• D. A. Rappoport
  • R. R. Fritz
  • S. Yamagami


In spite of the complexity of the brain structure and the growth patterns of its diverse cells and their processes, each cell is the product of the sequential activation and repression of genomes which uniquely determine its protein components.(1–5) In general, cell growth can be defined as that phase during which there is a net accrual of proteins. At maturation, when growth has ceased, cells no longer accrue proteins, although turnover of protein continues.


Growth Hormone Chick Embryo Orotic Acid Amino Acid Incorporation Nonhistone Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. R. Gross, Biochemistry of differentiation, Ann. Rev. Biochem. 37:631–660 (1968).PubMedCrossRefGoogle Scholar
  2. 2.
    R. B. Scott and E. Bell, in Molecular and Cellular Aspects of Development (E. Bell. ed.), pp. 217–222, Harper and Row, New York (1967).Google Scholar
  3. 3.
    J. Paul, Molecular aspects of cytodifferentiation, Adv. Comp. Physiol. Biochem. 3:115–172 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    J. D. Ebert, in The Neurosciences (G. C. Quarton, T. Melnechuk, and F. O. Schmitt, eds.), pp. 241–247, The Rockefeller University Press, New York (1967).Google Scholar
  5. 5.
    J. D. Ebert and F. E. Samson, Gene expression, Neurosci. Res. Prog. Bull. 5(3):227–303 (1967).Google Scholar
  6. 6.
    R. G. Spector, in Neurochemistry (C. W. M. Adams, ed.), pp. 239–252, Elsevier, Amsterdam (1965).Google Scholar
  7. 7.
    W. A. Himwich, Biochemical and neurophysiological development of the brain in the neonatal period, Intl. Rev. Neurobiol. 4:117–158 (1962).CrossRefGoogle Scholar
  8. 8.
    S. Skoglund, Growth and differentiation, Ann Rev. Physiol. 31:19–42 (1969).CrossRefGoogle Scholar
  9. 9.
    W. Wechsler, Developmental analysis of the fine structure of different nerve cell types, Exp. Biol. Med. 1:153–169 (1967).Google Scholar
  10. 10.
    S. Schapiro and R. J. Norman, Thyroxine: effects of neonatal administration on maturation, development and behavior, Science 155:1279–1281 (1967).PubMedCrossRefGoogle Scholar
  11. 11.
    S. M. Crain, Development of electrical activity in the cerebral cortex of the albino rat, Proc. Soc. Exp. Biol. Med. 81:49–51 (1952).PubMedGoogle Scholar
  12. 12.
    J. Bures, The ontogenetic development of steady potential differences in the cerebral cortex in animals, Electroencephalog. Clin. Neurophysiol. 9:121–130 (1957).CrossRefGoogle Scholar
  13. 13.
    L. B. Flexner, D. B. Tyler, and L. J. Gallant, Biochemical and physiological differentiation during morphogenesis, X. Onset of electrical activity in developing cerebral cortex of fetal guinea pig, J. Neurophysiol. 13:427–430 (1950).PubMedGoogle Scholar
  14. 14.
    H. McIlwain, Biochemistry and the Central Nervous System 2nd ed. Little, Brown and Co., Boston (1959).Google Scholar
  15. 15.
    M. Atlas and V. P. Bond, The cell generation cycle of the eleven-day mouse embryo, J. Cell. Biol. 26:19–24 (1965).PubMedCrossRefGoogle Scholar
  16. 16.
    L. D. Hodge, T. W. Borun, E. Robbins, and M. D. Scharff, in Biochemistry of Cell Division (R. Baserga, ed.), pp. 15–37, C. C. Thomas, Springfield, Ill. (1969).Google Scholar
  17. 17.
    D. Gallwitz and G. C. Mueller, Histone synthesis in vitro by cytoplasmic microsomes from HeLa cells, Science 163:1351–1353 (1969).PubMedCrossRefGoogle Scholar
  18. 18.
    E. Robbins and T. W. Borun, The cytoplasmic synthesis of histones in HeLa cells and its temporal relationship to DNA replication, Proc. Natl. Acad. Sci. 57:409–416 (1967).PubMedCrossRefGoogle Scholar
  19. 19.
    E. K. Schandl and J. H. Taylor, Early events in the replication and integration of DNA into mammalian chromosomes, Biochem. Biophys. Res. Commun. 34:291–300 (1969).PubMedCrossRefGoogle Scholar
  20. 20.
    R. B. Painter and A. Schaefer, State of newly synthesized HeLa DNA, Nature 221:1215–1217 (1969).PubMedCrossRefGoogle Scholar
  21. 21.
    G. C. Mueller, Biochemical events in the animal cell cycle, Fed. Proc. 28:1780–1789 (1969).PubMedGoogle Scholar
  22. 22.
    L. R. Gurley and J. M. Hardin, The metabolism of histone fractions, I. Synthesis of histone fractions during the life cycle of mammalian cells, Arch. Biochem. Biophys. 128:285–292 (1968).PubMedCrossRefGoogle Scholar
  23. 23.
    L. H. Kedes and P. R. Gross, Identification in cleaving embryos of three RNA species serving as templates for the synthesis of nuclear proteins, Nature 223:1335–1339 (1969).PubMedCrossRefGoogle Scholar
  24. 24.
    G. C. Mueller and K. Kajiwara, Actinomycin D and p-fluorophenylalanine inhibitors of nuclear replication in HeLa cells, Biochim. Biophys. Acta 119:557–565 (1966).PubMedCrossRefGoogle Scholar
  25. 25.
