The Action of Thyroid Hormones

  • Louis Sokoloff


The thyroid hormones produce profound and diverse effects on the physiological, metabolic, and biochemical processes of most cells and tissues of the mammalian organism. Although the tissues of the central nervous system are among those affected, their responses to the hormones are quite atypical. First of all, the sensitivity of the brain to the thyroid hormones is limited only to its period of growth, development, and maturation; once fully developed to maturity, the brain no longer exhibits any of the usual effects which can be attributed to a direct action of the hormones. Second, there is a strong morphogenetic component in the effects of the thyroid hormones on the developing central nervous system. Most other tissues, no matter how greatly altered functionally and biochemically, undergo relatively little anatomical change under the influence of these hormones. The developing mammalian brain, however, undergoes a marked morphological reorganization, indeed differentiation, which appears to be dependent on the action of the thyroid hormones. In many ways, the effects of the thyroid hormones in the mammalian central nervous system are more like those seen in thyroxine-induced amphibian metamorphosis than in other mammalian tissues.


Thyroid Hormone Oxidative Phosphorylation Mature Brain Stimulate Protein Synthesis Amino Acid Incorporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Wynn, Organic iodine constituents in human serum, Arch. Biochem. Biophys. 87:120–124(1960).PubMedGoogle Scholar
  2. 2.
    H. A. Selenkow and S. P. Asper Jr., Biological activity of compounds structurally related to thyroxine, Physiol. Rev. 35:426–474 (1955).PubMedGoogle Scholar
  3. 3.
    T. C. Bruice, N. Kharasch, and R. J. Winzler, A correlation of thyroxine-like activity and chemical structure, Arch. Biochem. Biophys. 62:306–317 (1956).Google Scholar
  4. 4.
    D. F. Tapley, F. F. Davidoff, W. B. Hatfield, and J. F. Ross, Physiological disposition of D- and L-thyroxine in the rat, Am. J. Physiol. 197:1021–1027 (1959).PubMedGoogle Scholar
  5. 5.
    C. M. Greenberg, B. Blank, F. R. Pfeiffer, and J. F. Pauls, Relative activities of several 3′- and 3′:5′-alkyl and aryl thyromimetic agents, Am. J. Physiol. 205:821–826 (1963).PubMedGoogle Scholar
  6. 6.
    R. Pitt-Rivers and J. R. Tata, The Thyroid Hormones, Pergamon Press, London (1960).Google Scholar
  7. 7.
    J. R. Tata and C. J. Shellabarger, An explanation for the difference between the responses of mammals and birds to thyroxine and triiodothyronine, Biochem. J. 72:608–613 (1959).PubMedGoogle Scholar
  8. 8.
    K. Sterling and M. Tabachnick, Determination of the binding constants for the interaction of thyroxine and its analogues with human serum albumin, J. Biol. Chem. 236: 2241–2243(1961).Google Scholar
  9. 9.
    C. Niemann and J. F. Mead, The synthesis of DL-3,5-diiodo-4-(3′,5′-diiodo-2′ hydroxy-phenoxy)-phenylalanine, a physiologically active isomer of thyroxine, J. Am. Chem. Soc. 63:2685–2687(1941).Google Scholar
  10. 10.
    K. Tomita, H. A. Lardy, D. Johnson, and A. Kent, Synthesis and biological activity of O-methyl derivatives of thyroid hormones, J. Biol. Chem. 236:2981–2986 (1961).PubMedGoogle Scholar
  11. 11.
    E. C. Jorgensen, N. Zenker, and C. Greenberg, Thyroxine analogues. III. Antigoitrogenic and calorigenic activity of some alkyl substituted analogues of thyroxine, J. Biol. Chem. 235:1732–1737(1960).PubMedGoogle Scholar
  12. 12.
    C. R. Harington, Synthesis of a sulfur-containing analogue of thyroxine, Biochem. J. 43:434–437(1948).PubMedGoogle Scholar
  13. 13.
