Skip to main content

Abstract

The biochemical maturation of the central nervous system proceeds with profound changes in the metabolism of the fatty acids and associated derivatives. These changes reflect, in part, differences in permeability of the nervous system to fatty acids and to precursors and the need for specific complex fatty acid derivatives for structural elements as development proceeds. The timing of these events differs in the peripheral nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. M. Sperry, H. Waelsch, and V. A. Stoyanoff, Lipid metabolism in brain and other tissues of the rat, J.Biol. Chem. 135:281–290 (1940).

    CAS  Google Scholar 

  2. A. F. D’Adamo, Jr., unpublished observations.

    Google Scholar 

  3. B. K. Siesjo and W. O. B. Thompson, The uptake of inspired 14CO2 into the acid-labile, the acid-soluble, the lipid, the protein and the nucleic acid fractions of rat brain tissue, Acta Physiol. Scand. 64:182–192 (1965).

    Article  CAS  Google Scholar 

  4. J. I. Kessler, M. Demeny, and H. Sobotka, Rates of tissue uptake of palmitic acid -1-14C complexed with albumin by two different procedures, J.Lipid Res. 8:185–190(1967).

    PubMed  CAS  Google Scholar 

  5. D. Engelmann, I. Stork, H. D. Eisenbarth, A. Naher, D. Heyse, and K. Schreier, Uber die Resorption und den Stoffwechsel einiger 1-14C-markierter freier Fettsäuren bei jungen Kaninchen, Clin. Chim. Acta 9:126–137 (1964).

    Article  PubMed  CAS  Google Scholar 

  6. B. L. Walker, Maternal diet and brain fatty acids in young rats, Lipids 2:497–500 (1967).

    Article  PubMed  CAS  Google Scholar 

  7. H. Mohrhauer and R. T. Holman, Alteration of the fatty acid composition of brain lipids by varying levels of dietary essential fatty acids, J.Neurochem. 10:523–530 (1963).

    Article  PubMed  CAS  Google Scholar 

  8. L. A. Biran, W. Bartley, C. W. Carter, and A. Renshaw, Studies on essential fatty acid deficiency. Effect of the deficiency on the lipids in various rat tissues and the influence of dietary supplementation with essential fatty acids on deficient rats, Biochem. J. 93:492–498 (1964).

    PubMed  CAS  Google Scholar 

  9. G. J. Marco, L. J. Machlin, E. Emery, and R. S. Gordon, Dietary effects of fats upon fatty acid composition of the mitochondria, Arch. Biochem. Biophys. 94:115–120 (1961).

    Article  PubMed  CAS  Google Scholar 

  10. L. A. Witting, C. C. Harvey, B. Century, and M. K. Horwitt, Dietary alterations of fatty acids of erythrocytes and mitochondria of brain and liver, J.Lipid Res. 2:412–418 (1961).

    CAS  Google Scholar 

  11. L. Rathbone, The effect of diet on the fatty acid compositions of serum, brain, brain mitochondria and myelin in the rat, Biochem. J. 97:620–628 (1965).

    PubMed  CAS  Google Scholar 

  12. J. Tomasch, Dietary factors and nerve myelination, J.Anat. 95:180–190 (1961).

    PubMed  CAS  Google Scholar 

  13. L. J. Machlin, G. J. Marco, and R. S. Gordon, Effect of diet and encephalomalacia on the fatty acid composition of the brain of young and old chickens, J.Am. Oil Chem. Soc. 39:229–232 (1962).

    Article  CAS  Google Scholar 

  14. B. Century and M. K. Horwitt, Role of arachidonic acid in nutritional encephalomalacia: Interrelationships of essential and nonessential polyunsaturated fatty acids, Arch. Biochem. Biophys. 104:416–422 (1964).

    Article  PubMed  CAS  Google Scholar 

  15. K. K. Carroll, Levels of radioactivity in tissues and in expired carbon dioxide after administration of l-C14-labelled palmitic acid, C2-14-labelled erucic acid, or 2-C14-labelled nervonic acid to rats, Can. J. Biochem. Physiol. 40:1229–1238 (1962).

    Article  PubMed  CAS  Google Scholar 

  16. S. Laurell, Distribution of C14 in rats after intravenous injection of non-esterified palmitic acid-1-C14, Acta Physiol. Scand. 46:97–106 (1959).

    Article  PubMed  CAS  Google Scholar 

  17. C. Allweis, T. Landau, M. Abeles, and J. Magnes, The oxidation of uniformly labelled albumin-bound palmitic acid to CO2 by the perfused cat brain, J.Neurochem. 13:795–804 (1966).

    Article  PubMed  CAS  Google Scholar 

  18. E. T. Pritchard, The formation of phospholipids from 14C-labelled precursors in developing rat brain in vivo, J. Neurochem. 10:495–502 (1963).