    J. J. Sisken, in The Proliferation and Spread of Neoplastic Cells, pp. 159–174, Williams and Wilkins, Baltimore (1968).Google Scholar
  26. 26.
    T. P. Brent, J. A. V. Butler, and A. R. Crathorn, Variations in Phosphokinase activity during the cell cycle in synchronous populations of HeLa cells, Nature 207:176–177 (1965).PubMedCrossRefGoogle Scholar
  27. 27.
    E. Stubblefield and G. C. Mueller, Thymidine activity in synchronized HeLa cell cultures, Biochem. Biophys. Res. Commun. 20:535–538 (1965).PubMedCrossRefGoogle Scholar
  28. 28.
    Y. Hotta and H. Stern, in Development (E. Bell, ed.), rev. ed., pp. 187–194, Harper and Row, New York (1967).Google Scholar
  29. 29.
    H. Stern and Y. Hotta, Biochemical studies of male gametogenesis in liliaceous plants, Current Topics Develop. Biol. 3:37–63 (1968).CrossRefGoogle Scholar
  30. 30.
    J. Bukovsky and J. S. Roth, Some factors affecting the phosphorylation of thymidine by transplantable rat hepatomas, Cancer Res. 25:358–364 (1965).PubMedGoogle Scholar
  31. 31.
    H. Tiedemann, Inducers and inhibitors of embryonic differentiation: Their chemical nature and mechanism of action, Exptl. Biol. Med. 1:8–21 (1967).Google Scholar
  32. 32.
    T. Yamada, A chemical approach to the problem of the organism, Adv. Morphogenes. 1:1–53 (1961).Google Scholar
  33. 33.
    T. Yamada, The inductive phenomenon as a tool for understanding the basic mechanism of differentiation, J. Cell. Comp. Physiol. Suppl. 1 ad 60:49–64 (1962).CrossRefGoogle Scholar
  34. 34.
    H. Tiedemann, K. Kesselring, U. Becker, and H. Tiedemann, Uber die induktions-fahigkeit von microsomen- und zellkernfraktionen aud embryonen und leber von huhnern, Develop. Biol. 4:214–241 (1962).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Suzuki and I. Kawakami, Inductive effects of nuclei and their subfractions isolated from rat liver, Embryologia 8:75–78 (1963).CrossRefGoogle Scholar
  36. 36.
    J. Langman, in The Structure and Function of Nervous Tissue (G. H. Bourne, ed.), Vol. 1, pp. 33–65, Academic Press, New York (1968).Google Scholar
  37. 37.
    P. Glees and K. Meller, in The Structure and Function of Nervous Tissue (G. H. Bourne, ed.), Vol. 1, pp. 301–323, Academic Press, New York (1968).Google Scholar
  38. 38.
    J. Altman, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. 2, pp. 137–182, Plenum Press, New York (1969).Google Scholar
  39. 39.
    M. Winick and A. Noble, Quantitative changes in DNA, RNA, and protein during prenatal and postnatal growth in the rat, Develop. Biol. 12:451–466 (1965).PubMedCrossRefGoogle Scholar
  40. 40.
    F. L. Margolis, DNA and DNA-polymerase activity in chicken brain regions during ontogeny, J. Neurochem. 16:447–456 (1969).PubMedCrossRefGoogle Scholar
  41. 41.
    A. D. Bharucha and M. R. V. Murthy, personal communication (1969).Google Scholar
  42. 42.
    S.-C. Sung, DNA synthesis in the developing rat brain, Canad.J. Biochem. 47:47–50 (1969).Google Scholar
  43. 43.
    D. A. Rappoport, R. R. Fritz, and J. L. Myers, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. 1, pp. 101–119, Plenum Press, New York (1969).Google Scholar
  44. 44.
    H. Dellweg, R. Gerner, and A. Wacker, Quantitative and qualitative changes in ribonucleic acids of rat brain dependent on age and training experiments, J. Neurochem. 15:1109–1119 (1968).PubMedCrossRefGoogle Scholar
  45. 45.
    L. M. Barbato, I. W. Barbato, and A. Hamanaka, Comparative study of incorporation of isotopically labeled precursors into nuclear and microsomal RNA of the developing brain, Brain Res. 9:213–223 (1968).PubMedCrossRefGoogle Scholar
  46. 46.
    M. R. V. Murthy, Kinetic aspects of ribosomal and messenger RNA formation in young rat brain, Biochim. Biophys. Acta 166:115–123 (1968).PubMedCrossRefGoogle Scholar
  47. 47.
    S. Yamagami, R. R. Fritz, and D. A. Rappoport, Biochemistry of the developing rat brain, VII. Changes in the ribosomal system and nuclear RNAs, Biochim. Biophys. Acta 129:532–547 (1966).PubMedCrossRefGoogle Scholar
  48. 48.
    Z. S. Tencheva and A. A. Hadjiolov, Characterization of rat brain ribonucleic acids by agar gel electrophoresis, J. Neurochem. 16:769–776 (1969).PubMedCrossRefGoogle Scholar
  49. 49.
    H. Adams, The incorporation of (14C) orotic acid into the nuclear and microsomal RNA fractions of the developing rat cerebral cortex: Some effects of deoxycholate treatment, J. Neurol. Sci. 8:171–181 (1968).CrossRefGoogle Scholar
  50. 50.
    B. Daneholt and S.-O. Brattgärd, A comparison between RNA metabolism of nerve cells and glia in the hypoglossal nucleus of the rabbit, J. Neurochem. 13:913–921 (1966).PubMedCrossRefGoogle Scholar
  51. 51.
