Advertisement

Protein Turnover

  • A. Lajtha
  • N. Marks
Chapter

Abstract

Regulation of protein composition, distribution, and metabolism in tissues is a fundamental process essential to life. Alterations in protein metabolism play a crucial role not only during the physiological functioning of the nervous system but also during cellular differentiation and during pathological changes. Although our knowledge of synthetic mechanisms is rather advanced, there is less known about mechanisms of breakdown, and nothing about how synthesis and breakdown are linked together. Knowledge of both processes is required before exact schemes for “turnover” and its regulation can be formulated. The mechanisms for degradation were discussed in our review (in this volume) and the manner in which these might be integrated with synthetic mechanisms is summarized in schematic fashion in Fig. 1.

Keywords

Protein Metabolism Protein Turnover Nerve Cell Body Brain Protein Amino Acid Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Reviews, Monographs and Symposia

  1. 1a.
    Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 1. Chemical Architecture of the Nervous System Google Scholar
  2. 1(a).
    Chap. 3, W. A. Himwich and H. Agrawal (amino acid pools). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 1. Chemical Architecture of the Nervous System Google Scholar
  3. 1(b).
    Chap. 5, S. Bogoch (proteins) and Chap. 11, Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 1. Chemical Architecture of the Nervous System Google Scholar
  4. 1(ba).
    E. G. Brunngraber (glycoproteins). Chap. 6, Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 1. Chemical Architecture of the Nervous System Google Scholar
  5. 1(bb).
    B. W. Moore (S-100). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 1. Chemical Architecture of the Nervous System Google Scholar
  6. 1(c).
    Chap. 7, D. A. Rappoport, R. R. Fritz, and J. L. Myers (nucleic acids). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 1. Chemical Architecture of the Nervous System Google Scholar
  7. 1(d).
    Chap. 3, H. Davson (cerebrospinal fluid). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 2. Structural Neuro chemistry Google Scholar
  8. 1(e).
    Chap. 5, G. Levi (spinal cord). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 2. Structural Neuro chemistry Google Scholar
  9. 1(fa).
    Chap. 6, K. A. C. Elliott and Chap. 7, Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 2. Structural Neuro chemistry Google Scholar
  10. 1(fb).
    J. A. Harvey and H. McIlwain (use of brain slices). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 2. Structural Neuro chemistry Google Scholar
  11. 1(g).
    Chap. 8, J. Altman (DNA metabolism). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 2. Structural Neuro chemistry Google Scholar
  12. 1(h).
    Chap. 9, H. Koenig, (lysosomes). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 2. Structural Neuro chemistry Google Scholar
  13. 1(ia).
    Chap. 16, G. Porcellati (peripheral nerve) and Chap. 17, Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 2. Structural Neuro chemistry Google Scholar
  14. 1(ib).
    R. Koenig (peripheral nerve-RNA). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 2. Structural Neuro chemistry Google Scholar
  15. 1(j).
    Chap. 19, S. Berl and D. D. Clarke (compartmentation). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 2. Structural Neuro chemistry Google Scholar
  16. 1(k).
    Chap. 21, B. Droz (autoradiography). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 2. Structural Neuro chemistry Google Scholar
  17. 1(l).
    Chap. 22, C. W. M. Adams (histochemistry). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 2. Structural Neuro chemistry Google Scholar
  18. 1(m).
    Chap. 5, N. Marks (peptide hydrolases). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 3. Metabolic Reactions in the Nervous System Google Scholar
  19. 1(na).
    Chap. 7, G. Guroff and W. Lovenberg; Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 3. Metabolic Reactions in the Nervous System Google Scholar
  20. 1(nb).
    Chap. 8, M. K. Gaitonde; Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 3. Metabolic Reactions in the Nervous System Google Scholar
  21. 1(nc).
    Chap. 9, C. F. Baxter and Chap. 10, Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 3. Metabolic Reactions in the Nervous System Google Scholar
  22. 1(nd).
    C. J. Van de Berg (amino acids). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 3. Metabolic Reactions in the Nervous System Google Scholar
  23. 1(o).
    Chap. 3, E. Costa and N. H. Neff (amine turnover). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 4. Control Mechanisms in the Nervous System Google Scholar
  24. 1(pa).
    Chap. 17, H. Sachs and Chap. 25, Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 4. Control Mechanisms in the Nervous System Google Scholar
  25. 1(pb).
    R. J. Wurtman (neurosecretion). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 4. Control Mechanisms in the Nervous System Google Scholar
  26. 1(qa).
    Chap. 1, S. Roberts (protein synthesis), Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 5. Metabolic Turnover in the Nervous System Google Scholar
  27. 1(qb).
    and Chap. 2, N. Marks and A. Lajtha (protein breakdown). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 5. Metabolic Turnover in the Nervous System Google Scholar
  28. 1(r).
    Chap. 9, S.-C. Cheng (tricarboxylic cycle). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 5. Metabolic Turnover in the Nervous System Google Scholar
  29. 1(s).
    Chap. 13, D. A. Rappoport, R. R. Fritz, and S. Yamagani (development). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 5. Metabolic Turnover in the Nervous System Google Scholar
  30. 1(t).
    Chap. 17, L. Sokoloff (thyroid). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 5. Metabolic Turnover in the Nervous System Google Scholar
  31. 1(u).
    Chap. 2, G. P. Talwar and U. B. Singh (excitation). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 6. Alterations of Chemical Equilibrium in the Nervous System Google Scholar
  32. 1(v).
    Chap. 6, B. W. Agranoff (memory). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 6. Alterations of Chemical Equilibrium in the Nervous System Google Scholar
  33. 1(w).
    Chap. 19, G. Porcellati (demyelination). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 6. Alterations of Chemical Equilibrium in the Nervous System Google Scholar
  34. 1(x).
    Chap. 20, D. H. Clouet (narcotics). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 6. Alterations of Chemical Equilibrium in the Nervous System Google Scholar
  35. 1(y).
    Chap. 6, E. R. Einstein (basic proteins). Handbook of Neuro chemistry (A. Lajtha, ed.), Plenum Press, New York (1969–1971). Vol. 7. Pathological Chemistry of the Nervous System Google Scholar
  36. 2(a).
    Chap. 1, S. Roberts, C. E. Zomzely, and S. C. Bondy (protein synthesis). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  37. 2(b).
    Chap. 2, N. Marks and A. Lajtha (breakdown). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  38. 2(c).
    Chap. 4, B. Droz and H. L. Koenig (localization). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  39. 2(d).
    Chap. 5, M. R. V. Murthy (development). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  40. 2(e).
    Chap. 8, B. D’Monte, N. Marks, R. K. Datta and A. Lajtha (development). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  41. 2(f).
    Chap. 9, R. Vrba and W. Cannon (turnover). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  42. 2(g).
    Chap. 10, D. Richter (turnover and function). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  43. 2(h).
    Chap. 11, E. Koenig (peripheral nerve). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  44. 2(i).
    Chap. 12, L. Austin, I. G. Morgan and J. J. Bray (peripheral nerve). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  45. 2(j).
    Chap. 13, S. Ochs (axoplasmic transport). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  46. 2(k).
    Chap. 14, F. Lipmann (slices). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  47. 2(l).
    Chap. 16, S. E. Geel and P. S. Timaras (hormones). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  48. 2(m).
    Chap. 17, S. Takahashi, N. W. Penn, A. Lajtha and M. Reiss (hormones). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  49. 2(n).
    Chap. 18, L. Sokoloff (hormones). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  50. 2(o).
    Chap. 31, G. Porcellati (Wallerian degeneration). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  51. 2(p).
    Chap. 34, E. R. Einstein and L-P Chao (EAE). Protein Metabolism of the Nervous System (A. Lajtha, ed.), Plenum Press, New York (1970).Google Scholar
  52. 3a.
    A. Lajtha, Protein metabolism of the nervous system, Int. Rev. Neurobiol. 6:1–98 (1964) andCrossRefGoogle Scholar
  53. 3b.
    A. Lajtha, Alterations and pathology of cerebral protein metabolism, Int. Rev. Neurobiol. 7:1–40(1964).CrossRefGoogle Scholar
  54. 4(a).
    Chap. 1, H. N. Munro (historical concepts of turnover). Vol. 1 Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Academic Press, New York (1964–1970).Google Scholar
  55. 4(b).
    Chap. 7, A. Neuberger and F. F. Richards (turnover in whole animals). Vol. 1 Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Academic Press, New York (1964–1970).Google Scholar
  56. 4(c).
    Chap. 11, J. B. Allison and J. W. C. Bird (nitrogen excretion). Vol. 1 Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Academic Press, New York (1964–1970).Google Scholar
  57. 4(d).
    Chap. 26, S. A. Miller (development). Vol. 3 Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Academic Press, New York (1964–1970).Google Scholar
  58. 4(e).
    H. N. Munro (mechanisms of synthesis). Vol. 4 Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Academic Press, New York (1964–1970).Google Scholar
  59. 4(f).
    Chap. 31, F. T. Kenney (hormonal regulation). Vol. 4 Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Academic Press, New York (1964–1970).Google Scholar
  60. 4(g).
    Chap. 32, R. T. Schimke (regulation of breakdown). Vol. 4 Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Academic Press, New York (1964–1970).Google Scholar
  61. 4(h).
    Chap. 34, H. N. Munro (pools). Vol. 4 Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Academic Press, New York (1964–1970).Google Scholar
  62. 4(i).
    Chap. 36, R. J. Wurtman (diurnal rhythms).Vol. 4 Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Academic Press, New York (1964–1970).Google Scholar
  63. 5.
    S. S. Oja, Studies on protein metabolism in developing rat brain. Ann. Acad. Sci. Fenn. 131 (5A) 7–78 (1967).Google Scholar
  64. 6.
    R. Friede, Topographic Brain Chemistry. Academic Press, New York (1966).Google Scholar
  65. 7.
    Cellular Dynamics of the Neuron (S. H. Barondes, ed.), Academic Press, New York (1969).Google Scholar
  66. 7(a).
    B. Droz and H. L. Koenig (turnover in axons). Cellular Dynamics of the Neuron (S. H. Barondes, ed.), Academic Press, New York (1969).Google Scholar
  67. 7(c).
    A. Edström (peripheral nerve-RNA). Cellular Dynamics of the Neuron (S. H. Barondes, ed.), Academic Press, New York (1969).Google Scholar
  68. 7(d).
    H. Hydén and P. W. Lange (S-100 behavior). Cellular Dynamics of the Neuron (S. H. Barondes, ed.), Academic Press, New York (1969).Google Scholar
  69. 7(e).
    S. H. Barondes (sites of synthesis). Cellular Dynamics of the Neuron (S. H. Barondes, ed.), Academic Press, New York (1969).Google Scholar
  70. 8.
    R. Schoenheimer, The Dynamic State of Body Constituents. Harvard University Press, Cambridge, Mass.Google Scholar
  71. 9.
    R. T. Schimke and D. Doyle, Control of enzyme levels in animal tissues, Ann. Rev. Biochem. 39:929–976(1970).PubMedCrossRefGoogle Scholar
  72. 10a.
    D. Richter, Factors influencing the protein metabolism of the brain, Brit. Med. Bull. 21:76–80 (1965)PubMedGoogle Scholar
  73. 10b.
    D. Richter, Factors influencing the protein metabolism of the brain, and in Neurochemistry, 2nd ed., pp. 276–287, (1965)Google Scholar
  74. 10c.
    D. Richter, Factors influencing the protein metabolism of the brain, C. C. Thomas, Springfield, 111. (1962).Google Scholar
  75. 11.
    Macromolecules and the Function of the Neuron, Z. Lodin and S. P. R. Rose, eds. (a) B. Schultze and P. Kleihaus (turnover in vivo) p. 42. (b) A. Edstrom and J.-E. Edstrom (spinal cord RNA) p. 103. (c) E. Koenig (peripheral nerve), p. 121. (d) B. Jakoubek and E. Gutmann (turnover in spinal cord), (e) S. P. R. Rose (visual changes).Google Scholar
  76. 12a.