    Article  PubMed  CAS  Google Scholar 

  19. K. Miyamoto, L. M. Stephanides, and J. Bernsohn, Incorporation of [1-14C] linoleate and linolenate into polyunsaturated fatty acids of phospholipids of the embryonic chick brain, J.Neurochem. 14:227–237 (1967).

    Article  PubMed  CAS  Google Scholar 

  20. S. Gatt, Metabolism of [1-14C] lignoceric acid in the rat, Biochim. Biophys. Acta 70:370–380(1963).

    Article  PubMed  CAS  Google Scholar 

  21. R. J. White, M. S. Albin, and J. Verdura, Isolation of the monkey brain; In vito preparation and maintenance, Science 141:1060–1061 (1963).

    Article  PubMed  CAS  Google Scholar 

  22. E. T. Pritchard, The formation of phospholipids from C14-labelled precursors in slices from immature rat brain, Can. J. Biochem. Physiol. 40:353–361 (1962).

    Article  PubMed  CAS  Google Scholar 

  23. G. R. Webster, The incorporation of long-chain fatty acids into phospholipids of respiring slices of rat cerebrum, Biochem. J. 102:373–380 (1967).

    PubMed  CAS  Google Scholar 

  24. H. Keen and C. Chlouverakis, Metabolism of isolated rat retina. The role of non-esterified fatty acid, Biochem. J. 94:488–493 (1965).

    PubMed  CAS  Google Scholar 

  25. J. S. Andrews and T. Kuwabara, Net triglyceride synthesis by rabbit cornea in vitro, Biochim. Biophys. Acta 54:315–321 (1961).

    Article  PubMed  CAS  Google Scholar 

  26. D. W. Clarke and L. Geiger, Effect of experimental allergic encephalomyelitis serum on fatty acid output of brain slices, Nature 201:401 (1964).

    Article  PubMed  CAS  Google Scholar 

  27. C. H. Tator, J. R. Evans, and J. Olszewski, Tracers for the detection of brain tumors. Evaluation of radio-iodinated human serum albumin and radio-iodinated fatty acid, Neurology 16:650–661 (1966).

    Article  PubMed  CAS  Google Scholar 

  28. S. Garattini, P. Paoletti, and R. Paoletti, Lipid biosynthesis in vivo from acetate-1-C14 and 2-C14 and mevalonic-2-C14 acid, Arch. Biochem. Biophys. 80:210–211 (1959).

    Article  CAS  Google Scholar 

  29. A. F. D’Adamo, Jr., and A. P. D’Adamo, Acetyl transport mechanism in the nervous system. The ketoglutarate shunt and fatty acid synthesis in the developing rat brain, J.Neurochem., 15:315–323 (1968).

    Article  PubMed  Google Scholar 

  30. P. Hill, Incorporation of citrate 1, 5-14C and 3H palmitic acid and the composition of the β-acyl chain in phosphatides of rat tissue, Can. J. Biochem. Physiol. 44:1285–1289 (1966).

    Article  CAS  Google Scholar 

  31. R. G. Gould, The Biosynthesis of Cholesterol, in Cholesterol (R. P. Cook, ed.), p. 212, Academic Press, New York, 1958.

    Google Scholar 

  32. C. J. van den Berg, P. Mela, and H. Waelsch, On the contribution of the tricarboxylic acid cycle to the synthesis of glutamate, glutamine and aspartate in brain, Biochem. Biophys. Res. Commun. 23:479–484 (1966).

    Article  PubMed  Google Scholar 

  33. K. Miyamoto, L. M. Stephanides, and J. Bernsohn, Acetate-l-14C incorporation into polysaturated fatty acids of phospholipids of developing chick brain, J.Lipid Res. 8:191–195 (1967).

    PubMed  CAS  Google Scholar 

  34. A. F. Spencer and J. M. Lowenstein, The supply of precursors for the synthesis of fatty acids, J.Biol. Chem. 237:3640–3648 (1962).

    PubMed  CAS  Google Scholar 

  35. I. B. Fritz and K. T. N. Yue, Effects of carnitine on acetyl-CoA oxidation by heart muscle mitochondria, Am. J. Physiol. 206:531–535 (1962).

    Google Scholar 

  36. A. F. D’Adamo, Jr., L. I. Gidez, and F. M. Yatsu, Acetyl transport mechanisms. Involvement of N-acetyl aspartic acid in de novo fatty acid biosynthesis in the developing rat brain, Exptl. Brain Res., 5:267–273 (1968).

    Google Scholar 

  37. A. F. D’Adamo, Jr., and F. M. Yatsu, Acetate metabolism in the nervous system. N-acetyl-L-aspartic acid and the biosynthesis of brain lipids, J.Neurochem. 13:961–965 (1966).

    Article  PubMed  Google Scholar 

  38. P. A. Srere and A. Bhaduri, Incorporation of radioactive citrate into fatty acids, Biochim. Biophys. Acta. 59:487–489 (1962).