    E. Egyházi and H. Hydén, Biosynthesis of rapidly labeled RNA in brain cells, Life Sci. 5:1215–1223 (1966).PubMedCrossRefGoogle Scholar
  52. 52.
    H. R. Mahler, W. J. Moore, and R. J. Thompson, Isolation and characterization of ribonucleic acid from cerebral cortex of rat, J. Biol. Chem. 241:1283–1289 (1966).PubMedGoogle Scholar
  53. 53.
    S. C. Bondy and S. Roberts, Developmental and regional variations in ribonucleic acid synthesis on cerebral chromatin, Biochem. J. 115:341–349 (1969).PubMedGoogle Scholar
  54. 54.
    R. R. Fritz and D. A. Rappoport, unpublished data.Google Scholar
  55. 55.
    R. G. Roeder and W. J. Rutter, Multiple Forms of DNA-dependent RNA Polymerase in eukaryotic organisms, Nature 224:234–237 (1969).PubMedCrossRefGoogle Scholar
  56. 56.
    S. H. Barondes, Studies with an RNA Polymerase from brain, J. Neurochem. 11:663–669 (1964).PubMedCrossRefGoogle Scholar
  57. 57.
    S. Furusawa and D. A. Rappoport, unpublished data.Google Scholar
  58. 58.
    P. Mandel and S. Edel-Harth, Free nucleotides in the rat brain during postnatal development, J. Neurochem. 13:591–595 (1966).PubMedCrossRefGoogle Scholar
  59. 59.
    T. Itoh and J. H. Quastel, Ribonucleic acid biosynthesis in adult and infant rat brain in vitro, Science 164:79–80 (1969).Google Scholar
  60. 60.
    S. Yamagami and D. A. Rappoport, unpublished data.Google Scholar
  61. 61.
    G. R. Dutton, A. T. Campagnoni, H. R. Mahler, and W. J. Moore, Studies on the labeling patterns of RNA from cerebral cortex nuclei, J. Neurochem. 16:989–997 (1969).PubMedCrossRefGoogle Scholar
  62. 62.
    J. Stevenin, P. Mandel, and M. Jacob, Relationship between nuclear giant-size dRNA and microsomal dRNA of rat brain, Proc. Natl. Acad. Sci. 62:490–497 (1969).PubMedCrossRefGoogle Scholar
  63. 63.
    L. Lim and D. H. Adams, Microsomal components in relation to amino acid incorporation by preparations from the developing rat brain, Biochem. J. 104:229–238 (1967).PubMedGoogle Scholar
  64. 64.
    D. H. Adams and M. E. Fox, Some studies on rat brain microsomes in relation to growth and development, Brain Res. 12:157–164 (1969).PubMedCrossRefGoogle Scholar
  65. 65.
    M. R. V. Murthy and D. A. Rappoport, Biochemistry of the developing rat brain, VI. Preparation and properties of ribosomes, Biochim. Biophys. Acta 95:132–145 (1965).PubMedCrossRefGoogle Scholar
  66. 66.
    S. Navon and A. Lajtha, The uptake of amino acids by particulate fractions from brain, Biochim. Biophys. Acta 173:518–531 (1969).PubMedCrossRefGoogle Scholar
  67. 67.
    T. C. Johnson, Cell-free protein synthesis by mouse brain during early development, J. Neurochem. 15:1189–1194 (1968).PubMedCrossRefGoogle Scholar
  68. 68.
    M. L. Vahvelainen and S. S. Oja, The uptake and incorporation into protein of (3H) tyrosine by slices prepared from developing rat brain cortex, Brain Res. 13:227–233 (1969).PubMedCrossRefGoogle Scholar
  69. 69.
    S. S. Oja, Studies on protein metabolism in developing rat brain, Annales Academiae Scientiarum Fennicae, Series A, V. Medica 131:1–81 (1967).Google Scholar
  70. 70.
    T. C. Johnson and M. W. Luttges, The effects of maturation on in vitro protein synthesis by mouse brain cells, J. Neurochem. 13:545–552 (1966).PubMedCrossRefGoogle Scholar
  71. 71.
    R. J. Schain, M. J. Carver, J. H. Copenhaver, and N. R. Underdahl, Protein metabolism in the developing brain: Influence of birth and gestational age, Science 156:984–985 (1967).PubMedCrossRefGoogle Scholar
  72. 72.
    B. W. Moore and V. J. Perez, in Physiological and Biochemical Aspects of Nervous Integration (F. D. Carlson, ed.), pp. 343–359, Prentice-Hall, Englewood Cliffs, N.J. (1968).Google Scholar
  73. 73.
    H. Hydén and B. S. McEwen, A glial protein specific for the nervous system, Proc. Natl. Acad. Sci. 55:354–358 (1966).PubMedCrossRefGoogle Scholar
  74. 74.
    B. S. McEwen and H. Hydén, A study of specific brain proteins on the semi-micro scale, J. Neurochem. 13:823–833 (1966).PubMedCrossRefGoogle Scholar
  75. 75.
    B. S. McEwen, in Physiological and Biochemical Aspects of Nervous Integration (F. D. Carlson, ed.), pp. 361–381, Prentice-Hall, Englewood Cliffs, N.J. (1968).Google Scholar
  76. 76.
    L. Levine, in The Neurosciences (G. C. Quarton, T. Melnechuk, and F. O. Schmitt, eds.), pp. 220–230, Rockefeller University Press, New York (1967).Google Scholar
  77. 77.