    H. R. Mahler (turnover in synapses), Advances in Biochemical Psychopharmacology (E. Costa and P. Greengard, eds), 1969–1970. p. 27. Vols. 1,2,Google Scholar
  77. 12(b).
    M. W. Gordon and G. C. Deanin (mitochondria), Advances in Biochemical Psychopharmacology (E. Costa and P. Greengard, eds), 1969–1970. p. 165. Vol. 2,Google Scholar
  78. 12(c).
    E. Costa (turnover models), Advances in Biochemical Psychopharmacology (E. Costa and P. Greengard, eds), 1969–1970. p. 169.Google Scholar
  79. 12(d).
    P. F. Davison (neurofilaments), Advances in Biochemical Psychopharmacology (E. Costa and P. Greengard, eds), 1969–1970.Google Scholar
  80. 12(e).
    E. Koenig (peripheral nerve), Advances in Biochemical Psychopharmacology (E. Costa and P. Greengard, eds), 1969–1970.Google Scholar
  81. 12(f).
    H. Hydén and P. W. Lange (behavior), Vol. 3.Advances in Biochemical Psychopharmacology (E. Costa and P. Greengard, eds), 1969–1970.Google Scholar
  82. 12(g).
    P. Greengard and J. F. Kuo (phosphorylation of histones-cyclic AMP). Advances in Biochemical Psychopharmacology (E. Costa and P. Greengard, eds), 1969–1970.Google Scholar
  83. 13.
    Developmental Neurobiology (W. A. Himwich, ed.). (a) J. Dobbing (nutrition), p. 241. (b) H. C. Agrawal and W. A. Himwich (amino acids).Google Scholar
  84. 14.
    G. Ungar, Excitation. C. C. Thomas, Springfield, Ill. (1963).Google Scholar
  85. 15.
    Symposia. Molecular Mechanisms in Memory and Learning. (G. Ungar, ed.) and Biochemistry of Brain and Behavior (R. E. Bowman and S. P. Datta, eds.), Plenum Press, New York (1970).Google Scholar
  86. 16.
    Symposia. (a) Biochemical mechanisms involved in regeneration, Fed. Proc. 29:1429–1460, P. J. Fitzgerald (mechanisms), V. G. Allfrey (genes); (b) Nutrition and cell development, Fed. Proc. 29:1489–1521. (a) S. A. Miller (neonatal aspects), M. Winnick (nerve-cell growth), and (c) Regeneration and Related Problems (V. Kiortsis and H. A. L. Thampusch, ed.), North-Holland, Amsterdam (1964).Google Scholar
  87. 17.
    H. Mcllwain, Biochemistry of the Central Nervous System. Little Brown, Boston (1966).Google Scholar
  88. 18.
    S. Bogoch, The Biochemistry of Memory, Oxford University Press (1968).Google Scholar
  89. 19.
    C. W. M. Adams, ed., Neurohistochemistry, Elsevier, Amsterdam (1965).Google Scholar
  90. 20(a).
    B. I. Roots and P. V. Johnston (neurons and glia). Methods in the Neurosciences, Vol. 1 (N. Marks and R. Rodnight, eds.), Plenum Press, New York (1972).Google Scholar
  91. 20(b).
    W. Norton (neurons and glia-bulk separation), Methods in the Neurosciences, Vol. 1 (N. Marks and R. Rodnight, eds.), Plenum Press, New York (1972).Google Scholar
  92. 20(c).
    B. S. McEwen and R. E. Zigmond (nuclei), Methods in the Neurosciences, Vol. 1 (N. Marks and R. Rodnight, eds.), Plenum Press, New York (1972).Google Scholar
  93. 20(d).
    S. R. Cohen (tissue spaces), Methods in the Neurosciences, Vol. 1 (N. Marks and R. Rodnight, eds.), Plenum Press, New York (1972).Google Scholar
  94. 20(e).
    M. Spohn and A. N. Davison (myelin), Methods in the Neurosciences, Vol. 1 (N. Marks and R. Rodnight, eds.), Plenum Press, New York (1972).Google Scholar
  95. 20(f).
    M. Shelanski (neurotubules). Methods in the Neurosciences, Vol. 1 (N. Marks and R. Rodnight, eds.), Plenum Press, New York (1972).Google Scholar
  96. 20(g).
    L. Eng (proteolipids). Methods in the Neurosciences, Vol. 1 (N. Marks and R. Rodnight, eds.), Plenum Press, New York (1972).Google Scholar
  97. 21.
    D. B. Roodyn and D. Wilke, The Biogenesis of Mitochondria. Methuen, London (1968).Google Scholar
  98. 22.
    H. Hydén, Protein metabolism in the nerve cell during growth and function, Acta Physiol. Scand. Suppl. 17:5–136 (1943).Google Scholar
  99. 23.
    H. Waelsch and H. Weil-Malherbe, Neurochemistry and psychiatry, in Psychiatrie der Gegenwart, Forschung und Praxis, 1B:1–96 (1964).Google Scholar
  100. 24.
    H. Waelsch and A. Lajtha, Protein metabolism in the nervous system, Physiol. Revs. 41:709–736(1961).Google Scholar
  101. 25.
    Problems of the Biochemistry of the Nervous System (A. V. Palladin, ed.), Pergamon Press, 1964, pp. 3–26 (turnover).Google Scholar
  102. 26.
    Symposia, Endogenous metabolism with special reference to bacteria, Ann. N. Y. Acad. Sci. 102:515–793. (a) R. T. Schimke, M. B. Brown, and E. T. Smallman (arginase), p. 587. (b) J. Mandelstam (turnover), p. 621.Google Scholar
  103. 27.
    Biomathematics: (a) J. M. Reiner, The Organism as an Adaptive Control System. Prentice-Hall, New York (1968).Google Scholar
  104. 27(b).
    D. S. Riggs, Control Theory and Physics of Feedback Mechanisms. Williams and Wilkins, Baltimore (1970).Google Scholar
  105. 27(c).
    E. Wolstenholme and J. Knight, Homeostatic Regulators. J. A. Churchill, London (1969).CrossRefGoogle Scholar
  106. 27(d).
    J. M. Smith, Mathematical Ideas in Biology. Cambridge University Press, 1968.CrossRefGoogle Scholar
  107. 27(e).
    Symposium, Protein levels and turnover, in Protides of the Biological Fluids (E. H. Peeters, ed.), pp. 211–245, Elsevier, Amsterdam (1967).Google Scholar
  108. 28.
    Neuroscience Research Bulletin, Symposia on axoplasmic flow 5:309–416(1967), 6:115–216 (1968), Synaptic function 8:327–450 (1970). See also Neurosciences Research Symposium Summaries, Vols. 1–3, M.I.T. Press, Cambridge, Mass. (1969–1970).Google Scholar
  109. 29.
    The Neurosciences: First and Second Study Program (F. O. Schmitt, ed.). The Rockefeller Univ. Press, New York (1967, 1970).Google Scholar

General References

  1. 30.
    J. Mandelstam, The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation, Bacteriol. Rev. 24:284–308 (1960).Google Scholar
  2. 31.
    N. S. Willets, Intracellular protein breakdown in non-growing cells of E. coli, Biochem. J. 103:453–466(1967).Google Scholar
  3. 32a.
    M. J. Pine, Response of intracellular proteolysis to alteration of bacterial protein and implications in metabolic regulation, Bacteriol. 93:1527–1533 (1967);Google Scholar
  4. 32b.
    M. J. Pine, and Intracellular breakdown in the LI2IO ascites leukemia, Cancer Res. 27:522–525 (1967).PubMedGoogle Scholar
  5. 33.
    K. Nath and A. L. Koch, Protein degradation in E. coli, J. Biol. Chem. 245:2889–2900 (1970).Google Scholar
  6. 34.
    A. L. Goldberg, A role of amino-tRNA in the regulation of protein breakdown in E. coli, Proc. Nat. Acad. Sci. 68:362–366 (1971).PubMedCrossRefGoogle Scholar
  7. 35.
    D. L. Buchanan, Total carbon turnover measured by feeding a uniformly labeled diet, Arch. Biochem. Biophys. 94:500–511 (1961).CrossRefGoogle Scholar
  8. 36.
    R. Swick, Measurement of protein turnover in rat liver, J. Biol. Chem. 231:751–764 (1958).PubMedGoogle Scholar
  9. 37.
    A. L. Koch, Evaluation of the rates of biological processes from tracer kinetic data, J. Theoret. Biol. 3:283–303 (1962).CrossRefGoogle Scholar
  10. 38.
    R. T. Schimke, The importance of both synthesis and degradation in the control of arginase levels in rat liver, J. Biol. Chem. 239; 3808–3817 (1964).PubMedGoogle Scholar
  11. 39a.
    F. T. Kenny, Induction of tyrosine-α-ketoglutarate transaminase in rat liver, J. Biol. Chem. 237:3495–3498 (1962),Google Scholar
  12. 39b.
    and F. T. Kenny, Turnover of rat liver tyrosine transaminase: Stabilization after inhibition of protein synthesis, Science 156:525–527 (1967).CrossRefGoogle Scholar
  13. 40a.
    R. T. Schimke, E. W. Sweeney, and C. M. Berlin, The roles of synthesis and degradation in the control of rat liver tryptophan pyrrolase, J. Biol. Chem. 240:322–331;Google Scholar
  14. 40b.
    and Studies of the stability in vivo and in vitro of rat liver tryptophan pyrrolase, J. Biol. Chem. 240:4609–4620 (1965).Google Scholar
  15. 41.
    B. Poole, F. Leighton, and C. deDuve, The synthesis and turnover of rat liver peroxisomes, J. Cell. Biol. 41:536–546 (1969).PubMedCrossRefGoogle Scholar
  16. 42.
    J. P. Jost, E. A. Khairallah, and H. C. Pitot, Studies on the induction and repression of enzymes, J. Biol. Chem. 243:3057–3066 (1968).PubMedGoogle Scholar
  17. 43.
    B. D’Monte, P. Mela, and N. Marks, Turnover of myelin, Eur. J. Biochem. (in preparation) (1971).Google Scholar
  18. 44.
    J. M. Phang, G. A. M. Finerman, B. Singh, L. E. Rosenberg, and M. Berman, Compart-mental analysis of collagen synthesis in fetal rat calvada, Biochim. Biophys. Acta 230: 146–159(1971).PubMedCrossRefGoogle Scholar
  19. 45.
    D. H. Clouet and A. Neidle, The effect of morphine on the transport and metabolism of intracisternally injected Leu in the rat, J. Neurochem. 17:1069–1074 (1970).PubMedCrossRefGoogle Scholar
  20. 46.
    B. Sadasivudu and A. Lajtha, Metabolism of amino acids in incubated slices of mouse brain, J. Neurochem. 17:1299–1311 (1970).PubMedCrossRefGoogle Scholar
  21. 47.
    Y. V. Belik and L. S. Krachko, Intensity of methionine 35S incorporation into the nuclear and cytoplasmic proteins of cat brain tissue, UKr. J. Biochem. 31:322–329 (1959).Google Scholar
  22. 48.
    R. T. Schimke, R. Gauschow, D. Doyle, and I. M. Arias, Regulation of protein turnover in mammalian tissues, Fed. Proc. 27:1223–1230 (1968).PubMedGoogle Scholar
  23. 49.
    I. M. Arias, D. Doyle, and R. T. Schimke, Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver, J. Biol. Chem. 244:3303–3315 (1969).PubMedGoogle Scholar
  24. 50.
    J. C. Warterlow and J. M. L. Stephen, Diet and turnover of liver and muscle protein, Clin. Sci. 35:287–305 (1968).Google Scholar
  25. 51.