    Article  PubMed  CAS  Google Scholar 

  39. J. Schuberth, J. Sollenberg, A. Sundwall, and B. Sorbo, Determination of acetyl-coenzyme A in brain, J.Neurochem. 12:451–454 (1965).

    Article  PubMed  CAS  Google Scholar 

  40. D. J. Pearson and P. K. Tubbs, Carnitine and derivatives in rat tissues, Biochem. J. 105:953–963(1967).

    PubMed  CAS  Google Scholar 

  41. V. P. Wittaker, The application of subcellular fractionation techniques to the study of brain function, Progr. Biophys. Mol. Biol. 15:39–96, 1965.

    Article  Google Scholar 

  42. J. Schuberth, On the biosynthesis of acetyl coenzyme A in the brain, Biochim. Biophys. Acta 98:1–7 (1965).

    Article  PubMed  CAS  Google Scholar 

  43. S. Tucek, Subcellular distribution of acetyl-CoA synthetase, ATP citrate lyase, citrate synthase, choline acetyltransferase, fumarate hydratase and lactate dehydrogenase in mammalian brain tissue, J.Neurochem. 14:531–545 (1967).

    Article  PubMed  CAS  Google Scholar 

  44. R. W. Korff, The effects of alkali metal ions on the acetate activating enzyme system, J.Biol. Chem. 203:265–271 (1953).

    Google Scholar 

  45. R. A. Deitrich and L. Hellerman, Pyruvate metabolism. V. Pyruvate utilization by mitochondria of rat brain, J. Biol. Chem. 239:2735–2740 (1964).

    PubMed  CAS  Google Scholar 

  46. R. E. Koeppe, R. M. O’Neal, and C. H. Hahn, Pyruvate decarboxylation in thiamine deficient brain, J.Neurochem. 11:695–699 (1964).

    Article  PubMed  CAS  Google Scholar 

  47. R. E. Koeppe, G. A. Mourkides, and R. J. Hill, Some factors affecting routes of pyruvate metabolism in rats, J.Biol. Chem. 234:2219–2222 (1959).

    PubMed  CAS  Google Scholar 

  48. A. D. Friedman, P. Rumsey, and S. Graff, The metabolism of pyruvate in the tricarboxylic acid cycle, J.Biol. Chem. 235:1854–1855 (1960).

    Google Scholar 

  49. S. Tucek, The use of choline acetyltransferase for measuring the synthesis of acetyl CoA and its release from brain mitochondria, Biochem. J. 104:749–756 (1967).

    PubMed  CAS  Google Scholar 

  50. R. E. McCaman, M. W. McCaman, and M. L. Stafford, Carnitine acetyltransferase in nervous tissue, J.Biol. Chem. 241:930–934 (1966).

    PubMed  CAS  Google Scholar 

  51. M. S. Kornacker and J. M. Lowenstein, Citrate and the conversion of carbohydrate into fat, Biochem. J. 94:209–215 (1965).

    PubMed  CAS  Google Scholar 

  52. R. O. Brady, Biosynthesis of fatty acids. II. Studies with enzymes obtained from brain, J.Biol. Chem. 235:3099–3103 (1960).

    CAS  Google Scholar 

  53. J. D. Robinson, R. M. Bradley, and R. O. Brady, Biosynthesis of fatty acids. III. Utilization of substituted acetyl coenzyme A derivatives as intermediates, J.Biol Chem. 238:528–532 (1963).

    CAS  Google Scholar 

  54. C. Landriscina, V. Liso, M. N. Gadaleta, and A. Alifano, Sintesi in vitro di acidi grassi in varie frazioni di cellule di cervello di ratto, Boll. Soc. Ital. Biol. Sper. 42:473–476(1966).

    PubMed  CAS  Google Scholar 

  55. A. H. Hughes and S. G. Eliasson, Synthesis of cholesterol and fatty acids in fractions of peripheral nerve, J.Clin. Invest. 39:111–115 (1960).

    Article  PubMed  CAS  Google Scholar 

  56. J. D. Robinson, R. O. Brady, and R. M. Bradley, Biosynthesis of fatty acids: IV. Studies with inhibitors. J.Lipid Res. 4:144–150 (1963).

    PubMed  CAS  Google Scholar 

  57. R. O. Brady, Studies of inhibitors of fatty acid biosynthesis. III. Mechanism of action of tetrolyl-coenzyme A, Biochim. Biophys. Acta 70:467–468 (1963).

    Article  PubMed  CAS  Google Scholar 

  58. R. Lindbohm and H. Wallgren, Oxidation of acetate by rat cerebral cortex in vitro and the effect of stimulation, J.Neurochem. 13:573–577 (1966).

    Article  PubMed  CAS  Google Scholar 

  59. P. Reich, E. Henneman, and M. L. Karnovsky, Oxidative metabolism of glucose in resting and active sciatic nerve, J.Neurochem. 14:447–456 (1967).