    L. C. Mokrasch, Incorporation in vitro of 14C amino acids and 14C-palmitate into the rat brain proteolipids, Fed. Proc. 22:300 (1963).Google Scholar
  78. 78.
    C. B. Klee and L. Sokoloff, Mitochondrial differences in mature and immature brain, J. Neurochem. 11:709–716 (1964).PubMedCrossRefGoogle Scholar
  79. 79.
    C. B. Klee and L. Sokoloff, Amino acid incorporation into proteolipid of myelin in vitro, Proc. Natl. Acad. Sci. 53:1014–1021 (1965).PubMedCrossRefGoogle Scholar
  80. 80.
    M. Kies, E. B. Thompson, and E. C. Alvord, Jr., The relationship of myelin protein to experimental allergic encephalomyelitis, Ann. N.Y. Acad. Sci. 122:148–160 (1965).PubMedCrossRefGoogle Scholar
  81. 81.
    R. F. Kibler, R. Shapira, S. McKneally, J. Jenkins, P. Seiden, and F. Chow, Encephalitogenetic protein: Structure, Science 164:577–580 (1969).PubMedCrossRefGoogle Scholar
  82. 82.
    H. C. Ranch and S. Raffel, Immunofluorescent localization of encepholitogenic protein in myelin, J. Immunol. 92:452–455 (1964).Google Scholar
  83. 83.
    E. C. Alvord, Jr., in The Central Nervous System (O. T. Bailey and D. E. Smith, eds.), pp. 52–70, Williams and Williams, Baltimore (1968).Google Scholar
  84. 84.
    E. Mehl and F. Wolfgram, Myelin types with different protein component in the same species, J. Neurochem. 16:1091–1097 (1969).PubMedCrossRefGoogle Scholar
  85. 85.
    G. R. Dutton and S. Barondes, Microtubular protein: Synthesis and metabolism in developing brain, Science 166:1637–1638 (1969).PubMedCrossRefGoogle Scholar
  86. 86.
    B. S. Wenger, Brain and nerve proteins: Functional correlates, Neurosci. Res. Prog. Bull. 3(6), 1–53 (1965).Google Scholar
  87. 87.
    H. P. Freidman and B. S. Wenger, Adult brain antigens demonstrated in chick embryos by fractionated antisera, J. Embryol. Exptl. Morphol. 13:35–43 (1965).Google Scholar
  88. 88.
    D. J. McCallion and J. Langman, An immunological study on the effect of brain extract on the developing nervous tissue in the chick embryo, J. Embryol. Exptl. Morphol. 12: 107–118 (1964).Google Scholar
  89. 89.
    S. C. Bondy and S. V. Perry, Incorporation of labeled amino acids in the soluble protein fraction of rabbit brain, J. Neurochem. 10:603–609 (1963).PubMedCrossRefGoogle Scholar
  90. 90.
    M. R. V. Murthy and D. A. Rappoport, Biochemistry of the developing rat brain, V. Cell-free incorporation of l-(1-14C) leucine into microsomal protein, Biochim. Biophys. Acta 95:121–131 (1965).PubMedCrossRefGoogle Scholar
  91. 91.
    S. Gelber, P. L. Campbell, G. E. Deibler, and L. Sokoloff, Effects of L-thyroxine on amino acid incorporation into protein in mature and immature rat brain, J. Neurochem. 11:221–229 (1964).PubMedCrossRefGoogle Scholar
  92. 92.
    K. Suzuki, S. R. Korey, and R. D. Terry, Studies on protein synthesis in brain microsomal system, J. Neurochem. 11:403–412 (1964).PubMedCrossRefGoogle Scholar
  93. 93.
    D. H. Adams and L. Lim, Amino acid incorporation by preparations from the developing rat brain, Biochem. J. 99:261–265 (1966).PubMedGoogle Scholar
  94. 94.
    T. C. Johnson and G. Belytschko, Alteration in microsomal protein synthesis during early development of the mouse brain, Proc. Natl. Acad. Sci. 62:844–851 (1969).PubMedCrossRefGoogle Scholar
  95. 95.
    D. A. Rappoport and R. R. Fritz, in Protides of the Biological Fluids (H. Peeters, ed.), pp. 53–62, Elsevier, Amsterdam (1966).Google Scholar
  96. 96.
    S. Yamagami, R. R. Fritz, and D. A. Rappoport, unpublished data.Google Scholar
  97. 97.
    D. Richter, in Regional Development of the Brain in Early Life (A. Minkowski, ed.), pp. 137–156, F. A. Davis, Philadelphia (1967).Google Scholar
  98. 98.
    R. M. Burton, The pyridine nucleotide and diphosphopyridine nucleotidase levels of the brain of young rats, J. Neurochem. 2:15–20 (1957).PubMedCrossRefGoogle Scholar
  99. 99.
    J. Myers and D. A. Rappoport, unpublished data.Google Scholar
  100. 100.
    O. Ouchterlony, Antigen—antibody reactions in gels, Acta Pathol. Microbiol. Scand. 26: 507–515 (1949).PubMedCrossRefGoogle Scholar
  101. 101.
    J. J. Scheidegger, Une micro-methode de Fimmuno-electrophorese, Intern. Arch. Allergy Appl. Immunol. 7:103–110 (1955).CrossRefGoogle Scholar
  102. 102.
    G. Mancini, A. O. Carbonara, and J. F. Heremans, Immunochemical quantitation of antigens by single radial immunodiffusion, Immunochem. 2:235–254 (1965).CrossRefGoogle Scholar
  103. 103.