    J. R. Tata and C. C. Widnell, Ribonucleic acid synthesis during the early action of thyroid hormones, Biochem. J. 98:604–620 (1966).PubMedGoogle Scholar
  14. 14.
    L. Sokoloff, P. A. Roberts, M. M. Januska, and J. E. Kline, Mechanisms of stimulation of protein synthesis by thyroid hormones in vivo, Proc. Natl. Acad. Sci. 60:652–659 (1968).PubMedGoogle Scholar
  15. 15.
    D. Marine, in Glandular Physiology and Therapy, pp. 315–333, Am. Med. Assoc, Chicago (1935).Google Scholar
  16. 16.
    F. L. Hoch, Biochemical actions of thyroid hormones, Physiol. Rev. 42:605–673 (1962).PubMedGoogle Scholar
  17. 17.
    R. Pitt-Rivers and W. R. Trotter (eds.), The Thyroid Gland, Vol. I, Butterworths, London (1964).Google Scholar
  18. 18.
    J. H. Means, L. J. DeGroot, and J. B. Stanbury, The Thyroid and Its Diseases, 3rd ed., McGraw-Hill, New York (1963).Google Scholar
  19. 19.
    S. B. Barker, Mechanism of action of thyroid hormone, Physiol. Rev. 31:205–243 (1951).PubMedGoogle Scholar
  20. 20.
    S. B. Barker, Peripheral actions of thyroid hormones, Fed. Proc. 21:635–641 (1962).PubMedGoogle Scholar
  21. 21.
    J. Wolff and R. C. Goldberg, in Biochemical Disorders in Human Disease (R. H. S. Thompson and E. J. King, eds.), pp. 289–351, Academic Press, New York (1957).Google Scholar
  22. 22.
    A. Magnus-Levy, Über den respiratorischen Gewechsel unter dem Einfluss der Thyroidea sowie unter verschiedenen patholischen Zustanden, Berl. Klin. Wchnschr. 32:650–652 (1895).Google Scholar
  23. 23.
    E. S. Gordon and A. E. Heming, The effect of thyroid treatment on the respiration of various rat tissues, Endocrinology 34:353–360 (1944).Google Scholar
  24. 24.
    W. M. Boothby and I. Sandiford, The total and the nitrogenous metabolism in exophthalmic goiter, J. Am. Med. Assn. 81:795–800 (1923).Google Scholar
  25. 25.
    I. A. Mirsky and R. H. Broh-Kahn, The effect of experimental hyperthyroidism on carbohydrate metabolism, Am. J. Physiol. 117:6–12 (1936).Google Scholar
  26. 26.
    R. Sternheimer, The effect of a single injection of thyroxine on carbohydrates, protein, and growth in the rat liver, Endocrinology 25:899–908 (1939).Google Scholar
  27. 27.
    S. D. Burton, E. Robbins, and S. O. Byers, Effect of hyperthyroidism on glycogen content of the isolated rat liver, Am. J. Physiol. 188:509–513 (1957).PubMedGoogle Scholar
  28. 28.
    K. R. Hornbrook, P. V. Quinn, J. H. Siegel, and T. M. Brody, Thyroid hormone regulation of cardiac glycogen metabolism, Biochem. Pharmacol. 14:925–926 (1965).PubMedGoogle Scholar
  29. 29.
    C. Rich, E. L. Bierman, and I. L. Schwartz, Plasma nonesterified fatty acids in hyper-thyroid states, J. Clin. Invest. 38:275–278 (1959).PubMedGoogle Scholar
  30. 30.
    M. Vaughan, An in vitro effect of triiodothyronine on rat adipose tissue, J. Clin. Invest. 46:1482–1491 (1967).PubMedGoogle Scholar
  31. 31.
    K. Fletcher and N. B. Myant, Influence of the thyroid on the synthesis of cholesterol by liver and skin in vitro, J. Physiol. 144:361–372 (1958).PubMedGoogle Scholar
  32. 32.