    P. J. Garlick, Turnover rate of muscle protein measured by constant intravenous infusion of 14C-Gly, Nature 223:61–62 (1969).PubMedCrossRefGoogle Scholar
  26. 52.
    R. W. Swick, A. K. Rexroth, J. L. Strange, The metabolism of mitochondrial proteins: III. The dynamic state of rat liver mitochondria, J. Biol. Chem. 243:3581–3587 (1968).PubMedGoogle Scholar
  27. 53.
    J. B. Balinsky, G. E. Shambaugh, and P. P. Cohen, Glutamate, dehydrogenase biosynthesis in amphibian liver preparations, J. Biol. Chem. 245:128–137 (1970).PubMedGoogle Scholar
  28. 54.
    N. Marks, R. K. Datta, and A. Lajtha, Partial purification of brain arylamidases and amino-peptidases, J. Biol. Chem. 243:2882–2889 (1968).PubMedGoogle Scholar
  29. 55.
    C. Voit, Z. Biol. 2:307 (1866) (see ref 4a).Google Scholar
  30. 56.
    O. Folin, A theory of protein metabolism, Am. J. Physiol. 13:117–138 (1905).Google Scholar
  31. 57.
    H. Borsook and G. L. Keighley, The “continuing” metabolism of nitrogen in animals, Proc. Roy. Soe. (Lond.). B. 118:488–521 (1935).CrossRefGoogle Scholar
  32. 58.
    F. Friedberg and D. M. Greenberg, Partition of intravenously administered amino acids in blood and tissues, J. Biol. Chem. 168:411–413 (1947).PubMedGoogle Scholar
  33. 59.
    H. Tarver and L. M. Morse, The release of the sulfur from tissues of rats fed labeled methionone, J. Biol. Chem. 173:53–61 (1948).PubMedGoogle Scholar
  34. 60.
    H. Borsook and C. L. Deasy, The metabolism of proteins and amino acids, Ann. Rev. Biochim. 20:209–226 (1951).CrossRefGoogle Scholar
  35. 61.
    F. Friedberg, H. Tarver, and D. M. Greenberg, The distribution pattern of sulfur-labeled methionine in the protein and the free amino acid fraction of tissues after intravenous administration, J. Biol. Chem. 190:39–53 (1948).Google Scholar
  36. 62.
    D. M. Greenberg, F. Friedberg, M. P. Schulman, and T. Winnick, Studies on the mechanism of protein synthesis with radioactive carbon-labeled compounds, Cold. Spr. Harb. Symp. Quant. Biol. 13:113–117 (1948).CrossRefGoogle Scholar
  37. 63.
    M. K. Gaitonde and D. Richter, The metabolic activity of the proteins of the brain, Proc. Roy. Soe. 145:83–99(1956).CrossRefGoogle Scholar
  38. 64.
    A. Lajtha, S. Furst, A. Gerstein, and H. Waelsch, Amino acid and protein metabolism of the brain. I. Turnover of free and protein bound lysine in brain and other organs, J. Neuroehem. 1:289–300 (1957).CrossRefGoogle Scholar
  39. 65.
    A. Niklas, E. Quincke, W. Maurer, and H. Neyen, Messung der Neubildungsraten und biologischen Halbwertzeiten des Eiweisses einzelner Organe und Zellgruppen bei der Ratte, Biochem. Z. 330:1–20 (1958).PubMedGoogle Scholar
  40. 66a.
    B. Schultze, W. Oehlert, and W. Maurer, Vergleichende autoradiographische Untersuchung mit 3H, 14C und 35S markierten Aminosäuren zur Grösse des Eiweisstoffwechsels einzelner Gewebe und Zellarten bei Maus, Ratte und Kaninchen, Beitr. Path. Anat. 120:58–84 (1959)Google Scholar
  41. 66b.
    B. Schultze, W. Oehlert, and W. Maurer, Vergleichende autoradiographische Untersuchung mit 3H, 14C und 35S markierten Aminosäuren zur Grösse des Eiweisstoffwechsels einzelner Gewebe und Zellarten bei Maus, Ratte und Kaninchen, Beitr. Path. Anat. and 122:406–431 (1960).Google Scholar
  42. 67a.
    R. S. Piha, R. M. Bergström, A. J. Uusitalo, and S. S. Oja, Studies in the metabolism of brain proteins I and II, Ann. Med. Exp. Fenn. 41:485–497 and 498–515 (1963).PubMedGoogle Scholar
  43. 67b.
    R. S. Piha, R. M. Bergström, A. J. Uusitalo, and S. S. Oja, Studies in the metabolism of brain proteins I and II, Ann. Med. Exp. Fenn. 41:485–497 and 498–515 (1963).PubMedGoogle Scholar
  44. 68.
    K. von Hungen, H. R. Mahler, and W. J. Moore, Turnover of protein and ribonucleic acid in synaptic subcellular fractions from rat brain, J. Biol. Chem. 243:1415–1423 (1968).Google Scholar
  45. 69.
    R. Lim and B. W. AgranofT, Protein metabolism in goldfish brain, J. Neuroehem. 16:431–445(1969).CrossRefGoogle Scholar
  46. 70.
    R. C. Thompson and J. E. Bailou, Studies of metabolic turnover with tritium as a tracer. V. The predominately non-dynamic state of body constituents in the rat, J. Biol. Chem. 223:795–809(1956).PubMedGoogle Scholar
  47. 71.
    A. A. Khan and J. E. Wilson, Studies of turnover in mammalian subcellular particles: brain nuclei, mitochondria and microsomes, J. Neuroehem. 12:81–86 (1965).CrossRefGoogle Scholar
  48. 72.
    E. Klika and Z. Lodin, The incorporation of 35Met in the meninges and CNS of cats, Acta Histochem. 10:198–209 (1960).PubMedGoogle Scholar
  49. 73.
    D. H. Ford, Changes in brain accumulation of amino acids and adenine associated with changes in the physiological state, in Brain-Barrier Systems (A. Lajtha and D. H. Ford, eds.), Prog. in Brain Res. 29:401–415 (1968).CrossRefGoogle Scholar
  50. 74a.
    F. T. Mérei and F. Gallyas, Quantitative determination of the uptake of Met-35S in different regions of the normal rat brain, J. Neurochem. 11:251–256 and 265–270 (1964).PubMedCrossRefGoogle Scholar
  51. 74b.
    F. T. Mérei and F. Gallyas, Quantitative determination of the uptake of Met-35S in different regions of the normal rat brain, J. Neurochem. 11: and 265–270 (1964).PubMedCrossRefGoogle Scholar
  52. 75a.
    J. Altman and G. D. Das, Autoradiographic and histological studies, Anat. Rec. 148:535–546 (1964),PubMedCrossRefGoogle Scholar
  53. 75b.
    J. Altman and G. D. Das, Autoradiographic and histological studies and J. Comp. Neuro. 124:319–336 (1965),CrossRefGoogle Scholar
  54. 75c.
    J. Altman and G. D. Das, Autoradiographic and histological studies and J. Comp. Neuro. 126:337–390 (1966).CrossRefGoogle Scholar
  55. 76a.
    R. J. Schain, M. J. Carver, J. H. Cophenhaver, Postnatal changes in protein metabolism of brain, Pediat Res. 3:135–139 (1965)CrossRefGoogle Scholar
  56. 76b.
    and with N. R. Underdahl, Science 156:984–985 (1967).PubMedCrossRefGoogle Scholar
  57. 77.
    J. M. Reiner, The study of metabolic turnover rates by means of isotopic tracers. II. Turnover in a simple reaction system, Arch. Biochem. 46:80–90 (1953).PubMedCrossRefGoogle Scholar
  58. 78.
    S. Furst, A. Lajtha, and H. Waelsch, Amino acid and protein metabolism of the brain—III, J. Neurochem. 2:216–225 (1958).PubMedCrossRefGoogle Scholar
  59. 79.
    H. Rahmann, Zum Stofftransport im Zentralnervensystem der Vertebraten, Z. f. Zellforsch. 66:878–890(1965).CrossRefGoogle Scholar
  60. 80.
    L. F. Pantchenko, Protein turnover at various levels of the CNS and in the liver in growing and adult animals, J. Physiol (U.R.S.S.) 44:243–248 (1958).Google Scholar
  61. 81.
    N. Marks, Some neurochemical correlates of axoplasmic flow, Dis. Nerv. System 31:1–13 (1970).Google Scholar
  62. 82.
    N. Marks, R. K. Datta, and A. Lajtha, Distribution of amino acids and exo- and endo-peptidases along vertebrate and invertebrate nerves, J. Neurochem. 17:53–63 (1970).PubMedCrossRefGoogle Scholar
  63. 83.
    I. M. Korr, P. N. Wilkinson, and F. W. Chomock, Axonal delivery of neuroplasmic components to muscle cells, Science 155:343–345 (1967).CrossRefGoogle Scholar
  64. 84.
    G. Koya and R. L. Friede, Segmental incorporation of Leu-3H in rat spinal cord, J. Anat. 105:47–57(1969).PubMedGoogle Scholar
  65. 85.
    G. S. L. Appeltauer and E. E. A. Saa, Incorporation of Lys-14C into spinal roots, spinal ganglia and peripheral nerves of the rat, Exper. Neurol. 14:484–495 (1966).CrossRefGoogle Scholar
  66. 86.
    A. Globus, H. D. Lux, and P. Shubert, Somadendritic spread of intracellular injected tritiated glycine in cat spinal motoneurons, Brain Res. 11:440–445 (1968).PubMedCrossRefGoogle Scholar
  67. 87.
    E. Edström and J. Sjöstrand, Protein synthesis in the isolated Mauthner or nerve fibre of goldfish, J. Neurochem. 16:67–81 (1969).PubMedCrossRefGoogle Scholar
  68. 88.
    A. Edström, Amino acid incorporation in isolated Mauthner nerve fibre components, J. Neurochem. 13:315–321 (1966).CrossRefGoogle Scholar
  69. 89.
    R. Sammeck and R. O. Brady, Differential metabolism of myelin basic proteins in various regions of the CNS, Trans. Amer. Soc. Neurochem. 2:104 (1971).Google Scholar
  70. 90.
    W. Tourtellotte, On cerebrospinal fluid immunoglobulin-G (lgG) quotients in multiple sclerosis and other diseases (A review and a new formula to estimate the amount of lgG synthesized per day by the CNS), J. Neurol. Sci. 10:279–304 (1970).PubMedCrossRefGoogle Scholar
  71. 91.
    J. Clausen, J. Matzke, and W. Gerhardt, Agar-gel micro-electrophoresis of proteins in the CSF: normal and pathological findings. Acta. Neurol. Scand. 40:Suppl. 10:49–56 (1964).CrossRefGoogle Scholar
  72. 92a.
    C. E. Lumsden, The proteins of the c.s.f. in MS in Multiple Sclerosis: A Reappraisal (D. McAlpine, C. E. Lumsden, and E. D. Acheson, eds.), pp. 352–399, and 345–380. E. and S. Livingstone, Edinburgh (1965).Google Scholar
  73. 92b.
    C. E. Lumsden, The proteins of the c.s.f. in MS in Multiple Sclerosis: A Reappraisal (D. McAlpine, C. E. Lumsden, and E. D. Acheson, eds.), pp. 345–380. E. and S. Livingstone, Edinburgh (1965).Google Scholar
  74. 93.
    G. M. Hochwald, Influx of serum proteins and their concentration in spinal fluid along the neuraxis, J. Neurol. Sci. 10:269–278 (1970).PubMedCrossRefGoogle Scholar
  75. 94.
    R. W. P. Cutler, G. V. Walters, and J. P. Hammerstad, The origin and turnover rates of c.s.f. albumin and γ-globulin in man, J. Neurol. Sci. 10:259–268 (1970).PubMedCrossRefGoogle Scholar
  76. 95.