    J. A. Burdman and L. J. Journey, Protein synthesis in isolated nuclei from adult rat brain, J. Neurochem. 16:493–500 (1969).PubMedCrossRefGoogle Scholar
  104. 104.
    L. S. Hnilica, in Developmental and Metabolic Control Mechanisms and Neoplasia, pp. 273–295, Williams and Wilkins Co., Baltimore (1965).Google Scholar
  105. 105.
    J. Bonner, M. E. Dahmus, D. Fambrough, R. C. Huang, K. Marushige, and D. H. Y. Tuan, The biology of isolated chromatin, Science 159:47–56 (1968).CrossRefGoogle Scholar
  106. 106.
    J. Paul and R. S. Gilmour, Organ-specific restriction of transcription in mammalian chromatin, J. Mol. Biol. 34: 305–316 (1968).PubMedCrossRefGoogle Scholar
  107. 107.
    R. S. Gilmour and J. Paul, RNA transcribed from reconstituted nucleoprotein is similar to natural RNA, J. Mol. Biol. 40:137–139 (1969).PubMedCrossRefGoogle Scholar
  108. 108.
    K. Marushige and J. Bonner, Template properties of liver chromatin, J. Mol. Biol. 15: 160–174 (1966).PubMedCrossRefGoogle Scholar
  109. 109.
    E. H. Davidson, Gene Activity in Early Development, Academic Press, New York (1968).Google Scholar
  110. 110.
    K. R. Brizzee, J. Vogt, X. Kharetchko, Postnatal changes in glia/neuron index with a comparison of methods of cell enumeration in white rat, Progr. Brain Res. 4:136–149 (1964).CrossRefGoogle Scholar
  111. 111.
    J. L. Conel, “Postnatal Development of the Human Cerebral Cortex,” Vols. 1–6, Harvard University Press, Cambridge, Mass. (1939–1963).Google Scholar
  112. 112.
    J. Altman, in The Neurosciences (G. C. Quartern, T. Melnechuk, and F. O. Schmitt, eds.), pp. 723–743, Rockefeller University Press, New York (1967).Google Scholar
  113. 113.
    H. Haug, in Structure and Function of the Cerebral Cortex (D. B. Tower and J. P. Schade, eds.), pp. 28–34, Elsevier, Amsterdam (1960).Google Scholar
  114. 114.
    E. Horstmann, in Structure and Function of the Cerebral Cortex (D. B. Tower and J. P. Schade, eds.), pp. 59–63, Elsevier, Amsterdam (1960).Google Scholar
  115. 115.
    P. I. Yakovlev, Morphological criteria of growth and maturation of the nervous system in man, Res. Publ. Assoc. Res. Nervous Mental Disease 39:3–46 (1962).Google Scholar
  116. 116.
    A. Peters, in The Structure and Function of Nervous Tissue (G. H. Bourne, ed.), Vol. 1, pp. 141–186, Academic Press, New York (1968).Google Scholar
  117. 117.
    J. Altman, Autoradiographic study of degenerative and regenerative proliferation of neuroglia cells with tritiated thymidine, Exptl. Neurol. 5: 302–318 (1962).CrossRefGoogle Scholar
  118. 118.
    J. Altman, Autoradiographic investigation of cell proliferation in the brains of rats and cats, Anat. Record 145: 573–591 (1963).CrossRefGoogle Scholar
  119. 119.
    J. Altman and G. D. Das, Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats, J. Comp. Neurol. 124: 319–335 (1965).PubMedCrossRefGoogle Scholar
  120. 120.
    J. Altman, Proliferation and migration of undifferentiated precursor cells in the rat during postnatal gliogenesis, Exptl. Neurol. 16:263–278 (1966).CrossRefGoogle Scholar
  121. 121.
    J. Altman and G. D. Das, Autoradiographic and histological studies of postnatal neurogenesis, I. A. longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions, J. Comp. Neurol. 126:337–389 (1966).PubMedCrossRefGoogle Scholar
  122. 122.
    M. A. Wells and J. C. Dittmer, A comprehensive study of the postnatal changes in the concentration of the lipids of developing rat brain, Biochemistry 6:3169–3175 (1967).PubMedCrossRefGoogle Scholar
  123. 123.
    G. M. McKhann, R. Levy, and W. Ho, in Regional Development of the Brain in Early Life (A. Minkowski, ed.), pp. 189–199, F. A. Davis, Philadelphia (1967).Google Scholar
  124. 124.
    K. Suzuki, S. E. Poduslo, and W. T. Norton, Gangliosides in the myelin fraction of developing rats, Biochim. Biophys. Acta 144:375–381 (1967).PubMedCrossRefGoogle Scholar
  125. 125.
    K. Suzuki, J. F. Poduslo, and S. E. Poduslo, Further evidence for a specific ganglioside fraction closely associated with myelin, Biochim. Biophys. Acta 152:576–586 (1968).PubMedCrossRefGoogle Scholar
  126. 126.
    G. A. Dhopeshwarkar, R. Maier, and J. F. Mead, Incorporation of (1-14C) acetate into the fatty acids of the developing rat brain, Biochim. Biophys. Acta 187:6–12 (1969).PubMedCrossRefGoogle Scholar
  127. 127.
    J. G. Salway, J. L. Harwood, M. Dai, G. L. White, and J. N. Hawthorne, Enzymes of phosphoinositide metabolism during rat brain development, J. Neurochem. 15:221–226 (1968).PubMedCrossRefGoogle Scholar
  128. 128.