    A. H. Philips and R. H. Langdon, The influence of thyroxine and other hormones on hepatic TPN-cytochrome reductase activity, Biochim. Biophys. Acta 19:380–382 (1956).Google Scholar
  33. 33.
    V. R. Potter, Possible biochemical mechanisms underlying adaptation to cold, Fed. Proc. 17:1060–1063(1958).PubMedGoogle Scholar
  34. 34.
    J. S. Hart, Metabolic alterations during chronic exposure to cold, Fed. Proc. 17:1045–1054 (1958).PubMedGoogle Scholar
  35. 35.
    R. Michels, J. Cason, and L. Sokoloff, Thyroxine: effects on amino acid incorporation into protein in vivo, Science 140:1417–1418 (1963).PubMedGoogle Scholar
  36. 36.
    J. R. Tata, in Actions of Hormones on Molecular Processes (G. Litwack and D. Kritchevsky, eds.), pp. 58–131, John Wiley, New York (1964).Google Scholar
  37. 37.
    H. F. Müller, Beitrage zur kenntniss der Basedowischen Krankheit, Deutsches Arch. f. Klin. Med. 51:335–412(1893).Google Scholar
  38. 38.
    S. N. Gershoff, J. J. Vitale, I. Antonowicz, M. Nakamura, and E. E. Hellerstein, Studies of interrelationships of thyroxine, magnesium, and vitamin B12, J. Biol. Chem. 231:849–854(1958).PubMedGoogle Scholar
  39. 39.
    C. D. Fitch, R. Coker, and J. S. Dinning, Metabolism of creatine-1-C14 by vitamin E-deficient and hyperthyroid rats, Am. J. Physiol. 198:1232–1234 (1960).PubMedGoogle Scholar
  40. 40.
    J. F. Gudernatsch, Feeding experiments on tadpoles. II. A further contribution to the knowledge of organs with internal secretion, Am. J. Anat. 15:431–480 (1914).Google Scholar
  41. 41.
    P. P. Cohen, Biochemical aspects of metamorphosis: transition from ammontelism to ureotelism, The Harvey Lectures 60:119–154 (1964–1965).Google Scholar
  42. 42.
    E. Frieden, Thyroid hormones and the biochemistry of amphibian metamorphosis, Recent Progr. Hormone Res. 23:139–194 (1967).PubMedGoogle Scholar
  43. 43.
    E. C. Wolffand J. Wolff, in The Thyroid Gland (R. Pitt-Rivers and W. R. Trotter, eds.), Vol. I, pp. 237–281, Butterworths, London (1964).Google Scholar
  44. 44.
    R. D. Dallam and R. B. Howard, Thyroxine-enhanced oxidative phosphorylation of rat liver mitochondria, Biochim. Biophys. Acta 37:188–189 (1960).PubMedGoogle Scholar
  45. 45.
    D. L. Drabkin, Cytochrome C metabolism and liver regeneration. Influence of thyroid gland and thyroxine, J. Biol. Chem. 182:335–349 (1950).Google Scholar
  46. 46.
    H. M. Klitgaard, Effect of thyroidectomy on cytochrome C concentration of selected rat tissues, Endocrinology 78:642–644 (1966).PubMedGoogle Scholar
  47. 47.
    S. Pedersen, J. R. Tata, and L. Ernster, Ubiquinone (coenzyme Q) and the regulation of basal metabolic rate by thyroid hormones, Biochim. Biophys. Acta 69:407–409 (1963).PubMedGoogle Scholar
  48. 48.
    O. Lindberg, H. Low, T. E. Conover, and L. Ernster, in Biological Structure and Function (T. W. Goodwin and O. Lindberg, eds.), Vol. II, pp. 3–24, Academic Press, London (1961).Google Scholar
  49. 49.