    Article  PubMed  CAS  Google Scholar 

  60. G. Majno, E. L. Gasteiger, M. LaGattuta, and M. L. Karnovsky, Lipid biosynthesis in vitro by electrically stimulated rat sciatic nerves, J.Neurochem. 3:127–131 (1958).

    Article  PubMed  CAS  Google Scholar 

  61. H. J. Nicholas and B. E. Thomas, The metabolism of cholesterol and fatty acids in the central nervous system, J. Neurochem. 4:42–49 (1959).

    Article  PubMed  CAS  Google Scholar 

  62. P. J. McMillan, G. W. Douglas, and R. A. Martensen, Incorporation of C14 of acetate-1-C14 and pyruvate-2-C14 into brain cholesterol in the intact rat, Broc. Soc. Exptl. Biol. 96:738–741 (1957).

    CAS  Google Scholar 

  63. P. A. Srere, I. L. Chaikoff, S. S. Treitman, and L. S. Burnstein, The extrahepatic synthesis of cholesterol, J.Biol. Chem. 182:629–634 (1950).

    CAS  Google Scholar 

  64. G. Majno and M. L. Karnovsky A biochemical and morphological study of myelina-tion and demyelination. 1. Lipide biosynthesis in vitro by normal nervous tissue, J.Exptl. Med. 107:475–496 (1958).

    Article  CAS  Google Scholar 

  65. C. E. Rowe, The occurrence and metabolism in vitro of unesterified fatty acid in mouse brain, Biochim. Biophys. Acta 84:424–434 (1964).

    PubMed  CAS  Google Scholar 

  66. Y. Kishimoto and N. S. Radin, Metabolism of brain glycolipid fatty acids, The Lipids 1:47–61 (1966).

    Article  CAS  Google Scholar 

  67. E. Lorch, S. Abraham, and I. L. Chaikoff, Fatty acid synthesis by complex systems. The possibility of regulation by microsomes, Biochim. Biophys. Acta 70:627–641 (1963).

    Article  PubMed  CAS  Google Scholar 

  68. D. H. Nugteren, The enzymatic chain elongation of fatty acids by rat-liver microsomes. Biochim. Biophys. Acta 106:280–290 (1965).

    Article  PubMed  CAS  Google Scholar 

  69. R. B. Guchhait, G. P. Putz, and J. W. Porter, Synthesis of long-chain fatty acid by microsomes of pigeon liver, Arch. Biochem. Biophys. 117:541–549 (1966).

    Article  CAS  Google Scholar 

  70. W. R. Harlan, Jr., and S. J. Wakil, The pathways of synthesis of fatty acids by mitochondria, Biochem. Biophys. Res. Commun. 8:131–135 (1962).

    Article  PubMed  CAS  Google Scholar 

  71. W. R. Harlan, Jr., and S. J. Wakil, Synthesis of fatty acids in animal tissues, 1. Incorporation of C14-acetyl coenzyme A into a variety of long chain fatty acids by subcellular particles, J.Biol. Chem. 238:3216–3223 (1963).

    PubMed  CAS  Google Scholar 

  72. E. Klenk, Incorporation of 14C-labelled acetate into some lipids of nervous tissue, in Metabolism of the Nervous System (D. Richter, ed.), pp. 396–398, Pergamon Press, Oxford, 1957.

    Google Scholar 

  73. A. J. Fulco and J. F. Mead, The biosynthesis of lignoceric, cerebronic, and nervonic acids, J. Biol. Chem. 236:2416–2420 (1961).

    PubMed  CAS  Google Scholar 

  74. Y. Kishimoto and N. S. Radin, Biosynthesis of Nervonic acid and its homologues from carboxyl-labeled oleic acid, J. Lipid Res. 4:444–447 (1963).

    PubMed  CAS  Google Scholar 

  75. J. C. Kirschman and J. G. Coniglio, Polyunsaturated fatty acids in tissues of growing male and female rats, Arch. Biochem. Biophys. 93:297–301 (1961).

    Article  CAS  Google Scholar 

  76. B. Gerstl, M. J. Kahnke, J. K. Smith, M. G. Tavaststjerna, and R. B. Hayman, Brain lipids in multiple sclerosis, Brain 84:310–319 (1961).

    Article  PubMed  CAS  Google Scholar 

  77. R. R. Brenner and R. O. Peluffo, Effect of saturated and unsaturated fatty acids on the desaturation in vitro of palmitic, stearic, oleic, linoleic and linolenic acids, J. Biol. Chem. 241:5213–5219 (1966).

    PubMed  CAS  Google Scholar 

  78. R. R. Brenner and R. O. Peluffo, Inhibitory effect of docosa-4,7,10,13,16,19-hexaenoic acid upon the oxidative desaturation of linoleic into γ-linolenic acid and of α-linolenic into octadeca-6,9,12,15-tetraenoic acid, Biochim. Biophys. Acta 137:184–186(1967).