    G. Hauser, J. Eichberg, S. M. Gompertz, and M. Ross, in First International Meeting of the International Society for Neurochemistry, p. 93, Strasbourg, France (1967).Google Scholar
  129. 129.
    J. Eichberg and G. Hauser, Polyphosphoinositide biosynthesis in developing rat brain homogenates, Ann. N.Y. Acad. Sci. 165:784–789 (1969).PubMedGoogle Scholar
  130. 130.
    H. J. Campbell and J. T. Eayrs, Influence of hormones on the central nervous system, Brit. Med. Bull. 21:81–86 (1965).Google Scholar
  131. 131.
    J. T. Eayrs and G. Horn, The development of cerebral cortex in hypothyroid and starved rats, Anat. Record 121:53–61 (1955).CrossRefGoogle Scholar
  132. 132.
    M. Hamburgh and L. B. Flexner, Biochemical and physiological differentiation during morphogenesis, XXI. Effect of hypothyroidism and hormone therapy on enzyme activities of the developing cerebral cortex of the rat, J. Neurochem. 1:279–288 (1957).PubMedCrossRefGoogle Scholar
  133. 133.
    S. E. Geel and P. S. Timiras, Influence of neonatal hypothyroidism and of thyroxine on the acetylcholinesterase and Cholinesterase activities in the developing central nervous system of the rat, Endocrinol. 80:1069–1074 (1967).CrossRefGoogle Scholar
  134. 134.
    S. E. Geel, T. Valcana, and P. S. Timiras, Effect of neonatal hypothyroidism and of thyroxine on L-(14C) leucine incorporation in protein in vivo and the relationship of ionic levels in the developing brain of the rat, Brain Res. 4:143–150 (1967).PubMedCrossRefGoogle Scholar
  135. 135.
    J. M. Pasquini, B. Kaplun, C. A. Garcia Argiz, and C. J. Gomez, Hormonal regulation of brain development, I. The effect of neonatal thyroidectomy upon nucleic acids, protein and two enzymes in developing cerebral cortex and cerebellum of the rat, Brain Res. 6:621–634 (1967).PubMedCrossRefGoogle Scholar
  136. 136.
    C. A. Garcia Argiz, J. M. Pasquini, B. Kaplun, and C. J. Gomez, Hormonal regulation of brain development, II. Effect of neonatal thyroidectomy on succinate dehydrogenase and other enzymes in developing cerebral cortex and cerebellum of the rat, Brain Res. 6:635–646 (1967).CrossRefGoogle Scholar
  137. 137.
    L. Krawiec, C. A. Garcia Argiz, C. J. Gomez, and J. M. Pasquini, Hormonal regulation of brain development, III. Effects of triiodothyronine and growth hormone on the biochemical changes in the cerebral cortex and cerebellum of neonatally thyroidectomized rats, Brain Res. 15:209–218 (1969).PubMedCrossRefGoogle Scholar
  138. 138.
    H. M. Evans, M. E. Simpson, and R. I. Pencharz, Relation between the growth promoting effects of the pituitary and the thyroid hormone, Endocrinol. 25:175–182 (1939).CrossRefGoogle Scholar
  139. 139.
    T. N. Salmon, Effect of pituitary growth substance on the development of rats thyroidectomized at birth, Endocrinol 29:291–296 (1941).CrossRefGoogle Scholar
  140. 140.
    R. O. Scow and W. Marx, Response to pituitary growth hormone of rats thyroidectomized on the day of birth, Anat. Record 91:227–236 (1945).CrossRefGoogle Scholar
  141. 141.
    R. O. Scow, M. E. Simpson, C. W. Asling, C. H. Li, and H. M. Evans, Response by the rat thyroparathyroidectomized at birth to growth hormone and to thyroxine given separately or in combination, I. General growth and organ changes, Anat. Record 104: 445–463 (1949).CrossRefGoogle Scholar
  142. 142.
    J. T. Eayrs, Protein anabolism as a factor ameliorating the effects of early thyroid deficiency, Growth 25:175–189 (1961).PubMedGoogle Scholar
  143. 143.
    C. J. Gomez, N. E. Ghittoni, and J. M. Dellacha, Effect of L-thyroxine or somatotrophin on body growth and cerebral development in neonatally thyroidectomized rats, Life Sci. 5:243–246 (1966).CrossRefGoogle Scholar
  144. 144.
    S. Schapiro, Metabolic and maturational effects of thyroxine on the infant rat, Endocrinol. 78:527–532 (1966).CrossRefGoogle Scholar
  145. 145.
    J. A. Cocks, R. Balazs, and J. T. Eayrs, The effect of thyroid hormones on the biochemical maturation of the rat brain, J. Biochem. 111: 18p (1969).Google Scholar
  146. 146.
    S. Zamenhof, Stimulation of cortical-cell proliferation by the growth hormone, III. Experiments on albino rats, Physiol. Zool. 15:281–292 (1942).Google Scholar
  147. 147.
    S. Zamenhof, J. Mosley, and E. Schuller, Stimulation of the proliferation of cortical neurons by prenatal treatment with growth hormone, Science 152:1396–1397 (1966).PubMedCrossRefGoogle Scholar
  148. 148.
    B. G. Clendinnen and J. T. Eayrs, The anatomical and physiological effects of prenatally administered somatotrophin on cerebral development in rats, J. Endocrinol. 22:183–193 (1961).PubMedCrossRefGoogle Scholar
  149. 149.