    W. F. Loomis and F. Lipmann, Reversible inhibition of the coupling between phosphorylation and oxidation, J. Biol. Chem. 173:807–808 (1948).PubMedGoogle Scholar
  50. 50.
    G. F. Maley and H. A. Lardy, Metabolic effects of thyroid hormones in vitro. II. Influence of thyroxine and triiodothyronine on oxidative phosphorylation, J. Biol. Chem. 204: 435–444(1953).PubMedGoogle Scholar
  51. 51.
    F. L. Hoch and F. Lipmann, The uncoupling of respiration and phosphorylation by thyroid hormones, Proc. Natl. Acad. Sci. 40:909–921 (1954).PubMedGoogle Scholar
  52. 52.
    G. F. Maley and H. A. Lardy, Efficiency of phosphorylation in selected oxidations by mitochondria from normal and thyrotoxic rat livers, J. Biol. Chem. 215:377–388 (1955).PubMedGoogle Scholar
  53. 53.
    H. G. Klemperer, The uncoupling of oxidative phosphorylation in rat liver mitochondria by thyroxine, triiodothyronine, and related substances, Biochem. J. 60:122–135 (1955).PubMedGoogle Scholar
  54. 54.
    C. Cooper and A. L. Lehninger, Oxidative phosphorylation by an enzyme complex from extracts of mitochrondria. I. Span β-hydroxybutyrate to oxygen, J. Biol. Chem. 219:489–505 (1956).PubMedGoogle Scholar
  55. 55.
    F. L. Hoch, Rapid effects of a subcalorigenic dose of L-thyroxine on mitochondria, J. Biol. Chem. 241:524–525(1966).PubMedGoogle Scholar
  56. 56.
    F. L. Hoch, Early action of injected L-thyroxine on mitochondrial oxidative phosphorylation, Proc. Natl. Acad. Sci. 58:506–512 (1967).PubMedGoogle Scholar
  57. 57.
    L. Ernster, D. Ikkos, and R. Luft, Enzymic activities of human skeletal muscle mitochondria: a tool in clinical metabolic research, Nature 184:1851–1854 (1959).PubMedGoogle Scholar
  58. 58.
    L. Sokoloff and S. Kaufman, Thyroxine stimulation of amino acid incorporation into protein, J. Biol. Chem. 236:795–803 (1961).PubMedGoogle Scholar
  59. 59.
    D. F. Tapley, C. Cooper, and A. L. Lehninger, The action of thyroxine on mitochondria and oxidative phosphorylation, Biochim. Biophys. Acta 18:597–598 (1955).PubMedGoogle Scholar
  60. 60.
    D. F. Tapley, The effect of thyroxine and other substances on the swelling of isolated rat liver mitochondria, J. Biol. Chem. 222:325–339 (1956).PubMedGoogle Scholar
  61. 61.
    D. F. Tapley, Mode and site of action of thyroxine, Proc. Mayo Clinic 39:626–636 (1964).Google Scholar
  62. 62.
    A. L. Lehninger, Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation, Physiol. Rev. 42:467–517 (1962).PubMedGoogle Scholar
  63. 63.
    D. F. Tapley and C. Cooper, Effect of thyroxine on the swelling of mitchondria isolated from various tissues of the rat, Nature 178:1119 (1956).PubMedGoogle Scholar
  64. 64.
    G. E. Paget and J. M. Thorp, An effect of thyroxine on the fine structure of the rat liver cell, Nature 199:1307–1308 (1963).PubMedGoogle Scholar
  65. 65.
    E. Goetsch, Newer methods in the diagnosis of thyroid disorders: pathological and clinical, New York J. Med. 18:259–267 (1918).Google Scholar
  66. 66.
    O. Thibault, Action renforçatrice de la thyroxine sur l’effet inhibiteur de l’adrénaline sur l’intestin de Lapin isolé, Compt. Rend. Soc. Biol. (Paris) 142:499–504 (1948).Google Scholar
  67. 67.