    Article  PubMed  CAS  Google Scholar 

  79. S. E. Kerr and W. W. C. Read, The fatty acid components of polyphosphoinositide prepared from calf brain, Biochim. Biophys. Acta 70:477–478 (1963).

    Article  PubMed  CAS  Google Scholar 

  80. Y. Kishimoto and N. S. Radin, Isolation and determination methods for brain cerebrosides, hydroxy fatty acids, and unsaturated and saturated fatty acids, J. Lipid Res. 1:72–76 (1959).

    CAS  Google Scholar 

  81. Y. Kishimoto and N. S. Radin, Composition of cerebroside acids as a function of age, J. Lipid Res. 1:79–82 (1959).

    CAS  Google Scholar 

  82. W. Pedersen, L. Hausheer, and K. Bernhard, Weitere beitrage zur neurochemie: Die inkorporation von [1-14C]-propionate in die fettsauren der gehirn-cerebroside, Helv. Chim. Acta 46:675–677 (1963).

    Article  CAS  Google Scholar 

  83. A. K. Hajra and N. S. Radin, Biosynthesis of the cerebroside odd-numbered fatty acids, J. Lipid Res. 3:327–332 (1963).

    Google Scholar 

  84. A. K. Hajra and N. S. Radin, in vivo conversion of labeled fatty acids to the sphingolipid fatty acids in rat brain, J. Lipid Res. 4:448 (1963).

    PubMed  CAS  Google Scholar 

  85. J. F. Mead and G. M. Levis, Alpha oxidation of the brain fatty acids, Biochem. Biophys. Res. Commun. 9:231–234 (1962).

    Article  PubMed  CAS  Google Scholar 

  86. J. F. Mead and G. M. Levis, A I carbon degradation of the long chain fatty acids of brain sphingolipids, J. Biol. Chem. 238:1634–1636 (1963).

    PubMed  CAS  Google Scholar 

  87. J. F. Mead and G. M. Levis, Enzymatic decarboxylation of the alpha-hydroxy acids by brain microsomes, Biochem. Biophys. Res. Commun. 11:319–324 (1963).

    Article  PubMed  CAS  Google Scholar 

  88. W. E. Davies, A. K. Hajra, S. S. Parmar, N. S. Radin, and J. F. Mead, Decarboxylation of 2-keto fatty acids by brain, J. Lipid Res. 7:270–276 (1966).

    PubMed  CAS  Google Scholar 

  89. G. M. Levis, The possible role of ascorbic acid in the α -hydroxyacid decarboxylase of brain microsomes, Biochim. Biophys. Acta 99:194–197 (1965).

    Article  PubMed  CAS  Google Scholar 

  90. A. K. Hajra and N. S. Radin, Isotopic studies of the biosynthesis of the cerebroside fatty acids in rats, J. Lipid Res. 4:270–278 (1963).

    PubMed  CAS  Google Scholar 

  91. E. Klenk and W. Kahlke, Uber das Vorkommen der 3.7.11.5-Tetramethyl-hexa-decansäure (Phytansäure) in den Cholesterinestern und anderen Lipoidfraktionen der Organe bei einem Krankheitsfall unbekannter Genese (Verdacht auf Heredopathia atactica polyneuritiformis [Refsum-syndrome]), Hoppe-Seylers Z. Physiol. Chem. 333:133–139(1963).

    Google Scholar 

  92. J. Avigan, Pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) and phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) content of human and animal tissues, Biochim. Biophys. Acta 125:607–610 (1966).

    Article  PubMed  CAS  Google Scholar 

  93. W. Kahlke, Refsum-Syndrom.-lipoidchemischeUntersuchungen bei 9 Fällen, Klin. Wochschr. 42:1011–1016 (1964).

    Article  CAS  Google Scholar 

  94. W. Kahlke and R. Richterich, Refsum’s disease (heredopathia atactica poly-neuritiformis). An inborn error of lipid metabolism with storage of 3,7,11,15-tetramethyl hexadecanoic acid. II. Isolation and identification of the storage product, Am. J. Med. 39:237–241 (1965).

    Article  PubMed  CAS  Google Scholar 

  95. S. Laurell, Separation and characterization of phytanic acid-containing plasma-triglycerides from a patient with Refsum’s disease, Biochim. Biophys. Acta 152:75–79 (1968).

    Article  PubMed  CAS  Google Scholar 

  96. W. S. Alexander, Phytanic acid in Refsum’s syndrome, J. Neurol. Neurosurg. Psychiat. 29:412–416 (1966).

    Article  PubMed  CAS  Google Scholar 

  97. R. P. Hansen, 3,7,11,15-Tetramethylhexadecanoic acid: Its occurrence in the tissues of human afflicted with Refsum’s syndrome, Biochim. Biophys. Acta 106:304–310 (1965).