    R. A. Menzies and P. H. Gold, The turnover of mitochondria in a variety of tissues of young adult and aged rats, J. Biol Chem. 246:2425–2429 (1971).PubMedGoogle Scholar
  77. 96.
    A. Lajtha and N. Marks, Dynamics of protein metabolism of the nervous system, in The Future of the Brain Sciences (S. Bogoch, ed.), Plenum Press, New York (1969).Google Scholar
  78. 97.
    H. Koenig and B. Rich, An autoradiographic study of nucleic acid and protein turnover in the mammalian neuraxis, J. Biophys. Biochem. Cytol. 4:785–792 (1958).PubMedCrossRefGoogle Scholar
  79. 98.
    I. D. Frantz, R. B. Lotfield, and W. W. Miller, Incorporation of 14C from carboxyl-labeled DL-Ala into the proteins of liver slices, Science 106:544–545 (1947).PubMedCrossRefGoogle Scholar
  80. 99.
    O. Lindan, J. H. Quastel, and S. Sved, Biochemical studies on chlorpromazine. 2. Effects on incorporation into proteins and breakdown of Gly-14C by isolated rat brain cortex, Canad. J. Biochem. 35:1145–1150 (1957).PubMedCrossRefGoogle Scholar
  81. 100.
    F. Orrego and F. Lipmann, Protein synthesis in brain slices. Effects of electrical stimulation and acidic amino acids, J. Biol. Chem. 242:665–671 (1967).PubMedGoogle Scholar
  82. 101.
    L. C. Mokrasch and P. Manner, Incorporation of 14C-amino acid and 14C-palmitate into proteolipids of rat brains in vitro, J. Neurochem. 10:541–547 (1963).CrossRefGoogle Scholar
  83. 102.
    J. Folbergrova, Incorporation of labeled amino acids into the proteins of brain cortex slices in vitro in the presence of other non-radioactive amino acids, J. Neurochem. 13:553–562 (1966).PubMedCrossRefGoogle Scholar
  84. 103.
    T. Tursky, J. Krizko, L. Halcak, and M. Brechtlova, Effects of psychopharmacological agents on brain metabolism—I. Effect of imiprimaine and prothiadene upon incorporation of L-Phe into protein and lipids of brain slices, Biochem. Pharmacol. 14:1645–1649 (1965).PubMedCrossRefGoogle Scholar
  85. 104.
    J. Järnefelt and M. O. Huttunen, Synthesis of protein and nucleic acids in brain cortex slices, in Regulatory Functions of Biological Membranes (J. Järnefelt, ed.), B.B.A. Library 11:208–215, Elsevier, Amsterdam (1968).Google Scholar
  86. 105.
    C. Prives and J. H. Quastel, Effect of stimulation in biosynthesis of nucleotides and RNA in brain slices in vitro, Biochim. Biophys. Acta 182:285–294 (1969).PubMedCrossRefGoogle Scholar
  87. 106.
    M. O. Huttonen, Protein and ribonuclei acid metabolism in rat brain cortex slices, Thesis, University of Helsinki, Finland (1969).Google Scholar
  88. 107.
    D. Dunlop, W. Van Elden, and A. Lajtha, Protein synthesis in rat brain slices, J. Neurochem. (in preparation).Google Scholar
  89. 108.
    F. Lipmann, Effect of electrical and chemical stimulation on protein synthesis in brain slices, in Protein Metabolism of the Nervous System (A. Lajtha, ed.), pp. 305–312, Plenum Press, New York (1970).CrossRefGoogle Scholar
  90. 109.
    C. T. Jones and P. Banks, The effect of electrical stimulation on the incorporation of C-[U-14C] valine into protein of chopped tissue from guinea-pig cerebral cortex, Biochem. J. 118:791–800 (1970).PubMedGoogle Scholar
  91. and 801–812 (1970).PubMedGoogle Scholar
  92. 110.
    Y. Takahashi and Y. Akabane, Protein metabolism of rat brain slices, Canad. J. Biochem. 38:1149–1157(1960).PubMedCrossRefGoogle Scholar
  93. 111.
    K. Mase, Y. Takahashi, and K. Ogata, The incorporation of [14C] Glycine into the protein of guinea-pig slices, J. Neurochem. 9:281–288 (1962).CrossRefGoogle Scholar
  94. 112.
    C. Blomstrand, Effect of hypoxia on protein metabolism in neuron- and neuroglia cell-enriched fractions from rabbit brain, Exper. Neurol. 29:175–188 (1970).CrossRefGoogle Scholar
  95. 113.
    M. Chvapil, J. Hurych, and E. Mirejovská, Effect of long term hypoxia on protein synthesis in granuloma and in some organs in rats, Proc. Exper. Biol. Med. 135:613–617(1970).Google Scholar
  96. 114.
    A. W. Brown and J. B. Brierley, The nature, distribution and earliest stages of anoxic-ischemic nerve cell damage in rat brain as defined by the optical microscope, Brit. J. Exp. Pathol. 159:87–106(1968).Google Scholar
  97. 115.
    B. Jakoubek, B. Semiginovsky, M. Kraus, and R. Erdossova, The alteration of protein metabolism of brain cortex induced by anticipation stress and ACTH, Life Sci. 9:1169 – 1179(1970).CrossRefGoogle Scholar
  98. 116.
    D. M. Kipnis, E. Reiss, and E. Helmreich, Functional heterogeneity of the intracellular amino acid pool in mammalian cells, Biochim. Biophys. Acta 51:519–524 (1961).PubMedCrossRefGoogle Scholar
  99. 117.
    M. J. Clemens and A. Korner, Amino acid requirement for the growth hormone stimulation of incorporation of precursors into protein and nucleic acid of liver slices, Biochem. J. 119:629–634(1970).PubMedGoogle Scholar
  100. 118.
    S. Roberts and B. S. Morelos, Regulation of cerebral metabolism of amino acids—IV. J. Neurochem. 12:373–387 (1965).PubMedCrossRefGoogle Scholar
  101. 119.
    R. C. Hider, E. B. Fern, and D. R. London, Relationship between intracellular amino acids and protein synthesis in the extensor digitorum longus muscle of rats, Biochem. J. 114:171–178(1969);PubMedGoogle Scholar
  102. 119.
    121:817–827(1971).PubMedGoogle Scholar
  103. 120.
    F. H. Portujal, D. H. Elowyn, and H. Jeffay, Free lysine compartments in rat liver cells, Biochim. Biophys. Acta 215:339–347 (1970).CrossRefGoogle Scholar
  104. 121.
    N. A. Peterson and C. M. McKean, The effects of individual amino acids on the incorporation of labeled amino acids into protein by brain homogenates, J. Neurochem. 16:1211–1217(1969).PubMedCrossRefGoogle Scholar
  105. 122.
    B. M. Hanking and S. Roberts, Stimulation of protein synthesis in vitro by elevated levels of amino acids, Biochim. Biophys. Acta 104:427–438 (1965).PubMedCrossRefGoogle Scholar
  106. 123.
    J. P. Roscoe, M. D. Eaton, and G. Chin Choy, Inhibition of protein synthesis in Krebs 2 Ascites cells and cell-free systems by Phe and its effect on Leu and Lys in the amino acid pool, Biochem. J. 109:507–514(1968).PubMedGoogle Scholar
  107. 124.
    L. S. Jefferson and A. Korner, Influence of amino acid supply on ribosomes and protein synthesis of prefused rat liver, Biochem. J. 104:826–832 (1967) andPubMedGoogle Scholar
  108. 111:703–712 (1969).PubMedGoogle Scholar
  109. 125.
    H. C. Agrawal, A. H. Bone, and A. N. Davison, Effect of Phe on protein in the developing rat brain, Biochem. J. 117:325–331 (1970).PubMedGoogle Scholar
  110. 126.
    E. Raghupathy, N. A. Peterson, and C. M. McKean, Effects of phenothiazines on in vitro cerebral protein synthesis, 19:993–1000 (1970).Google Scholar
  111. 127.
    N. Abadom, K. Ahmed, and P. G. Scholefield, Biochemical studies of tofranil, Canad. J. Biochem. Physiol. 39:551 (1961).PubMedCrossRefGoogle Scholar
  112. 128.
    S. Navon and A. Lajtha, Uptake of morphine in particular fractions from rat brain, Brain Res., 24:534–536 (1970).PubMedCrossRefGoogle Scholar
  113. 129.
    J. Wells, Effect of water deprivation on uptake of DL-35Cystine in the hypothalamo-hypophysial system, Exper. Neurol. 8:470–481 (1963).CrossRefGoogle Scholar
  114. 130.
    D. H. Clouet and H. Waelsch, Amino acid and protein metabolism of the brain—IX. The effect of an organophosphorous inhibitor on the incorporation of Lys-14C into the proteins of rat brain, J. Neurochem. 10:51–63 (1963).PubMedCrossRefGoogle Scholar
  115. 131.
    E. Koenig and G. B. Koelle, Mode of regeneration of AChE in cholinergic neurons following irreversible inactivation, J. Neurochem. 8:169–188 (1961).PubMedCrossRefGoogle Scholar
  116. 132.
    A. Lajtha, Protein metabolism in nerve, in Chemical Pathology of the Nervous System (D. Richter, ed.). pp. 268–369, Pergamon Press, Oxford (1961).Google Scholar
  117. 133.
    A. N. Davison, Metabolically inert proteins of the central and peripheral nervous system, muscle and tendon, Biochem. J. 78:272 (1961).PubMedGoogle Scholar
  118. 134.
    B. Grafstein, B. McEwen, and M. L. Shelanski, Axonal transport of neurotubule protein, Nature 227:289–290 (1970).PubMedCrossRefGoogle Scholar
  119. 135.
    M. Singer and M. M. Salpeter, The transport of His-3H through the Schwann and myelin sheath into the axon, including a re-evaluation of myelin function, J. Morph. 120:281–316 (1966).PubMedCrossRefGoogle Scholar
  120. 136.
    J. D. Caston and M. Singer, Amino acid uptake and incorporation into macromolecules of peripheral nerve, J. Neurochem. 16:1309–1318 (1969).PubMedCrossRefGoogle Scholar
  121. 137.
    Y. Takahashi, M. Nomura, and S. Furwawa, In vitro incorporation of amino- 14C acids into proteins of peripheral nerve during Wallerian degeneration, J. Neurochem. 7:97–102 (1961).CrossRefGoogle Scholar
  122. 138.
    D. F. Matheson, Incorporation of Glycine-14C into protein of the adult rat peripheral nerve: effect of inhibition, J. Neurochem. 15:179–185 (1968).PubMedCrossRefGoogle Scholar
  123. 139.
    D. F. Matheson, Influence of age in the incorporation of Gly-14C into isolated rat nerve segments, J. Neurochem. 15:187–194 (1968),PubMedCrossRefGoogle Scholar
  124. and into chicken nerve, J. Neurochem. 16:215–223(1969).PubMedCrossRefGoogle Scholar
  125. 140.
    D. F. Matheson, Some aspects of lipid and protein metabolism in developing rat optic nerves, Brain Res. 24:271–283 (1970).PubMedCrossRefGoogle Scholar
  126. 141.
    S. Fisher and S. Litvak, The incorporation of microinjected 14C-amino acids into TCA insoluble fractions of the giant axon of the squid, J. Cell. Physiol. 70:69–74 (1967).CrossRefGoogle Scholar
  127. 142.
    S. Fischer, M. Cellino, P. Gariglio, I. Tellez-Nagel, Protein and RNA metabolism of squid axons (Dosidicus gigas), J. Gen. Physiol. 51:72–80s (1968).PubMedGoogle Scholar
  128. 143.