    T. S. Danowski, A. C. Heineman Jr., J. V. Bonessi, and C. Moses, Hydrocortisone and/or desiccated thyroid in physiologie dosage. XIV. Effects of thyroid hormone excesses on pressor activity and epinephrine responses, Metabolism 13:747–752 (1964).PubMedGoogle Scholar
  68. 68.
    H. E. Swanson, Interrelationships between thyroxine and adrenalin in the regulation of oxygen consumption in the albino rat, Endocrinology 59:217–225 (1956).PubMedGoogle Scholar
  69. 69.
    A. D’lorio and J. Leduc, The influence of thyroxine on the O-methylation of catechols, Arch. Biochem. Biophys. 87:224–227 (1960).Google Scholar
  70. 70.
    M. H. Zile, Effect of thyroxine and related compounds on monamine oxidase activity, Endocrinology 66:311–312 (1960).PubMedGoogle Scholar
  71. 71.
    T. S. Harrison, Adrenal medullary and thyroid relationships, Physiol. Rev. 44:161–185 (1964).PubMedGoogle Scholar
  72. 72.
    R. P. Zimon, E. V. Flock, G. M. Tyce, S. G. Sheps, and C. A. Owen Jr., Effect of thyroid hormones on metabolism of DL-norepinephrine by isolated rat liver, Endocrinology 80:808–814(1967).PubMedGoogle Scholar
  73. 73.
    R. J. Wurtman, I. J. Kopin, and J. Axelrod, Thyroid function and the cardiac disposition of catecholamines, Endocrinology 73:63–74 (1963).PubMedGoogle Scholar
  74. 74.
    W. R. Brewster Jr., J. P. Isaacs, P. F. Osgood, and T. L. King, The hemodynamic and metabolic interrelationships in the activity of epinephrine, norepinephrine, and the thyroid hormones, Circulation 13:1–20(1956).PubMedGoogle Scholar
  75. 75.
    A. Surtshin, J. K. Cordonnier, and S. Lang, Lack of influence of the sympathetic nervous system on the calorigenic response to thyroxine, Am. J. Physiol. 188:503–506 (1957).PubMedGoogle Scholar
  76. 76.
    W. Y. Lee, D. Bronsky, and S. S. Waldstein, Studies of thyroid and sympathetic nervous system interrelationships. II. Effects of guanethidine on manifestations of hyperthyroidism, J. Clin. Endocrinol. Metab. 22:879–885 (1962).PubMedGoogle Scholar
  77. 77.
    J. Wolff and E. C. Wolff, The effect of thyroxine on isolated dehydrogenases, Biochim. Biophys. Acta 26:387–396 (1957).PubMedGoogle Scholar
  78. 78.
    J. Wolff, The effect of thyroxine on isolated dehydrogenases. II. Sedimentation changes in glutamic dehydrogenase, J. Biol. Chem. 237:230–235 (1962).PubMedGoogle Scholar
  79. 79.
    J. Wolff, The effect of thyroxine on isolated dehydrogenases. III. The site of action of thyroxine on glutamic dehydrogenase, the function of adenine and guanine nucleotides, and the relation of kinetic to sedimentation changes, J. Biol. Chem. 237:236–242 (1962).PubMedGoogle Scholar
  80. 80.
    K. McCarthy, W. Lovenberg, and A. Sjoerdsma, The mechanism of the inhibition of horse liver alcohol dehydrogenase by thyroxine and related compounds, J. Biol. Chem. 243:2754–2760(1968).PubMedGoogle Scholar
  81. 81.
    B. A. Askonas, Effect of thyroxine on creatine Phosphokinase activity, Nature 167:933–934(1951).PubMedGoogle Scholar
  82. 82.
    S. A. Kuby, L. Noda, and H. A. Lardy, Adenosinetriphosphatecreatine transphosphorylase. III. Kinetic Studies, J. Biol. Chem. 210:65–82 (1954).PubMedGoogle Scholar
  83. 83.