    Article  PubMed  CAS  Google Scholar 

  98. D. Steinberg, C. Mize, J. Avigan, H. M. Fales, L. Eldjarn, K. Try, O. Stokke, and S. Refsum, On the metabolic error in Refsum’s disease, Trans. Am. Neurol. Assoc. 91:168–172(1966).

    Google Scholar 

  99. J. Avigan, D. Steinberg, A. Gutman, C. E. Mize, and W. A. Milne, Alpha-decarboxylation, An important pathway for degradation of phytanic acid in animals, Biochem. Biophys. Res. Commun. 24:838–844 (1966).

    Article  PubMed  CAS  Google Scholar 

  100. S. C. Tsai, J. H. Herndon, B. W. Uhlendorf, H. M. Fales, and C. E. Mize, The formation of alpha-hydroxy phytanic acid from phytanic acid in mammalian tissues, Biochem. Biophys. Res. Commun. 28:571–577 (1967).

    Article  PubMed  CAS  Google Scholar 

  101. D. Steinberg, J. H. Herndon, Jr., B. W. Uhlendorf, C. E. Mize, J. Avigan, and G. W. A. Milne, Refsum’s disease: Nature of the enzyme defect, Science 156:1740–1742 (1967).

    Article  PubMed  CAS  Google Scholar 

  102. D. Steinberg, F. Q. Vroom, W. K. Engel, J. Cammermeyer, C. E. Mize, and J. Avigan, Refsum’s disease—A recently characterized lipidosis involving the nervous system, Annal. Intern. Med. 66:365–395 (1967).

    CAS  Google Scholar 

  103. G. Majno and M. L. Karnovsky, Experimental study of diphtheritic polyneuritis in the rabbit and guinea pig. II. The effect of diphtheria toxin on lipide biosynthesis by guinea pig nerve, J. Neuropath. Exptl. Neurol. 19:7–24 (1960).

    Article  CAS  Google Scholar 

  104. M. E. Smith, The effect of fasting on lipid metabolism of the central nervous system of the rat, J. Neurochem. 10:531–536 (1963).

    Article  PubMed  CAS  Google Scholar 

  105. W. J. Culley and E. T. Mertz, Effect of restricted food intake on growth and composition of preweanling rat brain, Proc. Soc. Exptl. Biol. Med. 118:233–235 (1965).

    CAS  Google Scholar 

  106. S. G. Eliasson and A. H. Hughes, Cholesterol and fatty acid synthesis in diabetic nerve and spinal cord, Neurology 10:143–147 (1960).

    Article  PubMed  CAS  Google Scholar 

  107. S. G. Eliasson, Lipid synthesis in peripheral nerve from alloxan diabetic rats, Lipids 1:237–240 (1966).

    Article  PubMed  CAS  Google Scholar 

  108. R. A. Field and L. C. Adams, Insulin response of peripheral nerve. II. Effects on lipid metabolism, Biochim. Biophys. Acta 106:474–479 (1965).

    Article  PubMed  CAS  Google Scholar 

  109. E. Grossi, P. Paoletti, and M. Poggi, The effect of insulin on brain cholesterol and fatty acid biosynthesis, World Neurol. 3:209–215 (1962).

    PubMed  CAS  Google Scholar 

  110. A. Liuzzi, P. U. Angeletti, and R. Levi-Montalcini, Metabolic effects of a specific nerve growth factor (NGF) on sensory and sympathetic ganglia: Enhancement of lipid biosynthesis, J. Neurochem. 12:705–708 (1965).

    Article  PubMed  CAS  Google Scholar 

  111. D. P. Kosow, H. P. Schwarz, and A. Marmolejo, Lipid biosynthesis in anoxic-ischemic rat brain, J. Neurochem. 13:1139–1142 (1966).

    Article  PubMed  CAS  Google Scholar 

  112. A. D. Bond, J. P. Jordan, and J. B. Allred, Metabolic changes in rats exposed to an oxygen-enriched environment, Am. J. Physiol. 212:526–529 (1967).

    PubMed  CAS  Google Scholar 

  113. J. L. Rabinowitz, Enzymic studies on dystrophic mice and their littermates (lipo-genesis and cholesterolgenesis), Biochim. Biophys. Acta 43:337–338 (1960).

    Article  PubMed  CAS  Google Scholar 

  114. M. E. Smith, Lipid biosynthesis in the central nervous system in experimental allergic encephalomyelitis, J. Neurochem. 11:29–37 (1964).

    Article  PubMed  CAS  Google Scholar 

  115. G. B. Ansell and J. N. Hawthorne, The Phospholipids, pp. 352–362, Elsevier, Amsterdam, 1964.

    Google Scholar 

  116. W. L. Holmes, Drugs affecting lipid synthesis, in Lipid Pharmacology (R. Paoletti, ed.), pp. 131–184, Academic Press, New York, 1964.