    M. Luxoro, Incorporation of amino acids labeled with 14C in nerve proteins during activity and recovery, Nature 88:1119–1120 (1960).CrossRefGoogle Scholar
  129. 144.
    D. D. Wheeler and L. L. Boyarsky, Influx of glutamic acid in peripheral nerve-characteristics of influx, J. Neurochem. 15:1019–1031 (1968).PubMedCrossRefGoogle Scholar
  130. 145.
    M. Yamaguchi, T. Yanos, T. Yamaguchi, and A. Lajtha, Amino acid uptake in the peripheral nerve of the rat, J. Neurobiol. 1:419–433 (1970).PubMedCrossRefGoogle Scholar
  131. 146.
    C. Blomstrand, Thesis. Studies on protein metabolism in neuronal glial-cell enriched fractions from brain tissue, University of Göteborg, 1971.Google Scholar
  132. 147.
    M. Satake and S. Abe, Preparation and characteristics of nerve cell perikarya from rat cerebral cortex, J. Biochem. (Tokyo) 59:72–75 (1966).Google Scholar
  133. 148.
    W. T. Norton and S. E. Poduslo, Neuronal soma and whole neuroglia of rat brain. A new isolation technique, Science 167:1144–1145 (1970).PubMedCrossRefGoogle Scholar
  134. 149.
    O. Z. Sellinger, J. B. Azcurra, D. E. Johnson, W. G. Ohlsson, and Z. Lodin, Independence of protein synthesis and drug uptake in nerve cell bodies and glial cells isolated by a new technique, Nature (in press).Google Scholar
  135. 150.
    A. Hamberger, H. A. Hansson, and J. Sjostrand, Surface structure of isolated neuron, J. Cell. Biol. 47:319–331 (1970).PubMedCrossRefGoogle Scholar
  136. 151.
    D. H. Ford and R. K. Rhines, Accumulation of 3H-lysine in various types of neurons in male rats, J. Neurol. Sci. 10:179–183 (1970).PubMedCrossRefGoogle Scholar
  137. 152.
    L. Hertz, Neurological localization of K and Na effects on respiration in brain, J. Neurochem. 13:1373–1387(1966).PubMedCrossRefGoogle Scholar
  138. 153.
    B. Jakoubek, E. Gutmann, J. Fisher, and A. Babicky, Rate of protein renewal in spinal montoneurons of adolescent and old rats, J. Neurochem. 15:633–641 (1968).PubMedCrossRefGoogle Scholar
  139. 154.
    C. Blomstrand and A. Hamberger, Protein turnover in cell-enriched fractions from rabbit brain, J. Neurochem. 16:1401–1407 (1969) and in vitro, 17:1187–1197 (1970).PubMedCrossRefGoogle Scholar
  140. 155.
    D. E. Johnson and O. Z. Sellinger, Protein synthesis in neurons and glial cells of the developing rat brain: an in vivo study, J. Neurochem. 1971 (in press).Google Scholar
  141. 156.
    A. L. Flanagas and R. E. Bowman, Differential metabolism of RNA in neuronal enriched and glial-enriched fractions of rat cerebrum, J. Neurochem. 17:1237–1245 (1970).CrossRefGoogle Scholar
  142. 157.
    C. Blomstrand, A. Hamberger, and T. Yamagihara, Subcellular distribution of radioactivity in neuronal and glial-enriched fractions after incorporation of Leu-3H in vivo and in vitro, J. Neurochem. (in press, 1971).Google Scholar
  143. 158.
    G. R. Dutton and S. Barondes, Microtubular protein: synthesis and metabolism in developing brain, Science 166:1637–1638 (1969).PubMedCrossRefGoogle Scholar
  144. 159.
    J. A. Burdman, Incorporation in vivo of radioactive leucine into neuronal and glial nuclear proteins of rat brain, J. Neurochem. 17:1555–1562 (1970).PubMedCrossRefGoogle Scholar
  145. 160.
    Y. Takahashi, C. S. Hsü, and S. Honura, Potassium and glutamate effects on protein synthesis in isolated neuroglial cells, Brain Res. 23:284–287 (1970).PubMedCrossRefGoogle Scholar
  146. 161.
    H. Lotrup-Rein, Protein synthesis in isolated nuclei of nerve and glial cells, J. Neurochem. 19:433–444(1970).Google Scholar
  147. 162.
    J. A. Burdman and L. I. Journey, Protein synthesis in isolated nuclei from adult rat brain, J. Neurochem. 16:493–500 (1969).PubMedCrossRefGoogle Scholar
  148. 163.
    K. Hemminki, M. O. Huttonen, and J. Järnefelt, Some properties of brain cell suspensions prepared by a mechanical-enzymic method, Brain Res. 23:23–34 (1970).PubMedCrossRefGoogle Scholar
  149. 164a.
    B. Tiplady and S. P. R. Rose, Amino acid incorporation into protein of neuronal and neuropil fractions in vitro, Biochem. J., 117:65P (1969)Google Scholar
  150. 164b.
    J. Neurochem. 18, 549–558 (1971).PubMedCrossRefGoogle Scholar
  151. 165a.
    T. S. Work, J. L. Coote, and M. Ashwell, Biogenesis of mitochondria, Fed. Proc. 27:1174–1179 (1968)PubMedGoogle Scholar
  152. 165b.
    Ann. Rev. Biochem. 39:251–290 (1970).PubMedCrossRefGoogle Scholar
  153. 166.
    M. Rabinowitz and H. Swift, Mitochondrial nucleic acids and their relation to the biogenesis of mitochondria, Physiol. Revs. 50:376–427 (1970).Google Scholar
  154. 167.
    M. K. Campbell, H. R. Mahler, W. J. Moore, and S. Tewari, Protein synthesis systems from rat brain, Biochemistry 5:1174–1184 (1966).PubMedCrossRefGoogle Scholar
  155. 168.
    A. Hamberger, N. Gregson, and A. L. Lehninger, The effect of acute exercise on amino acid incorporation into mitochondria of rabbit tissues, Biochim. Biophys. Acta 186:373–383 (1969).PubMedCrossRefGoogle Scholar
  156. 169.
    M. A. Goldberg, Protein synthesis in isolated rat brain mitochondria and nerve ending, Brain Res., 27:319–328 (1971).PubMedCrossRefGoogle Scholar
  157. 170.
    R. P. Wagner, Genetics and phenogenetics of mitochondria, Science 163:1026–1031 (1969).PubMedCrossRefGoogle Scholar
  158. 171.
    M. M. K. Nass, Mitochondrial DNA: advances problems and goals, Science 165:25–35 (1969).PubMedCrossRefGoogle Scholar
  159. 172a.
    D. J. L. Luck, Formation of mitochondria in Neurospora crassa, J. Biol. Chem. 16:483–499 (1963)Google Scholar
  160. 172b.
    J. Cell. Biol. 24:461–470 (1965).PubMedCrossRefGoogle Scholar
  161. 173.
    M. J. Fletcher and D. R. Sanadi, Turnover of rat liver mitochondria, Biochim. Biophys. Acta 51:356–360 (1961).PubMedCrossRefGoogle Scholar
  162. 174.
    E. Bailey, C. B. Taylor, and W. Bartley, Turnover of mitochondrial components of normal and essential fatty-acid deficient rats, Biochem. J. 104:1026–1032 (1967).PubMedGoogle Scholar
  163. 175.
    R. W. Swick, A. K. Rexrot, and J. L. Stange, The metabolism of rat liver mitochondria, J. Biol. Chem. 243:3581–3587 (1968).PubMedGoogle Scholar
  164. 176.
    D. S. Beattie, R. E. Basford, and S. B. Kontz, The turnover of the protein components of mitochondria from rat liver, kidney and brain, J. Biol. Chem. 242:4584–4586 (1967).PubMedGoogle Scholar
  165. 177.
    A. Neidle, C. J. van Den Berg, and A. Grynbaum, The heterogeneity of rat brain mitochondria isolated on continuous sucrose gradients, J. Neurochem. 16:225–234 (1969).PubMedCrossRefGoogle Scholar
  166. 178.
    N. Marks, B. D’Monte, C. Bellman, and A. Lajtha, Protein metabolism in cerebral mitochondria. I. Hydrolytic enzymes and amino acid incorporation into mitochondrial membranes, Brain Res. 18:309–324(1970).PubMedCrossRefGoogle Scholar
  167. 179.
    L. Salganicoff and R. E. Koeppe, Subcellular distribution of pyruvate carboxylase, diphosphate pyridine nucleotides and trisphosphopyridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain J. Biol. Chem. 243:3416–3420 (1968).PubMedGoogle Scholar
  168. 180.
    F. Hajos and S. Kerpel-Fronius, Electron histochemical observation of succinic dehydrogenase activity in various parts of neurons, Exp. Brain Res. 8:66–78 (1969).PubMedGoogle Scholar
  169. 181.
    J. B. Clark and W. J. Nicklas, The metabolism of rat brain mitochondria, J. Biol. Chem. 245:4724–4731 (1971).Google Scholar
  170. 182.
    S. H. Barondes, On the site of synthesis of the mitochondrial protein of nerve endings, J. Neurochem. 13:721–727 (1966).PubMedCrossRefGoogle Scholar
  171. 183.
    H. S. Bachelard, Amino acid incorporation into the protein of mitochondrial preparations from cerebral cortex and spinal cord, Biochem. J. 100:131–137 (1966).PubMedGoogle Scholar
  172. 184.
    M. W. Gordon and G. G. Deanin, Protein synthesis by isolated rat brain mitochondria and synaptosomes, J. Biol. Chem. 243:4222–4226 (1968).PubMedGoogle Scholar
  173. 185.
    R. D. Cunningham and W. F. Bridges, Brain and liver mitochondrial protein synthesis: potassium dependent chloramphenicol inhibition, Biochem. Biophys. Res. Comm. 38:99–105 (1970).Google Scholar
  174. 186.
    H. B. Bosmann and B. A. Hemsworth, Intraneural mitochondria incorporation of amino acid, and monosaccharides into macromolecules by isolated synaptosomes and synaptosomal mitochondria, J. Biol. Chem. 245:363–371 (1970).PubMedGoogle Scholar
  175. 187a.
    D. Haider, Protein synthesis in mammalian brain mitochondria, Biochem. Biophys. Res. Comm. 38:129–134 (1970),CrossRefGoogle Scholar
  176. 187b.
    42:899 (1971).CrossRefGoogle Scholar
  177. 188.
    M. A. Ashwell and T. S. Work, Contrasting effects of cycloheximide on mitochondrial protein synthesis in vivo and in vitro, Biochem. Biophys. Res. Comm. 32:1006–1011 (1968).PubMedCrossRefGoogle Scholar
  178. 189.
    K. B. Freeman, Inhibition of mitochondrial and bacterial protein synthesis by chloramphenicol, Canad. J. Biochem. 48:479–485 (1970).CrossRefGoogle Scholar
  179. 190.
    H. R. Mahler, L. R. Jones, and W. J. Moore, Mitochondrial contribution to protein synthesis in cerebral cortex, Biochem. Biophys. Res. Comm. 42:384–389 (1971).PubMedCrossRefGoogle Scholar
  180. 191.
    G. Brunner and W. Neupert, Turnover of outer and inner membrane proteins of rat liver mitochondria, FEBS Letters 1:153–155 (1968).PubMedCrossRefGoogle Scholar
  181. 192.
    L. Austin and I. G. Morgan, Incorporation of 14C-labelled leucine into synaptosomes from rat cerebral cortex in vitro, J. Neurochem. 14:377–387 (1967).PubMedCrossRefGoogle Scholar
  182. 193.
    A. Lajtha, S. Fürst, and H. Waelsch, The metabolism of the proteins of the brain, Experienta 23:168–172 (1957).Google Scholar
  183. 194.