    A. Horvath, Inhibition by thyroxine of enzymes requiring pyridoxal-5-phosphate, Nature 179:968(1957).PubMedGoogle Scholar
  84. 84.
    H. Lardy, in The Thyroid, Brookhaven Symposium in Biology, No. 7, 1954, Brookhaven National Laboratory, pp. 90–101, Upton, New York (1955).Google Scholar
  85. 85.
    J. J. Vitale, D. M. Hegsted, M. Nakamura, and P. Connors, The effect of thyroxine on magnesium requirement, J. Biol. Chem. 226:597–601 (1957).PubMedGoogle Scholar
  86. 86.
    J. J. Vitale, M. Nakamura, and D. M. Hegsted, The effect of magnesium deficiency on oxidative phosphorylation, J. Biol. Chem. 228:573–576 (1957).PubMedGoogle Scholar
  87. 87.
    S. H. Mudd, J. H. Park, and F. Lipmann, Magnesium antagonism of the uncoupling of oxidative phosphorylation by iodo-thyronines, Proc. Natl. Acad. Sci. 41:571–576 (1955).PubMedGoogle Scholar
  88. 88.
    Y. P. Lee, A. E. Takemori, and H. Lardy, Enhanced oxidation of α-glycerophosphate by mitochondria of thyroid-fed rats, J. Biol. Chem. 234:3051–3054 (1959).PubMedGoogle Scholar
  89. 89.
    L. Sokoloff and S. Kaufman, Effects of thyroxine on amino acid incorporation into protein, Science 129:569–570 (1959).PubMedGoogle Scholar
  90. 90.
    O. Stein and J. Gross, Effect of thyroid hormone on protein biosynthesis by cell-free systems of liver, Proc. Soc. Exptl. Biol. Med. 109:817–820 (1962).Google Scholar
  91. 91.
    J. R. Tata, L. Ernster, O. Lindberg, E. Arrhenius, S. Pedersen, and R. Hedman, The action of thyroid hormones at the cell level, Biochem. J. 86:408–428 (1963).PubMedGoogle Scholar
  92. 92.
    J. R. Tata, in Proceedings of the Second International Congress of Endocrinology, London, 1964, International Congress Series No. 83 (S. Taylor, ed.), pp. 46–56, Excerpta Medica Foundation, Amsterdam (1965).Google Scholar
  93. 93.
    L. Sokoloff, in Proceedings of the Second International Congress of Endocrinology, London, 1964, International Congress Series No. 83 (S. Taylor, ed.), pp. 87–94, Excerpta Medica Foundation, Amsterdam (1965).Google Scholar
  94. 94.
    J. R. Tata, Inhibition of the biological action of thyroid hormones by actinomycin D and puromycin, Nature 197:1167–1168 (1963).PubMedGoogle Scholar
  95. 95.
    W. P. Weiss and L. Sokoloff, Reversal of thyroxine-induced hypermetabolism by puromycin, Science 140:1324–1326 (1963).PubMedGoogle Scholar
  96. 96.
    L. Sokoloff, S. Kaufman, P. L. Campbell, C. M. Francis, and H. V. Gelboin, Thyroxine stimulation of amino acid incorporation into protein. Localization of stimulated step, J. Biol. Chem. 238:1432–1437 (1963).PubMedGoogle Scholar
  97. 97.
    L. Sokoloff, P. L. Campbell, C. M. Francis, and C. B. Klee, Thyroxine stimulation of amino acid incorporation into ribosomal protein, Biochem. Biophys. Acta 76:329–332 (1963).PubMedGoogle Scholar
  98. 98.
    R. L. Krause and L. Sokoloff, Effects of thyroxine on initiation and completion of protein chains of hemoglobin in vitro, J. Biol. Chem. 242:1431–1438 (1967).Google Scholar
  99. 99.
    L. Sokoloff, C. M. Francis, and P. L. Campbell, Thyroxine stimulation of amino acid incorporation into protein independent of any action on messenger RNA synthesis, Proc. Natl. Acad. Sci. 52:728–736 (1964).PubMedGoogle Scholar
  100. 100.
