The study of the phenomenon of cellular aging is severely limited by the meager amount of basic information available, and nowhere is this more evident than in the area of the neural sciences. The present review is thus a very limited one, and some of the data considered have of necessity been more of developmental than aging significance. For broader information on aging, the reader is referred to the excellent review of Strehler(1) and to a recent symposium volume.(2)


Purkinje Cell Cellular Aging Lipofuscin Granule Gerontological Research Neural Science 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. L. Strehler, Time, Cells, and Aging, Academic Press, New York (1962).Google Scholar
  2. 2.
    Aspects of the Biology of Aging, Symposium of the Society for Experimental Biology, Number XXI, Academic Press, New York (1967).Google Scholar
  3. 3.
    C. P. Leblond and B. E. Walker, Renewal of cell populations, Physiol. Rev. 36:255–276 (1956).PubMedGoogle Scholar
  4. 4.
    T. Inukai, On the loss of Purkinje cells, with advancing age, from the cerebellar cortex of the albino rat, J. Comp. Neurol. 30:229 (1919).Google Scholar
  5. 5.
    H. Kuhlenbeck, Senile changes in the brain of Wistar Institute rats, Anat. Rec. 88:441 (1944).Google Scholar
  6. 6.
    H. Brody, Organization of the cerebral cortex. III. A study in aging in human cerebral cortex, J. Comp. Neurol. 102:511–556 (1955).PubMedCrossRefGoogle Scholar
  7. 7.
    W. Andrew and M. A. Bari, Some aspects of age changes in the spinal cord compared with those in other parts of the nervous system, in Proc. of the Fifth International Cong. of Neuropathology, Excerpta Medica Foundation, New York, 1965. International Congress Ser. No. 100, pp. 518–525.Google Scholar
  8. 8.
    H. M. Wahal and H. H. Riggs, Changes in the brain associated with senility, Arch. Neurol. Psychiat. Chicago 2:151 (1960).CrossRefGoogle Scholar
  9. 9.
    W. Bondereff, Histophysiology of the aging nervous system, in Advances in Gerontological Research (B. L. Strehler, ed.), Vol. 1, Academic Press (1964), p. 1.Google Scholar
  10. 10.
    E. W. Dempsey, Mitochondrial changes in different physiological states, in Ciba Foundation Colloquia on Aging (G. E. W. Wolstenholme and E. C. P. Millar, eds.), Vol. 2: Aging in Transient Tissues, Little, Brown, Boston (1956), pp. 100–102.Google Scholar
  11. 11.
    W. Andrew, comments in The Biology of Aging (B. L. Strehler et al., eds.), Publ. No. 6, Am. Inst. Biol. Sci., Washington (1960), p. 37.Google Scholar
  12. 12.
    S. L. Palay and G. E. Palade, The fine structure of neurons, J. Biophys. Biochem. Cytol. 1:69 (1954).CrossRefGoogle Scholar
  13. 13.
    A. Bethe and M. Fluck, Uber das gelbe Pigment der Ganglienzellen, seine kolloidchemischen and topographischen Beziehungen zu andern Zells-trukturen und eine elekive Methode zu seiner Darstellung, Z. Zellforsch 27:211 (1937).CrossRefGoogle Scholar
  14. 14.
    N. M. Sulkin and P. Srivanij, The experimental production of senile pigments in the nerve cells of young rats, J. Gerontol. 15:2 (1960).PubMedCrossRefGoogle Scholar
  15. 15.
    H. P. von Hahn and E. Fritz, Age-related alterations in the structure of DNA. III Thermal stability of rat liver DNA related to age, histone content and ionic strength, Gerontologia, Basel 12:237 (1966).CrossRefGoogle Scholar
  16. 16.
    D. I. Kurtz and F. M. Sinex, Age-related differences in the Association of brain DNA and nuclear protein, Biochim. Biophys. Acta 145:140 (1967).Google Scholar
  17. 17.
    R. C. Huang and J. Bonner, Histone, a suppressor of chromosomal RNA synthesis, Proc. Nat. Acad. Sci. U.S. 48:1216 (1962).CrossRefGoogle Scholar
  18. 18.
    R. L. Herrmann, Gene interactions in lower organisms as models for development and aging, J. Gerontol. 22:Part II, 9 (1967).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Burger, Der desoxyribonucleursaure- und ribonuclensaure-gehalt des menschlichen Gehirns im Laufe des Levens, J. Altenforsch. 12:133 (1958).Google Scholar
  20. 20.
