 42.
    T. E. Thompson, The properties of bimolecular phospholipid membranes, in Cellular Membranes in Development (M. Locke, ed.), pp. 83–96, Academic Press, New York (1964).Google Scholar
  44. 43.
    V. W. Sidel and J. F. Hoffman, Water transport across membrane analogues, Fed. Proc. 20:137 (1962).Google Scholar
  45. 44.
    O. Kedem and A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta 27:229–246 (1958).PubMedCrossRefGoogle Scholar
  46. 45.
    O. Kedem and A. Katchalsky, A physical interpretation of the phenomenological coefficients of membrane permeability, J. Gen. Physiol. 45:143–179 (1961).PubMedCrossRefGoogle Scholar
  47. 46.
    P. F. Curran and J. R. Mcintosh, A model system for biological water transport, Nature 193:347–348(1962).PubMedCrossRefGoogle Scholar
  48. 47.
    J. E. Franck and J. E. Mayer, An osmotic diffusion pump, Arch. Biochem. 14:297–313 (1947).PubMedGoogle Scholar
  49. 48.
    W. A. Brodsky, W. S. Rehm, W. H. Dennis, and D. G. Miller, Thermodynamic analysis of the intracellular osmotic gradient hypothesis of active water transport, Science 121:302–303 (1955).PubMedCrossRefGoogle Scholar
  50. 49.
    W. J. V. Osterhout, Movements of water in cells of Nitella, J. Gen. Physiol. 32:553–557 (1949).PubMedCrossRefGoogle Scholar
  51. 50.
    W. J. V. Osterhout, Transport of water from concentrated to dilute solutions in cells of Nitella, J. Gen. Physiol. 32:559–566 (1949).CrossRefGoogle Scholar
  52. 51.
    J. M. Diamond and W. H. Bossert, Standing gradient osmotic flow. A mechanism for coupling of water and solute transport, J. Gen. Physiol. 50:2061–2081 (1967).PubMedCrossRefGoogle Scholar
  53. 52.
    J. McD. Tormey and J. Diamond, The ultrastructural route of fluid transport rabbit gall bladder, J. Gen. Physiol. 50:2031–2059 (1967).PubMedCrossRefGoogle Scholar
  54. 53.
    T. P. Schilb and W. A. Brodsky, Transient acceleration of transmural water flow by inhibition of sodium transport in turtle bladders, Amer. J. Physiol. 219:590–596 (1970).PubMedGoogle Scholar
  55. 54.
    G. Meschia and I. Setnikar, Experimental study of osmosis through a collodion membrane, J. Gen. Physiol. 42:429–444 (1958).PubMedCrossRefGoogle Scholar
  56. 55.
    T. Teorell, Transport phenomena in membranes, Discussions Faraday Soc. 21:9–26 (1956).CrossRefGoogle Scholar
  57. 56.
    H. H. Ussing, Distinction by means of tracers between active transport and diffusion. The transfer of iodide across the isolated frog skin, Acta Physiol. Scand. 19:43–56 (1949).CrossRefGoogle Scholar
  58. 57.
    A. L. Hodgkin and R. D. Keynes, The potassium permeability of a giant nerve fiber, J. Physiol. (London) 128:61–88 (1955).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • William A. Brodsky
    • 1
  • Adil E. Shamoo
    • 1
  • Irving L. Schwartz
    • 1
    • 2
  1. 1.Departments of Physiology and BiophysicsMount Sinai Medical and Graduate Schools of the City University of New YorkUSA
  2. 2.the Medical Research CenterBrookhaven National LaboratoryUptonUSA

Personalised recommendations