    L. Sokoloff, in Proceedings of the Third Kettering Symposium (A. Pietro, M. R. Lamborg, and F. T. Kenney, eds.), pp. 345–367, Academic Press, New York (1968).Google Scholar
  101. 101.
    S. Gelber, P. L. Campbell, G. E. Deibler, and L. Sokoloff, Effects of L-thyroxine on amino acid incorporation into protein in mature and immature rat brain, J. Neurochem. 11:221–229(1964).PubMedGoogle Scholar
  102. 102.
    C. B. Klee and L. Sokoloff, Mitochondrial differences in mature and immature brain. Influence on rate of amino acid incorporation into protein and responses to thyroxine, J. Neurochem. 11:709–716 (1964).PubMedGoogle Scholar
  103. 103.
    J. T. Eayrs, Endocrine influence on cerebral development, Arch, de Biologie (Liège) 75:529–565(1964).Google Scholar
  104. 104.
    J. T. Eayrs and S. H. Taylor, The effect of thyroid deficiency induced by methyl thiouracil on the maturation of the central nervous system, J. Anat. (London) 85:350–358 (1951).Google Scholar
  105. 105.
    J. T. Eayrs, The cerebral cortex of normal and hypothyroid rats, Acta Anat. 25:160–183 (1955).PubMedGoogle Scholar
  106. 106.
    S. E. Geel and P. S. Timiras, The influence of neonatal hypothyroidism and thyroxine on the ribonucleic acid and deoxyribonucleic acid concentrations of rat cerebral cortex, Brain Res. 4:135–142 (1967).PubMedGoogle Scholar
  107. 107.
    J. M. Pasquini, B. Kaplum, C. A. Garcia Argiz, and C. J. Gomez, Hormonal regulation of brain development. I. The effect of neonatal thyroidectomy upon nucleic acids, protein, and two enzymes in developing cerebral cortex and cerebellum of the rat, Brain Res. 6:621–634(1967).PubMedGoogle Scholar
  108. 108.
    R. Balàzs, S. Kovacs, P. Teichgräber, W. A. Cocks, and J. T. Eayrs, Biochemical effects of thyroid deficiency on the developing brain, J. Neurochem. 15:1335–1349 (1968).PubMedGoogle Scholar
  109. 109.
    M. Hamburgh and R. P. Bunge, Evidence for a direct effect of thyroid hormone on maturation of nervous tissue grown in vitro, Life Sci. 3:1423–1430 (1964).PubMedGoogle Scholar
  110. 110.
    M. Hamburgh, Evidence for a direct effect of temperature and thyroid hormone on myelinogenesis in vitro, Developmental Biol. 13:15–30 (1966).Google Scholar
  111. 111.
    P. B. Bradley, J. T. Eayrs, and K. Schmalbach, The electroencephalogram of normal and hypothyroid rats, Electroenceph. Clin. Neurophysiol. 12:461–411 (1960).Google Scholar
  112. 112.
    P. B. Bradley, J. T. Eayrs, A. Glass, and W. Heath, The maturational and metabolic consequences of neonatal thyroidectomy upon the recruiting response in the rat, Electroenceph. Clin. Neurophysiol. 13:577–586 (1961).Google Scholar
  113. 113.
    J. T. Eayrs and W. A. Lishman, The maturation of behavior in hypothyroidism and starvation, Brit. J. Animal Behavior 3:17–24 (1955).Google Scholar
  114. 114.
    J. T. Eayrs and S. Levine, Influence of thyroidectomy and subsequent replacement therapy upon conditioned avoidance learning in the rat, J. Endocrinol. 25:505–513 (1963).Google Scholar
  115. 115.
    D. M. Woodbury, Effect of hormones on brain excitability and electrolytes, Recent Progr. Hormone Res. 10:65–107 (1954).Google Scholar
  116. 116.