    J. Cammermayer, Cytological manifestations of aging in rabbit and chinchilla brains, J. Geront. 18:41 (1963).CrossRefGoogle Scholar
  21. 21.
    A. Yajima, The nucleic acid content of the brain tissue of rats as influenced by age, Tohuku J. Exp. Med. 85:259 (1965).CrossRefGoogle Scholar
  22. 22.
    H. P. von Hahn, Distribution of DNA and RNA in the brain during the life span of the albino rat, Gerontologia, Basel 12: 18 (1966).CrossRefGoogle Scholar
  23. 23.
    V.J. Wulff and M. Freshman, Age-related reduction of RNA content of rat cardiac muscle and cerebellum, Arch. Biochem. Biophys. 95:181 (1961).PubMedCrossRefGoogle Scholar
  24. 24.
    M. J. Wayner, V. J. Wulff, and M. Piekielniak, Ribonucleic acid content of tissues of rats of various ages, J. Gerontol. 17:455 (1962).Google Scholar
  25. 25.
    V. J. Wulff, H. Quastler, and F. G. Sherman, The incorporation of 3H-cytidine in mice of different ages, Arch. Biochem. Biophys. 95:548 (1961).PubMedCrossRefGoogle Scholar
  26. 26.
    V. J. Wulff, H. Quastler, F. G. Sherman, and H. V. Samis, The effect of specific activity of 3H-cytidine on its incorporation into tissues of young and old mice, J. Gerontol. 20:34 (1965).PubMedCrossRefGoogle Scholar
  27. 27.
    A. V. Palladin, Y. V. Belik, and L. I. Kracko, Rate of protein renewal in the brain in states of stimulation and inhibition at different ages of the test animal, Biokhymia 22:359 (1957).Google Scholar
  28. 28.
    S. Oeriu, Proteins in development and senescence, in Advances in Gerontological Research (B. L. Strehler, ed.), Vol. 1, Academic Press, New York (1964), pp. 23–78.Google Scholar
  29. 29.
    B. Jakoubek, E. Gutmann, J. Fischer, and A. Babicky, Rate of protein renewal in spinal motoneurons of adolescent and old rats, J. Neurochem. 15:633 (1968).PubMedCrossRefGoogle Scholar
  30. 30.
    A. Lajtha and J. Toth, The brain barrier system. II. Uptake and transport of amino acids by the brain, J. Neurochem. 8:216 (1961).PubMedCrossRefGoogle Scholar
  31. 31.
    E. C. Weinbach and J. Garbus, Age and oxidative phosphorylation in rat liver and brain, Nature 178:1225 (1956).PubMedCrossRefGoogle Scholar
  32. 32.
    R. Carubelli, Changes in rat brain neuraminidase during development, Nature 219:955 (1968).PubMedCrossRefGoogle Scholar
  33. 33.
    S.-C. Sung, Deoxyribonucleases from rat brain, J. Neurochem. 15:477 (1968).PubMedCrossRefGoogle Scholar
  34. 34.
    J. M. Reiner, The effect of age on carbohydrate metabolism of tissue homogenates, J. Gerontol. 2:315 (1947).PubMedCrossRefGoogle Scholar
  35. 35.
    D. D. Hendley, B. L. Strehler, M. C. Reporter, and M. V. Gee, Further studies on human cardiac age pigment, Fed. Proc. 20:298 (1961).Google Scholar
  36. 36.
    H. P. Hahn, A model of “regulatory” aging of the cell at the gene level, J. Gerontol. 21:291 (1966).CrossRefGoogle Scholar
  37. 37.
    V. J. Wulff, H. Quastler, and F. G. Sherman, An hypothesis concerning RNA metabolism and aging, Proc. Nat. Acad. Sci. U.S. 48:1373 (1962).CrossRefGoogle Scholar
  38. 38.
    Zh. A. Medvedev, The nucleic acids in development and aging, in Advances in Gerontological Research (B. L. Strehler, ed.), Vol. 1, pp. 181–206, Academic Press, New York (1964).Google Scholar
  39. 39.
    R. Pearl, S. L. Parker, and B. M. Gonzalez, Experimental studies on the duration of life, VII. The Mendelian inheritance of duration of life in crosses of wild type and quintuple stocks of Drosophila melanogaster, Am. Naturalist 57:153 (1923).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Robert L. Herrmann
    • 1
  1. 1.Department of BiochemistryBoston University School of MedicineBostonUSA

Personalised recommendations