    M. C. Diamond, R. E. Johnson, C. Ingham, and B. Stone, Lack of direct effect of hypophysectomy and growth hormone on postnatal rat brain morphology, Exptl. Neurol. 23:51–57 (1969).CrossRefGoogle Scholar
  150. 150.
    K. M. Gregory and M. C. Diamond, Effects of early hypophysectomy on brain morphogenesis in the rat, Exptl. Neurol. 20:394–402 (1968).CrossRefGoogle Scholar
  151. 151.
    M. C. Diamond, The effects of early hypophysectomy and hormone therapy on brain development, Brain Res. 7:399–406 (1968).CrossRefGoogle Scholar
  152. 152.
    M. Hamburgh, E. Lynn, and E. P. Weiss, Analysis of the influence of thyroid hormone on prenatal and postnatal maturation of the rat, Anat. Record. 150:147–162 (1964).CrossRefGoogle Scholar
  153. 153.
    P. Walravens and H. P. Chase, Influence of thyroid on formation of myelin lipids, J. Neurochem. 16:1477–1484 (1969).PubMedCrossRefGoogle Scholar
  154. 154.
    A. Cuaron, J. Gamble, N. B. Myant, and C. Osorio, The effect of thyroid deficiency on the growth of the brain and on the deposition of brain phospholipids in foetal and newborn rats, J. Physiol (London) 168:613–630 (1963).Google Scholar
  155. 155.
    M. Hamburgh and R. P. Bunge, Evidence for a direct effect of thyroid hormone on maturation of nervous tissue grown in vitro, Life Sci. 3:1423–1430 (1964).PubMedCrossRefGoogle Scholar
  156. 156.
    M. Hamburgh, Evidence for a direct effect of temperature and thyroid hormone on myelinogenesis, Develop. Biol. 13:15–30 (1966).PubMedCrossRefGoogle Scholar
  157. 157.
    L. M. Heim and P. S. Timiras, Gonad-brain relationship: Precocious brain maturation after estrodiol-rats, Endocrinol. 72:598–606 (1963).CrossRefGoogle Scholar
  158. 158.
    A. Vernadakis and P. S. Timiras, Effect of estrodiol on spinal cord convulsions in developing rats, Nature 197:906 (1963).PubMedCrossRefGoogle Scholar
  159. 159.
    A. Vernadakis and D. M. Woodbury, Effect of cortisol on the electroshock seizure thresholds in developing rats, J. Pharmacol. Exp. Ther. 139:110–113 (1963).PubMedGoogle Scholar
  160. 160.
    A. Vernadakis and D. M. Woodbury, Effects of cortisol and diphenylhydantoin (Dilantin) on spinal cord convulsions in developing rats, J. Pharmacol. Exp. Ther. 144:316–320 (1964).Google Scholar
  161. 161.
    J. J. Curry and L. M. Heim, Brain myelination after neonatal administration of oestradiol, Nature 209:915–916 (1966).PubMedCrossRefGoogle Scholar
  162. 162.
    R. Caspar, A. Vernadakis, and P. S. Timiras, Influence of estrodiol and cortisol on lipids and cerebrosides in the developing rat brain and spinal cord of the rat, Brain Res. 5:524–526 (1967).CrossRefGoogle Scholar
  163. 163.
    J. DeVellis and D. Inglish, Hormonal control and glycerolphosphate dehydrogenase in the rat brain, J. Neurochem. 15:1061–1070 (1968).CrossRefGoogle Scholar
  164. 164.
    M. Winick and A. Coscia, Cortisone-induced growth failure in neonatal rats, Pediat. Res. 2:451–455 (1968).PubMedCrossRefGoogle Scholar
  165. 165.
    E. Howard, Effects of corticosterone and food restriction on growth and on DNA, RNA, and cholesterol contents of the brain and liver in infant mice, J. Neurochem. 12:181–191 (1965).PubMedCrossRefGoogle Scholar
  166. 166.
    B. F. Chow and C.-J. Lee, Effect of dietary restriction of pregnant rats on body weight gain of the offspring, J. Nutr. 82:10–18 (1964).PubMedGoogle Scholar
  167. 167.
    C.-J. Lee and B. F. Chow, Protein metabolism in the offspring of underfed mother rats, J. Nutr. 87:439–443 (1965).PubMedGoogle Scholar
  168. 168.
    A. M. Hsueh, C. E. Agustin, and B. F. Chow, Growth of young rats after differential manipulation of maternal diet, J. Nutr. 91:195–200 (1967).PubMedGoogle Scholar
  169. 169.
    C.-J. Lee and B. F. Chow, Metabolism of proteins by progeny of underfed mother rats, J.Nutr. 94:20–26 (1968).PubMedGoogle Scholar
  170. 170.
    B.-N. Blackwell, R. Q. Blackwell, T. T. S. Yu, Y.-S. Weng, and B. F. Chow, Further studies on growth and feed utilization in progeny of underfed mother rats, J. Nutr. 97: 79–84 (1968).Google Scholar
  171. 171.
    M. Simonson, R. W. Sherwin, J. K. Anilane, W. Y. Yu, and B. F. Chow, Neuromotor development in progeny of underfed mother rats, J. Nutr. 98:18–24 (1969).PubMedGoogle Scholar
  172. 172.
    A. N. Davidson and J. Dobbing, Myelination as a vulnerable period in brain development, Brit. Med. Bull. 22:40–44 (1966).Google Scholar
  173. 173.
    M. Winick and P. Rosso, The effect of severe early malnutrition on cellular growth of human brain, Pediat. Res. 3:181–184 (1969).PubMedCrossRefGoogle Scholar
  174. 174.