    P. S. Timiras, D. M. Woodbury, and S. L. Agarwal, Effect of thyroxine and triiodothyronine on brain function and electrolyte distribution in intact and adrenalectomized rats, J. Pharmacol. Exptl. Therap. 115:154–171 (1955).Google Scholar
  117. 117.
    J. F. Fazekas, F. B. Graves, and R. W. Alman, The influence of the thyroid on cerebral metabolism, Endocrinology 48:169–174 (1951).PubMedGoogle Scholar
  118. 118.
    M. Hamburgh and L. B. Flexner, Biochemical and physiological differentiation during morphogenesis. XXI. Effect of hypothyroidism and hormone therapy on enzyme activities of the developing cerebral cortex of the rat, J. Neurochem. 1:279–288 (1957).PubMedGoogle Scholar
  119. 119.
    L. Sokoloff, R. L. Wechsler, R. Mangold, K. Balls, and S. S. Kety, Cerebral blood flow and oxygen consumption in hyperthyroidism before and after treatment, J. Clin. Invest. 32:202–208(1953).PubMedGoogle Scholar
  120. 120.
    P. Scheinberg, Cerebral circulation and metabolism in hyperthyroidism, J. Clin. Invest. 29:1010–1013(1950).PubMedGoogle Scholar
  121. 121.
    W. Sensenbach, L. Madison, S. Eisenberg, and L. Ochs, The cerebral circulation and metabolism in hyperthyroidism and myxedema, J. Clin. Invest. 33:1434–1440 (1954).PubMedGoogle Scholar
  122. 122.
    P. Scheinberg, E. A. Stead Jr., E. S. Brannon, and J. V. Warren, Correlative observations on cerebral metabolism and cardiac output in myxedema, J. Clin. Invest. 29:1139–1146 (1950).PubMedGoogle Scholar
  123. 123.
    D. H. Ford and J. Gross, The metabolism of I131-labeled thyroid hormones in the hypophysis and brain of the rabbit, Endocrinology 62:416–436 (1958).PubMedGoogle Scholar
  124. 124.
    D. H. Ford and J. Gross, Central nervous system-thyroid interrelationships, Brain Res. 7:329–349(1968).PubMedGoogle Scholar
  125. 125.
    A. Cuaron, J. Gamble, N. B. Myant, and C. Osorio, The effect of thyroid deficiency on the growth of the brain and on the deposition of brain phospholipids in foetal and newborn rabbits, J. Physiol. (London) 168:613–630 (1963).Google Scholar
  126. 126.
    P. Walravens and H. P. Chase, Influence of thyroid on formation of myelin lipids, J. Neurochem. 16:1477–1484(1969).PubMedGoogle Scholar
  127. 127.
    A. E. Ramirez de Guglielmone and C. J. Gomez, Influence of neonatal hypothyroidism on amino acids in developing brain, J. Neurochem. 13:1017–1025 (1966).PubMedGoogle Scholar
  128. 128.
    L. Sokoloff, Action of thyroid hormones and cerebral development, Am. J. Dis. Children 114:498–506(1967).Google Scholar
  129. 129.
    L. Schneck, D. H. Ford, and R. Rhines, The uptake of S35-L-methionine into the brain of euthyroid and hyperthyroid neonatal rats, Acta Neurol. Scand. 40:285–290 (1965).Google Scholar
  130. 130.
    S. Geel, T. Valcana, and P. S. Timiras, Effect of neonatal hypothyroidism and of thyroxine on L-[14C] leucine incorporation in protein in vivo and the relationship to ionic levels in the developing brain of the rat, Brain Res. 4:143–150 (1967).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Louis Sokoloff
    • 1
  1. 1.Section on Developmental Neurochemistry Laboratory of Cerebral Metabolism National Institute of Mental HealthU.S. Department of Health, Education and Welfare Public Health ServiceBethesdaUSA

Personalised recommendations