    E. de Robertis, Molecular biology of synaptic receptors, Science 171:963–971 (1971).PubMedCrossRefGoogle Scholar
  184. 195.
    S. J. Morris, H. J. Ralston, and E. M. Shooter, Studies on the turnover of mouse brain synaptosomal proteins, J. Neurochem. (in press), 1971.Google Scholar
  185. 196.
    H. Cramer, Zur Inkorporation von Phe-3H in Proteine der Circumventrikulären Organe bei Katzen und Meerschweinchen Autoradiographische Untersuchung, Exp. Brain Res. 11:343–359(1970).PubMedCrossRefGoogle Scholar
  186. 197(a).
    I. G. Morgan and L. Austin, Synaptosomal protein synthesis in a cell-free system, J. Neurochem. 15:41–51 (1968)PubMedCrossRefGoogle Scholar
  187. 197(b).
    Ion effects and protein synthesis in synaptosomal fraction. J. Neurobiol. 2:155–167(1969).CrossRefGoogle Scholar
  188. 198.
    S. H. Appel, B. W. Festoff, L. Autilio, and A. V. Escueta, Biochemical approaches to the study of synaptic function, Biological Psych. 2:219–233 (1970).Google Scholar
  189. 199.
    L. A. Autilio, S. H. Appel, P. Pettis and Pier-Luigi Gambeti, Biochemical studies of synapses in vitro. I. Protein synthesis, Biochemistry 7:2615–2622 (1968).PubMedCrossRefGoogle Scholar
  190. 200.
    W. Sebald, A. J. Schwab, and Th. Bücher, Cycloheximide resistant amino acid incorporation into mitochondrial protein from Neurospora crassa, FEBS letters 4:243–246 (1969).CrossRefGoogle Scholar
  191. 201.
    A. V. Escueta and S. H. Appel, Biochemical studies of synapases in vitro. II. Potassium transport, Biochemistry 8:725–733 (1969).PubMedCrossRefGoogle Scholar
  192. 202.
    A. A. Abdel-Latif and C. G. Abood, In vivo incorporation of Ser-14C into phospholipids and proteins of the subcellular fractions of developing rat brain, J. Neurochem. 13:1189 – 1196 (1966).PubMedCrossRefGoogle Scholar
  193. 203a.
    H. P. Metzger, M. Cuenod, A. Grynbaum, and H. Waelsch, The use of tritium oxide as a biosynthetic precursor of macromolecules in brain and liver, J. Neurochem. 14:99–105 (1966)CrossRefGoogle Scholar
  194. 203b.
    Life Sci. 5:1115–1120 (1966).PubMedCrossRefGoogle Scholar
  195. 204.
    H. B. Bosmann and B. A. Hemsworth, Intraneural mitochondria. Incorporation of amino acid and monosaccharides into macromolecules by isolated synaptosomes and synaptosomal mitochondria, J. Biol. Chem. 245:363–371 (1970).PubMedGoogle Scholar
  196. 205.
    M. K. Gordon, K. G. Bench, G. G. Deanin, and M. W. Gordon, Histochemical and biochemical study of synaptic lysosomes, Nature 217:523–527 (1968).PubMedCrossRefGoogle Scholar
  197. 206.
    R. M. Marchbanks and V. P. Whittaker, The biochemistry of synapses, in The Biological basis of Medicine (E. E. Bittar, ed.) 5:39–76 (1969).Google Scholar
  198. 207.
    L. Guth and W. F. Windle, The enigma of central nervous regeneration, Exper. Neurol. (Supp.) 5:1–43 (1970).Google Scholar
  199. 208a.
    V. G. Allfrey, Changes in chromosomal proteins at times of gene regulation, Fed. Proc. 29:1447–1460 (1970PubMedGoogle Scholar
  200. 208b.
    Biosynthetic reactions in the cell nucleus, in Aspects of Protein Synthesis (C. B. Anfinsen, ed.), pp. 247–345, Academic Press, New York (1970).Google Scholar
  201. 209.
    S. Navon and A. Lajtha, The uptake of amino acids by particulate fractions from brain, Biochim. Biophys. Acta 173:518–531 (1969).PubMedCrossRefGoogle Scholar
  202. 210.
    L. M. J. Shaw and R. C. C. Huang, A description of two procedures which avoid the use of extreme pH conditions for the resolution of components isolated from chromatins prepared from pig cerebellar and pituitary nuclei, Biochemistry 9:4530–4542 (1970).PubMedCrossRefGoogle Scholar
  203. 211.
    A. Neidle and H. Waelsch, Histones: Species and tissue specificity, Science 145:1059–1061 (1964).PubMedCrossRefGoogle Scholar
  204. 212.
    D. F. Scott, R. D. Reynolds, H. C. Pitot and V. R. Potter, Co-induction of the hepatic amino acid transport system and lysosome aminotransferase by theophylline glucagon and dibutyryl-cyclic AMP in vivo. Life Sci. 9II:1133–1140 (1970).CrossRefGoogle Scholar
  205. 213.
    H. Hydén and B. S. McEwen. A glial protein for the nervous system, Proc. Nat. Acad. Sci. 55:354–358 (1966).PubMedCrossRefGoogle Scholar
  206. 214.
    D. H. Clouet and D. Richter, The incorporation of Met-35S into proteins of the rat brains, J. Neurochem. 3:219–229 (1959).PubMedCrossRefGoogle Scholar
  207. 215.
    J. A. Burdman, Incorporation in vivo of radioactive Leu into neuronal and glial nuclear proteins of rat brain, J. Neurochem. 17:1555–1562 (1970).PubMedCrossRefGoogle Scholar
  208. 216.
    R. S. Piha, M. Cuenod, and H. Waelsch, Metabolism of histones of brain and liver, J. Biol. Chem. 241:2397–2404 (1966).PubMedGoogle Scholar
  209. 217.
    H. Lovtrup-Rein, Protein synthesis in isolated nuclei of nerve and glial cells from rat brain. Brain Res. 19:433–444 (1970).PubMedCrossRefGoogle Scholar
  210. 218.
    J. A. Burdman, K. Haglid, and A. R. David, Protein synthesis in fractions from isolated brain cell nuclei, J. Neurochem. 17:669–676 (1970).PubMedCrossRefGoogle Scholar
  211. 219.
    J. A. Burdman and C. J. Journey, Protein synthesis in isolated nuclei from adult rat brain, J. Neurochem. 16:493–500 (1969).PubMedCrossRefGoogle Scholar
  212. 220.
    I. Smart and C. P. Leblond, Evidence for division and transformation of neuroglial cells in the mouse brain as derived from autoradiography after injection of thymidine-3H, J. Comp. Neurol. 116:349–368 (1961).CrossRefGoogle Scholar
  213. 221.
    J. M. Pasquini, B. Kaplun, C. A. Garcia-Argiz, and C. J. Gomez, Hormonal regulation of brain development. Brain Res. 6:621–634 (1967).PubMedCrossRefGoogle Scholar
  214. 222.
    A. Lajtha, Amino acid and protein metabolism of the brain—V. Turnover of Leu in mouse tissues, J. Neurochem. 3:358–365 (1959).PubMedCrossRefGoogle Scholar
  215. 223.
    G. Gurofîand, S. Udenfriend, Uptake of aromatic amino acids by the brain of mature and newborn rats, in Progress in Brain Research 9:187–197, Elsevier, Amsterdam (1964).Google Scholar
  216. 224.
    A. Lajtha and E. Toth, The brain barrier system. II. Uptake and transport of amino acids by the brain, J. Neurochem. 8:216–225 (1961).PubMedCrossRefGoogle Scholar
  217. 225.
    F. E. Sampson and R. J. Jacobs, Mitochondrial changes in developing rat brain, Amer. J. Physiol. 199:693–696 (1960).Google Scholar
  218. 226.
    B. Shepartz and M. Turczyn, Oxidation of L-amino acids and incorporation into protein in the homogenates of brain at two stages of development, J. Neurochem. 10:825–829 (1963).CrossRefGoogle Scholar
  219. 227.
    S. Gelber, P. L. Campbell, G. E. Deibler, and L. Sokoloff, Effects of L-thyroxine on amino acid incorporation into protein in mature and immature rat brain, J. Neurochem. 11:221–229 (1964).Google Scholar
  220. 228.
    C. B. Klee and L. Sokoloff, Mitochondrial differences in mature and immature brain, J. Neurochem. 11:709–716 (1964).PubMedCrossRefGoogle Scholar
  221. 229.
    T. C. Johnson and W. W. Luttges, The effects of maturation on in vitro protein synthesis by mouse brain cells, J. Neurochem. 13:545–552 (1966).PubMedCrossRefGoogle Scholar
  222. 230.
    F. Orrego and F. Lipmann, Protein synthesis in brain slices. Effects of electrical stimulation and amino acids, J. Biol. Chem. 242:665–671 (1967).PubMedGoogle Scholar
  223. 231.
    P. C. Rajam, C. J. Gaundreau, A. Grady, and S. T. Rundletl, Preparation, derivation and partial characterization of organ-specific antigens from human brain, Immunology, 17:367–385 (1969).PubMedGoogle Scholar
  224. 232.
    K. F. Swaiman and C. E. Nelson, Soluble protein nitrogen and total protein nitrogen in developing rabbit brain, J. Neurochem. 14:905–910 (1967).PubMedCrossRefGoogle Scholar
  225. 233.
    K. Ito and Y. Arimatsu, A prominent site of immature protein synthesis, Scientific Papers, College of Gen. Education, University of Tokyo, 18:41–53 (1968).Google Scholar
  226. 234.
    M.-L. Vahvelainen and S. S. Oja, The uptake and incorporation into protein of Tyr-3H by slices prepared from developing rat brain cortex, Brain Res. 13:227–233 (1969).PubMedCrossRefGoogle Scholar
  227. 235.
    J. Buchanan, M. P. Primack, D. F. Tapley, Relation of mitochondrial swelling to thyroxine-stimulated protein synthesis, Endocrinology 87:993–999 (1970).PubMedCrossRefGoogle Scholar
  228. 236.
    J. DeVellis, O. A. Schjeide, and C. D. Clemente, Protein synthesis and enzymic patterns in the developing brain following head x-irradiation of newborn rats, J. Neurochem. 14:499–511 (1967).CrossRefGoogle Scholar
  229. 237.
    F. Orrego, Synthesis of RNA in normal and electrically stimulated brain cortex slices in vitro, J. Neurochem. 14:851–858 (1967).CrossRefGoogle Scholar
  230. 238.
    S. C. Bondy and S. V. Perry, Incorporation of labeled amino acids in the soluble protein fraction of rabbit brain, J. Neurochem. 10:603–609 (1963).PubMedCrossRefGoogle Scholar
  231. 239.
    D. H. Adams and L. Lim, Amino acid incorporation by preparations from the developing rat brain, Biochem. J. 99:261–265 (1966).PubMedGoogle Scholar
  232. 240.
    S. Yamagami, R. Fritz, and D. A. Rappoport, Biochemistry of the developing rat brain. VII. Changes in the ribosomal system and nuclear RNA’s Biochim. Biophys. Acta 129:532–547 (1966).PubMedCrossRefGoogle Scholar
  233. 241.
    M. R. V. Murthy and D. A. Rappoport, Biochemistry of the developing rat brain. VI. Preparation and properties of ribosomes, Biochim. Biophys. Acta 95:121–132–145 (1965).Google Scholar
  234. 242.
    M. P. Lerner and T. C. Johnson, Regulation of protein synthesis in developing mouse brain tissue, J. Biol. Chem. 245:1388–1393 (1970).PubMedGoogle Scholar
  235. 243.
    T. C. Johnson and G. Belytschko, Alteration in microsomal protein synthesis during early development of mouse brain, Proc. Nat. Acad. Sci. 62:849–851 (1969).Google Scholar
  236. 244.
    G. Dallner, P. Sickevitz, and G. E. Palade, Biogenesis of endoplasmic reticulum membranes, I, II, J. Cell Biol. 30:73–96, 97–117 (1966).Google Scholar
  237. 245.
    Y. Kuriyama, T. Omura, P. Siekevitz, and G. E. Palade, Effects of phenobarbital on the synthesis and degradation of the protein components of rat liver microsomal membranes, J. Biol. Chem. 244:2017–2026 (1969).PubMedGoogle Scholar
  238. 246.
    E. D. Kiehn and J. J. Holland, Membrane and nonmembrane proteins of mammalian cells. Synthesis, turnover, and size distribution, Biochemistry 9:1716–1728 (1970).PubMedCrossRefGoogle Scholar
  239. 247.
    K. W. Bock, P. Siekevitz, and G. E. Palade, Localization and turnover studies of membrane nicotinamide adenine dinucleotide glycohydrolase in rat liver, J. Biol. Chem. 246:188–195 (1971).PubMedGoogle Scholar
  240. 248.
    T. Kawasahi and I. Yamashina, Metabolic studies of rat liver plasma membrane using 14C-glucosamine, Biochim. Biophys. Acta 225:234–238 (1971).CrossRefGoogle Scholar
  241. 249.
    H. Porter, Neonatal hepatic mitochodrocuprein, Biochim. Biophys. Acta 229:143–154 (1971).PubMedCrossRefGoogle Scholar
  242. 250.
    B. W. Moore and D. McGregor, Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver, J. Biol. Chem. 240:1647–1653 (1965).PubMedGoogle Scholar
  243. 251.
    G. S. Bennett and G. M. Edelman, Isolation of an acidic protein from rat brain, J. Biol. Chem. 243:6234–6241 (1968).PubMedGoogle Scholar
  244. 252.
    K. Warecka and H. Bauer, Studies on “brain-specific” proteins in aqueous extracts of brain tissue, J. Neurochem. 14:783–787 (1967).PubMedCrossRefGoogle Scholar
  245. 253.
    H. Hydén and P. W. Lange, Correlation of the S-100 brain protein with behavior, Exper. Cell. Res. 62:125–132 (1970).CrossRefGoogle Scholar
  246. 254.
    W. T. Norton, The myelin sheath, in Cellular and Molecular Basis of Neurology and Disease (E. Goldstein and S. Appel, eds.), Lee and Febiger, Philadelphia (in press) (1971).Google Scholar
  247. 255.
    S. Berl and S. Puszkin, Mg2+-Ca2+-activated ATPase system isolated from mammalian brain, Biochemistry 9:2058–2067 (1970).PubMedCrossRefGoogle Scholar
  248. 256.
    J. B. Kirkpatrick, L. Hyams, V. L. Thomas, and P. M. Howley, Purification of intact microtubules from brain, J. Cell Biol. 47:384–394 (1970).PubMedCrossRefGoogle Scholar
  249. 257.
    P. F. Davison and F. C. Huneeus, Fibrillar proteins from squid axon. I. Neurofilament protein. II. Microtubule protein, J. Mol. Biol. 52:429–434 (1970).PubMedCrossRefGoogle Scholar
  250. 258.
    M. Wender and Z. Waligora, The content of amino acids in the proteins of the developing nervous system of the guinea-pig I—II, J. Neurochem. 7:259–263 (1961);CrossRefGoogle Scholar
  251. 258a.
    M. Wender and Z. Waligora, The content of amino acids in the proteins of the developing nervous system of the guinea-pig I—II, J. Neurochem. 9:115–118 (1962).CrossRefGoogle Scholar
  252. 259.
    H. Feit, Synthesis and turnover of tubulin, Thesis. Dept. of Mol. Biol. Albert Einstein Medical School, Yeshiva, University, 1971.Google Scholar
  253. 260.
    H. Feit, G. Dutton, S. Barondes, and M. L. Shelanski, Metabolism of microtubule protein in mouse brain, J. Cell. Biol. 47:60a (1970).Google Scholar
  254. 261.
    T. J. Cicero, M. W. Cowan, and B. W. Moore, Changes in the concentrations of the brain specific proteins, S-100 and 14–3–2 during the development of the avian optic fectum, Brain Res. 29:1–10 (1970).CrossRefGoogle Scholar
  255. 262.
    H. R. Herschman, L. Levine, and D. Vellis, Appearance of a brain specific-specific antigen (S-100 protein) in the developing rat brain, J. Neurochem. 18, 629–633 (1971).PubMedCrossRefGoogle Scholar
  256. 263.
    T. J. Cicero and B. W. Moore, Turnover of the brain specific protein, S-100, Science 169:1333–1334 (1970).PubMedCrossRefGoogle Scholar
  257. 264.
    H. Herschman (personal communication), UCLA Brain Information Service BIS report No. 8.Google Scholar
  258. 265.
    M. R. Adelman, G. G. Borisy, M. L. Shelanski, R. C. Weisenberg, and E. W. Taylor, Cytoplasmic filaments and tubules, Fed. Proc. 27:1186–1193 (1968).PubMedGoogle Scholar
  259. 266.
    O. Holian, D. Dill, and E. G. Brunngraber, Incorporation of radioactivity of D-glucos-amine-1–14C into heteropolysaccharide chains of glycoproteins in adult and developing rat brain, Arch. Biochem. Biophys. 142:111–121 (1971).PubMedCrossRefGoogle Scholar
  260. 267.
    K. Kuriyama and T. A. Okada, Incorporation of sulfate-35S into developing mouse brain: subcellular fractionation and electron microscopic studies, Exper. Neurol. 30:18–29 (1971).CrossRefGoogle Scholar
  261. 268a271.
    G. Banker and C. W. Cotman, Characteristics of different amino acids as protein precursors in mouse brain: advantages of certain carboxyl-labeled amino acids, Arch. Google Scholar
  262. 268b.
    M. E. Smith, The turnover of myelin in the adult rat. Biochem. Biophys. 142:565–573 (1971).CrossRefGoogle Scholar
  263. 269.
    A. Hirano and H. M. Dembitzer, A structural analysis of the myelin sheath in the CNS, J. Cell. Biol. 34:555–567 (1967).PubMedCrossRefGoogle Scholar
  264. 270.
    B. G. Uzman and E. T. Hedley-Whyte, Myelin: Dynamic or stable, J. Gen. Physiol. 51:8–18 (1968).PubMedGoogle Scholar
  265. 271a.
    M. E. Smith, The turnover of myelin in the adult rat. Biochim. Biophys. Acta 164:285–293 (1968);PubMedCrossRefGoogle Scholar
  266. 271b.
    M. E. Smith, The turnover of myelin in the adult rat. J. Neurochem. 18:739–747 (1971).PubMedCrossRefGoogle Scholar
  267. 272.
    M. E. Smith and L. F. Eng, The turnover of the lipid contents of myelin, J. Am. Oil Chem. Soc. 42:1013–1015 (1965).PubMedCrossRefGoogle Scholar
  268. 273.
    E. R. Einstein, J. Csejtey, and N. Marks, Degradation of encephalitogen by purified brain acid proteinase, FEBS Letters 1:191–195 (1968).PubMedCrossRefGoogle Scholar
  269. 274.
    L. F. Eng, F. C. Chao, B. Gerstl, D. Pratt, and M. G. Tavastsjerna, The maturation of human white matter. Fractionation of the myelin membrane proteins, Biochemistry 7: 4755–4765 (1968).CrossRefGoogle Scholar
  270. 275.
    M. K. Gaitonde and R. E. Martenson, Metabolism of highly basic proteins of rat during post-natal development, J. Neurochem. 17:551–563 (1970).PubMedCrossRefGoogle Scholar
  271. 276.
    J. G. Wood and N. King, Turnover of basic protein of rat brain, Nature 229:56–57 (1971).PubMedCrossRefGoogle Scholar
  272. 277.
    M. E. Smith, An in vitro system for the study of myelin synthesis, J. Neurochem. 16:83–92 (1969).PubMedCrossRefGoogle Scholar
  273. 278a.
    F. Rawlins and M. Smith, Myelin synthesis in vitro: a comparative synthesis between CNS and PNS, Trans. Amer. Soc. Neurochem. 2:102C (1971)Google Scholar
  274. 278b.
    M. E. Smith, Biosynthesis of myelin proteins in vitro, Fed. Proc. 29:471 (1970).Google Scholar
  275. 279.
    V. B. Wigglesworth, Insect Hormones. Oliver and Boyd, Edinburgh (1970).Google Scholar
  276. 280.
    S. Zamenhof, J. Mosley, and E. Schullar, Stimulation of the proliferation of cortical neurons by prenatal treatment with growth hormone, Science 152:1396–1397 (1966).PubMedCrossRefGoogle Scholar
  277. 281.
    R. Balazs, S. Kovacs, W. A. Cocks, A. L. Johnson, and J. T. Eayrs, Effect of thyroid hormone on the biochemical maturation of rat brain: postnatal cell formation, Brain Res. 25:555–570(1971).PubMedCrossRefGoogle Scholar
  278. 282.
    D. B. Hudson, A. Vernadakis, and P. S. Timiras, Regional changes in amino acid concentration in the developing brain and the effects of neonatal administration of estradiol, Brain Res. 23:213–222 (1970).PubMedCrossRefGoogle Scholar
  279. 283.
    R. D. Palmiter, T. Oka, and R. T. Schimke, Modulation of ovalbumin synthesis by estradiol-17β and actinomycin-D as studied in expiants of chick oviduct in culture, J. Biol. Chem. 246:724–737(1971).PubMedGoogle Scholar
  280. 284.
    M. Ginsburg, Handbook of Experimental Pharmacology Vol. 23, pp. 286–371 (1968), Springer-Verlag, Berlin.Google Scholar
  281. 285.
    A. J. Patel and R. Balazs, Manifestation of metabolism compartmentation during the maturation of rat brain, J. Neurochem. 17:955–971 (1970).PubMedCrossRefGoogle Scholar
  282. 286.
    S. Berl, Compartmentation of glutamic acid metabolism in developing cerebral cortex, J. Biol. Chem. 240:2047–2054 (1965).PubMedGoogle Scholar
  283. 287.
    C. J. van den Berg, Compartmentation of glutamate metabolism in the developing brain, J. Neurochem. 17:973–983 (1970).PubMedCrossRefGoogle Scholar
  284. 288.
    R. B. Roberts and L. B. Flexner, The biochemical basis of long term memory, Quart. Rev. Biophys. 2:135–173 (1969).CrossRefGoogle Scholar
  285. 289.
    E. Glassman, The biochemistry of learning: an evaluation of the role of RNA and protein, Ann. Rev. Biochem. 38:605–646 (1969).PubMedCrossRefGoogle Scholar
  286. 290.
    A. Vitale-Neugebauer, A. Giuditta, B. Vitale, and S. Giaguinto, Pattern of RNA synthesis in rabbit cortex during sleep, J. Neurochem. 17:1263–1273 (1970).PubMedCrossRefGoogle Scholar
  287. 291.
    W. E. Davies, The incorporation of Lys-14C into the protein of the guinea pig central auditory system, J. Neurochem. 17:1319–1326 (1970).PubMedCrossRefGoogle Scholar
  288. 292.
    D. A. Rappoport and H. F. Daginawala, Changes in nuclear RNA of brain induced by olfaction in catfish, J. Neurochem. 15:991–1006 (1968).PubMedCrossRefGoogle Scholar
  289. 293.
    A. Norström, S. Enestrom, and A. Hamberger, Amino acid incorporation into proteins of the supraoptic nucleus of the rat after osmotic stress, Brain Res. 26:95–103 (1971).CrossRefGoogle Scholar
  290. 294.