    J. W. Milien, The Nutritional Basis for Reproduction, C. C. Thomas, Springfield, Ill. (1962).Google Scholar
  175. 175.
    S. Zamenhof, E. van Marthens, and F. L. Margolis, DNA (cell number) and protein in neonatal brain: Alteration by maternal dietary protein restriction, Science 162: 322–323 (1968).CrossRefGoogle Scholar
  176. 176.
    H. P. Chase, W. F. B. Lindsley, Jr., and D. O’Brien, Undernutrition and cerebellar development, Nature 221:554–555 (1969).PubMedCrossRefGoogle Scholar
  177. 177.
    M. Winick, Malnutrition and brain development, J. Pediat. 74:667–679 (1969).PubMedCrossRefGoogle Scholar
  178. 178.
    J. W. Benton, H. W. Moser, P. R. Dodge, and S. Carr, Modification of the schedule of myelination in the rat by early nutritional deprivation, Pediatrics 38:801–807 (1966).PubMedGoogle Scholar
  179. 179.
    E. van Marthens and S. Zamenhof, Deoxyribonucleic acid of neonatal rat cerebrum increased by operative restriction of litter size, Exptl. Neurol. 23:214–219 (1969).CrossRefGoogle Scholar
  180. 180.
    W. J. Culley and R. O. Lineberger, Effect of undernutrition on the size and composition of the rat brain, J. Nutr. 96:375–381 (1967).Google Scholar
  181. 181.
    N. Kretchmer and R. E. Greenberg, Some physiological and biochemical determinants of development, Adv. Pediatrics 14:201–251 (1966).Google Scholar
  182. 182.
    J. D. Watson, Molecular Biology of the Gene, W. A. Benjamin, New York (1965).Google Scholar
  183. 183.
    G. Zubay, in The Nucleohistones (J. Bonner and P. Ts’o, eds.), pp. 95–107, Holden-Day, San Francisco (1964).Google Scholar
  184. 184.
    J. Bonner, M. E. Dahmus, D. Fambrough, R.-C. Huang, K. Marushige, and D. Y. H. Tuan, The biology of isolated chromatin, Science 159:47–56 (1968).CrossRefGoogle Scholar
  185. 185.
    G. P. Georgiev, Histones and the control of gene action, Ann. Rev. Genetics 3:155–180 (1969).CrossRefGoogle Scholar
  186. 186.
    K. B. Smith, R. B. Church, and B. J. McCarthy, Template specificity of isolated chromatin, Biochemistry 8:4271–4277 (1969).PubMedCrossRefGoogle Scholar
  187. 187.
    G. P. Georgiev, The nature and biosynthesis of nuclear ribonucleic acids, Progr. Nucleic Acid Res. Mol. Biol. 6:259–351 (1967).CrossRefGoogle Scholar
  188. 188.
    V. G. Allfrey, V. C. Littau, and A. E. Mirsky, On the role of histones in regulating RNA synthesis in the cell nucleus, Proc. Natl. Acad. Sci. 49:414–421 (1963).PubMedCrossRefGoogle Scholar
  189. 189.
    R. B. Church and B. J. McCarthy, RNA synthesis in regenerating and embryonic liver, I. The synthesis of new species of RNA during regeneration of mouse liver after partial hepatectomy, J. Mol. Biol. 23:459–475 (1967).PubMedCrossRefGoogle Scholar
  190. 190.
    A. O. Pogo, V. G. Allfrey, and A. E. Mirsky, Evidence for increased DNA template activity in regenerating liver nuclei, Proc. Natl. Acad. Sci. 56:550–557 (1966).PubMedCrossRefGoogle Scholar
  191. 191.
    J. E. Loeb and C. Creuzet, Electrophoretic comparison of acidic proteins of chromatin from different animal tissues, FEBS Letters 5:37–40 (1969).PubMedCrossRefGoogle Scholar
  192. 192.
    R. C. C. Huang and P. C. Huang, Effect of protein-bound RNA associated with chick embryo chromatin on template specificity of the chromatin, J. Mol. Biol. 39:365–378 (1969).PubMedCrossRefGoogle Scholar
  193. 193.
    I. Bekhor, G. M. Kung, and J. Bonner, Sequence-specific interaction of DNA and chromosomal protein, J. Mol. Biol. 39:351–364 (1969).PubMedCrossRefGoogle Scholar
  194. 194.
    J. Stevenin, J. Samec, M. Jacob, and P. Mandel, Determination de la fraction du genome codant pour les RNA ribosomiques et messagers dans le Cerveau du rat adulte, J. Mol. Biol. 33:777–793 (1968).PubMedCrossRefGoogle Scholar
  195. 195.
    F. Jacob and J. Monod, Genetic regulatory mechanisms in the synthesis of protein, J. Mol. Biol. 3:318–358 (1961).PubMedCrossRefGoogle Scholar
  196. 196.
    L. S. Hnilica, Proteins of the cell nucleus, Progr. Nucleic Acid Res. and Mol. Biol. 7:25–106 (1967).CrossRefGoogle Scholar
  197. 197.
    E. Stubblefield, in The Proliferation and Spread of Neoplastic Cells, pp. 175–193, Williams and Wilkins Co., Baltimore (1968).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • D. A. Rappoport
    • 1
  • R. R. Fritz
    • 1
  • S. Yamagami
    • 1
  1. 1.Division of Molecular Biology Department of PediatricsThe University of Texas Medical BranchGalvestonUSA

Personalised recommendations