    Chapter  Google Scholar 

  117. E. Grossi, P. Paoletti, and R. Paoletti, The in vitro and in vivo effects of chlorpro-mazine on brain lipid synthesis, J. Neurochem. 6:73–78 (1960).

    Article  PubMed  CAS  Google Scholar 

  118. R. Fumagalli, E. Grossi, and P. Paoletti, The effect of imipramine and desmethylimi-pramine on lipid biosynthesis in brain and liver, J. Neurochem. 10:213–217 (1963).

    Article  PubMed  CAS  Google Scholar 

  119. G. Manjo and M. L. Karnovsky, A biochemical and morphologic study of myelination and demyelination. III. Effect of an organo-phosphorus compound (Mipafox) on the biosynthesis of lipid by nervous tissue of rats and hens, J. Neurochem. 8:1–16(1961).

    Article  Google Scholar 

  120. C. D. Joel, H. W. Moser, G. Majno, and M. L. Karnovsky, Effects of bis-(mono-isopropylamino)-fluorophosphine oxide (Mipafox) and of starvation on the lipids in the nervous system of the hen, J. Neurochem. 14:479–488 (1967).

    Article  PubMed  CAS  Google Scholar 

  121. J. F. Berry and W. H. Cevallos, Lipid class and fatty acid composition of peripheral nerve from normal and organophosphorus-poisoned chickens, J. Neurochem. 13:117–124(1966).

    Article  PubMed  CAS  Google Scholar 

  122. A. A. Stein, E. Opalka, and I. Rosenblum, Fatty acid analysis of two experimental transmissible glial tumors by gas-liquid chromatography, Cancer Res. 25:201–205 (1965).

    PubMed  CAS  Google Scholar 

  123. B. Gerstl, M. G. Tavaststjerna, R. B. Hayman, L. F. Eng, and J. K. Smith, Alterations in myelin fatty acids and plasmalogens in multiple sclerosis, Ann. N. Y. Acad. Sci. 122:405–416(1965).

    Article  PubMed  CAS  Google Scholar 

  124. J. N. Cumings, R. C. Shortman, and T. Skrbic, Lipid studies in the blood and brain in multiple sclerosis and motor neurone disease, J. Clin. Pathol. 18:641–644 (1965).

    Article  PubMed  CAS  Google Scholar 

  125. B. Gerstl, M. G. Tavaststjerna, R. B. Hayman, J. K. Smith, and L. F. Eng, Lipid studies of white matter and thalamus of human brains, J. Neurochem. 10:889–902 (1963).

    Article  PubMed  CAS  Google Scholar 

  126. U. K. Misra, Fatty acids of brain in hypervitaminosis A in rats, Can. J. Biochem. Physiol. 44:1539–1542 (1966).

    Article  CAS  Google Scholar 

  127. P. Hill, Effect of a cholesterol-biosynthesis inhibitor on the fatty acid composition of phospholipids in the serum and tissues of rats, Biochem. J. 98:696–701 (1966).

    PubMed  CAS  Google Scholar 

  128. P. V. Johnston and B. I. Roots, Brain lipid fatty acids and temperature acclimation, Comp. Biochem. Physiol. 11:303–309 (1964).

    Article  PubMed  CAS  Google Scholar 

  129. C. Galli and D. Cecconi, Lipid changes in rat brain during maturation, Lipids 2:76–82 (1967).

    Article  PubMed  CAS  Google Scholar 

  130. G. G. Lunt and C. E. Rowe, Unesterified fatty acid in brain and its release in subcellular fractions, Biochem. J. 104:56P-57P (1967).

    PubMed  CAS  Google Scholar 

  131. F. Lindlar and R. Guttler, Die Lipoide der weissen Hirnsubstanz während der Autolyseund bei der anämischen Erweichung, Acta Neuropathol. 6:349–358 (1966).

    Article  PubMed  CAS  Google Scholar 

  132. R. Niemiro and J. Przyjemski, Changes in phospholipids during autolysis of rat brain and lung, Acta Biochim. Polon. 10:107–116 (1963).

    PubMed  CAS  Google Scholar 

  133. G. B. Ansell and S. Spanner, The breakdown of endogenous ethanolamine and choline phospholipids in rat-brain homogenates, Biochem. J. 88:26P–27P (1963);

    Google Scholar 

  134. G. B. Ansell and S. Spanner The magnesium ion dependent cleavage of the vinyl ether linkage of brain ethanolamine plasmalogen, Biochem. J. 94:252–258 (1965).

    PubMed  CAS  Google Scholar 

  135. F. E. Samson, Jr., and N. Dahl, Coma produced by injection of short chain fatty acids, Federation Proc. 14:129 (1955).