    F. Nissl, Über die Ausreissung der Ganglienzellen am Facialiskern des Kaninchens Nach Ausreissung des Neuron, Allg. Z. Psychiat. 48:197–198 (1892).Google Scholar
  291. 295.
    S. H. Kung, Incorporation of tritiated precursors in the cytoplasm of normal and chroma-tolytic neurons as shown by autoradiography, Brain Res. 25:656–660 (1971).PubMedCrossRefGoogle Scholar
  292. 296.
    A. J. Carlson, Changes in the Nissl’s substance of the ganglion and the bipolar cells of the retina of the Brandt Comorant during prolonged normal stimulation, Am. J. Anat. 2:341–347(1902/03).CrossRefGoogle Scholar
  293. 297.
    A. Hess, Optic centers and pathways after eye removal in fetal guinea pigs, J. Comp. Neurol. 199:91–115(1958).CrossRefGoogle Scholar
  294. 298.
    I. Lindner and K. Umrath, Veränderungen der Sehsphäre I und II in ihrem monokularen and binokularen Teil nach Extirpation eines Auges beim Kaninchen, Deut. Z. Nervenheilk. 172:495–525(1955).Google Scholar
  295. 299.
    A. H. Riesen, Effects of stimulus deprivation on the development and atrophy of the visual sensory system, Amer. J. Orthopsychiatry 30:23 (1960).CrossRefGoogle Scholar
  296. 300a.
    F. L. Margolis and S. C. Bondy, Effect of unilateral enucleation on protein and ribonucleic metabolism of avian brain (unilateral suturing), Exper. Neurol. 27:344–352 (1970)CrossRefGoogle Scholar
  297. 300b.
    F. L. Margolis and S. C. Bondy, Effect of unilateral enucleation on protein and ribonucleic metabolism of avian brain (unilateral suturing), Exper. Neurol. 27:353–358(1970).CrossRefGoogle Scholar
  298. 301.
    G. P. Talwar, S. P. Chopra, B. K. Goel, and B. D’Monte, Correlation of the functional activity of the brain with metabolic parameters III. Protein metabolism of the occipital cortex in relation to light stimulus, J. Neurochem. 13:109–116 (1966).PubMedCrossRefGoogle Scholar
  299. 302.
    S. P. R. Rose, Changes in visual cortex on first exposure of rats to light, Nature 215:253–255 (1967).PubMedCrossRefGoogle Scholar
  300. 303.
    M. Burnel, H. R. Mahler, and W. J. Moore, Protein synthesis in visual cells of Limulus, J. Neurochem. 17:1493–1499(1970).PubMedCrossRefGoogle Scholar
  301. 304.
    A. V. LeBouton and S. D. Handler, Diurnal incorporation of Leu-3H into liver protein, FEBS Letters 10:78–80 (1970).PubMedCrossRefGoogle Scholar
  302. 305.
    H. Rahmann, Uber den Einfluss adaquater Lichtreizung auf die biochemische und morphologische Ausprägung der Sehninde der Maus, Z. f. Zellforsch. 67:561–574 (1965).CrossRefGoogle Scholar
  303. 306.
    A. J. Goldberg, Protein turnover in skeletal muscle II. Effects of denervation and cortisone on protein catabolism in skeletal muscle, J. Biol. Chem. 244:3223–3229 (1969).PubMedGoogle Scholar
  304. 307.
    M. H. Dresden, Denervation effects on new T limb regeneration: DNA and RNA and protein synthesis, Develop. Biol. 19:311–320 (1969).PubMedCrossRefGoogle Scholar
  305. 308.
    C. Kupfer and J. L. Downer, Ribonucleic acid content and metabolic activity of lateral geniculate nucleus of monkey following afferent derivation, J. Neurochem. 14:257–263 (1967).PubMedCrossRefGoogle Scholar
  306. 309.
    P. Mandel, H. Rein, S. Harth-Edel, and R. Mandell, Distribution and metabolism of ribonucleic acid in the nervous system, in Comparative Neuro chemistry (E. Richter, ed.), pp. 149–163, Pergamon Press, 1964.Google Scholar
  307. 310.
    J. Dobbing and J. Sands, Timing of neuroblast multiplication in developing human brain, Nature 226:639–640 (1970).PubMedCrossRefGoogle Scholar
  308. 311.
    G. Bolcsfoldi, L. Poels, and E. Eliasson, RNA metabolism in human cells during amino acid deprivation, Biochim. Biophys. Acta 228:664–675 (1971).PubMedCrossRefGoogle Scholar
  309. 312.
    E. C. Henshaw, C. A. Hirsch, B. E. Morton, and H.H. Hiatt, Control of protein synthesis in mammalian tissues through changes in ribosome activity, J. Biol. Chem. 246:436–446 (1971).PubMedGoogle Scholar
  310. 313.
    A. J. Sussman and C. Gilvarg, Protein turnover in amino acid-starved strains of E. Coli, K-12 differing in their RNA content, J. Biol. Chem. 244:6304–6306 (1969).PubMedGoogle Scholar
  311. 314.
    A. Lajtha and E. Toth, Instability of cerebral proteins, Biochem. Biophys. Res. Comm. 23:294–298(1966).PubMedCrossRefGoogle Scholar
  312. 315.
    R. S. Piha, R. K. Airas, and L. I. Aäri, Changes in the activity of amino acid: tRNA-ligases in the developing brain of the mouse, Suomen Kemistilehti 39:204–208 (1966).Google Scholar
  313. 316.
    J-Fu Chiu and S.-C. Sung, DNA nucleotidyl transferase action of the developing rat brain, Biochim. Biophys. Acta 209:34–42 (1970).PubMedCrossRefGoogle Scholar
  314. 317.
    R. A. Ehrenkranz and M. Winick, DNA polymerase in normal rat brain during ontogeny, J. Cell. Biol. 47:249 (1970).Google Scholar
  315. 318.
    E. Bell, I-DNA: Its packaging into I-somes and its relation to protein synthesis during differentiation, Nature 224:326–328 (1969).PubMedCrossRefGoogle Scholar
  316. 319.
    R. L. Church and R. A. Consigli, DNA fragmentation in a clonal line of rat pituitary tumor, Biochem. Biophys. Res. Comm, 42:31 (1971).PubMedCrossRefGoogle Scholar
  317. 320.
    S.-C. Sung, DNA synthesis in the developing rat brain, Canad. J. Biochem. 47:47–50 (1969).Google Scholar
  318. 321a.
    R. R. Burgess, A. A. Travers, J. J. Dunn, and E. K. F. Bantz, Factor stimulating transcription by RNA polymerase. Nature 221:43–46 (1969)PubMedCrossRefGoogle Scholar
  319. 321b.
    R. R. Burgess, A. A. Travers, J. J. Dunn, and E. K. F. Bantz, Factor stimulating transcription by RNA polymerase. Nature 228:748–751 (1970).CrossRefGoogle Scholar
  320. 322.
    S. C. Bondy, S. Roberts, and B. S. Morelos, Histone-acetylating enzyme of brain, Biochem. J. 119:665–672(1970).PubMedGoogle Scholar
  321. 323a.
    A. L. Beaudet and C. T. Caskey, Mammalian peptide chain termination, I and II. Proc. Nat. Acad. Sci. 67:99–106 (1971).Google Scholar
  322. 323b.
    A. L. Beaudet and C. T. Caskey, Mammalian peptide chain termination, I and II. Proc. Nat. Acad. Sci. 67: 619–24 (1971).CrossRefGoogle Scholar
  323. 324.
    H. M. Temin, Biology of Large RNA Viruses (R. D. Barry and B. W. J. Mahy, eds.), Academic Press, London (1970).Google Scholar
  324. 325a.
    E. M. Scolnick, S. A. Aaronson, G. J. Todaro, and W. P. Parks, RNA dependent DNA polymerase activity in mammalian cells, Nature 229:318–321 (1971)PubMedCrossRefGoogle Scholar
  325. 325b.
    E. M. Scolnick, S. A. Aaronson, G. J. Todaro, and W. P. Parks, and tumor viruses, Proc. Nat. Acad. Sci. 67:1034–1041 (1970).PubMedCrossRefGoogle Scholar
  326. 326.
    P. Lengyel and D. Söll, Mechanism of protein biosynthesis, Bact. Rev. 33:264–301 (1969).PubMedGoogle Scholar
  327. 327.
    A. K. Falvey and T. Staehelin, Structure and function of mammalian ribosomes. I. Isolation and characteristics of active liver ribosomal subunits. II. Exchange of ribosomal subunits at various stages in vitro polypeptide synthesis, J. Mol. Biol. 53:21–34 (1970).PubMedCrossRefGoogle Scholar
  328. 328.
    J. S. Dubnoff and U. Maitra, Isolation and properties of polypeptide chain initiation factor F II from E. coli: evidence for a dual function, Proc. Nat. Acad. Sci. 68:318–323 (1971).PubMedCrossRefGoogle Scholar
  329. 329.
    D. A. Shafritz, D. G. Laycock, and W. French Anderson, Puromycin-peptide bond formation with reticulocyte initiation factors M, and M2, Proc. Nat. Acad. Sci. 68:496–499 (1971).PubMedCrossRefGoogle Scholar
  330. 330.
    R. Kaempfer, Dissociation of ribosomes on polypeptide chain termination and origin of single ribosomes, Nature 228:534–537 (1970).PubMedCrossRefGoogle Scholar
  331. 331.
    S. H. Miall, T. Kato, and T. Tamaohi, A factor promoting dissociation of E. coli ribosomes, Nature 226:1050–1052 (1970).PubMedCrossRefGoogle Scholar
  332. 332.
    H. A. Klein and M. R. Capecchi, Polypeptide chain termination, J. Biol. Chem. 246:1055–1061 (1971).PubMedGoogle Scholar
  333. 333a.
    S. Raeburn, J. F. Collins, H. M. Moon, and E. S. Maxwell, Aminoacyltransferase II from rat liver, J. Biol. Chem. 246:1041–1048 (1971).PubMedGoogle Scholar
  334. 333a.
    S. Raeburn, J. F. Collins, H. M. Moon, and E. S. Maxwell, Aminoacyltransferase II from rat liver, J. Biol. Chem. 246:1049–1054 (1971).PubMedGoogle Scholar
  335. 334.
    T. C. Johnson, Regulatory mechanisms responsible for alterations in protein and nuclei and synthesis in developing brain tissue, in Cellular Aspects of Growth and Differentiation in Nervous Tissue (D. Pease, ed.), UCLA Forum in Med. Sciences (1971).Google Scholar
  336. 335.
    H. Aurich, Die Rolle des Aminosaüre-Pools bie der Regulation des Proteins-und Nuklein-saürestoff-wechsels, Math.-Naturwiss. Reihe 4:727–738 (1968) Karl-Marx Univ., Leipzig.Google Scholar
  337. 336.
    M. Nomura, Bacterial ribosome, Bact. Rev. 34:228–277 (1970).PubMedGoogle Scholar
  338. 337.
    D. A. Jones and H. McIlwain, Amino acid distribution and incorporation into proteins isolated electrically stimulated cerebral tissues, J. Neurochem. 18:41–58 (1971).PubMedCrossRefGoogle Scholar
  339. 338.
    P. J. Dehlinger and R. T. Schimke, Size distribution of membrane proteins of rat liver and their relative rates of degradation, J. Biol. Chem. 246:2574–2583 (1971).PubMedGoogle Scholar
  340. 339.
    J. A. Benjamins, N. Herschkowitz, J. Robinson, and G. M. McKhann, The effects of inhibitors of protein synthesis on incorporation of lipids into myelin, J. Neurochem. 18:729–738(1971).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • A. Lajtha
    • 1
  • N. Marks
    • 1
  1. 1.New York State Research Institute for Neurochemistry and Drug Addiction Ward’s IslandNew YorkUSA

Personalised recommendations