    Google Scholar 

  136. R. Lindbohm and H. Wallgren, Changes in respiration of rat brain cortex slices induced by some aliphatic alcohols, Acta Pharmacol. Toxicol. 19:53–58 (1962).

    Article  CAS  Google Scholar 

  137. K. Ahmed and P. G. Scholefield, Studies on fatty acid oxidation. 8. The effects of fatty acids on metabolism of rat-brain cortex in vitro, Biochem. J. 81:45–53 (1961).

    PubMed  CAS  Google Scholar 

  138. F. S. Rollesteon and E. A. Newsholme, Effects of fatty acids, ketone bodies, lactate and pyruvate on glucose utilization by guinea-pig cerebral cortex slices, Biochem. J. 104:519–523 (1967).

    Google Scholar 

  139. J. Zborowski and L. Wojtczak, Induction of swelling of liver mitochondria by fatty acids of various chain lengths, Biochim. Biophys. Acta 70:596–598 (1963).

    Article  PubMed  CAS  Google Scholar 

  140. A. L. Luzzati, Effetto di acidi grassi e di isoottano sulla glicolisi anaerobia del tessuto nervoso, Boll. Sel. Soc. Ital. Biol. 36:1893–1895 (1960).

    CAS  Google Scholar 

  141. P. G. Scholefield, Studies of fatty acid oxidation. 4. Effects of fatty acids on the oxidation of other metabolites, Can. J. Biochem. Physiol. 34:1211–1225 (1956).

    Article  PubMed  CAS  Google Scholar 

  142. C. E. Rowe, The metabolism of unesterified fatty acid in mouse brain in vitro, Biochem. J. 88:48P–49P (1963).

    Google Scholar 

  143. A. Geiger, J. Magnes, and R. S. Geiger, Survival of the perfused cat’s brain in the absence of glucose, Nature 170:754–755 (1952).

    Article  PubMed  CAS  Google Scholar 

  144. M. E. Volk, R. H. Millington, and S. Weinhouse, Oxidation of endogenous fatty acids of rat tissues in vitro, J. Biol. Chem. 195:493–501 (1952).

    PubMed  CAS  Google Scholar 

  145. P. M. Vignais, C. H. Gallagher, and I. Zabin, Activation and oxidation of long chain fatty acids by rat brain, J. Neurochem. 2:283–287 (1958).

    Article  PubMed  CAS  Google Scholar 

  146. F. Lynen, Participation of coenzyme A in the oxidation of fat, Nature 174:962–965 (1954).

    Article  PubMed  CAS  Google Scholar 

  147. D. S. Beattie and R. E. Basford, Brain mitochondria. IV. The activation of fatty acids in bovine brain mitochondria, J. Biol. Chem. 241:1412–1418 (1966).

    PubMed  CAS  Google Scholar 

  148. D. S. Beattie and R. E. Basford, Brain mitochondria. V. Incorporation of fatty acids into phospholipids in bovine brain mitochondria, J. Biol. Chem. 241:1419–1423 (1966).

    PubMed  CAS  Google Scholar 

  149. D. S. Beattie and R. E. Basford, Brain mitochondria. III. Fatty acid oxidation by bovine brain mitochondria, J. Neurochem. 12:103–111 (1965).

    Article  PubMed  CAS  Google Scholar 

  150. W. L. Stahl, J. C. Smith, L. M. Napolitano, and R. E. Basford, Brain mitochondria, J. Cell Biol. 19:293–307 (1963).

    Article  PubMed  CAS  Google Scholar 

  151. N. R. Marquis and I. B. Fritz, Enzymological determination of free carnitine concentration in rat tissues, J. Lipid Res. 5:184–187 (1964).

    PubMed  CAS  Google Scholar 

  152. K. R. Norum, The organ and the subcellular distribution of palmityl CoA xarnitine palmityltransferase in man, Acta Physiol. Scand. 66:172–181 (1966).

    Article  PubMed  CAS  Google Scholar 

  153. D. S. Beattie and R. E. Basford, Sodium ion and fatty acid oxidation in bovine brain mitochondria, Biochem. Biophys. Res. Commun. 22:419–424 (1966).

    Article  CAS  Google Scholar 

  154. H. Waelsch, W. M. Sperry, and V. A. Stoyanoff, A study of the synthesis and deposition of lipids in brain and other tissues with denterium as an indicator, J. Biol. Chem. 135:291–296 (1940).

    CAS  Google Scholar 

  155. Y. Kishimoto, W. E. Davies, and N. S. Radin, Turnover of the fatty acids of rat brain gangliosides, glycerophosphatides, cerebrosides and sulfatides as a function of age, J. Lipid Res. 6:525–531 (1965).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

D’Adamo, A.F. (1970). Fatty Acids. In: Lajtha, A. (eds) Metabolic Reactions in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7160-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7160-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7162-9

  • Online ISBN: 978-1-4615-7160-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics