Skip to main content

Sphingomyelin: Enzymatic Reactions

  • Chapter
Metabolic Reactions in the Nervous System
  • 156 Accesses

Abstract

Total synthesis and total degradation of sphingomyelin can now be accomplished with isolable enzymes. Some of these have been purified and partially characterized. Most preparations are overwhelmingly crude. Nevertheless, substantial progress has been made toward understanding the enzymatic reactions of sphingomyelin. Some highlights of this progress are outlined here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Sribney and E. P. Kennedy, The enzymatic synthesis of sphingomyelin, J. Biol. Chem. 233:1315 (1958).

    PubMed  CAS  Google Scholar 

  2. E. P. Kennedy and S. B. Weiss, The function of cytidine coenzymes in the biosynthesis of phospholipides, J. Biol. Chem. 222:193 (1965).

    Google Scholar 

  3. I. Zabin, Biosynthesis of ceramide by rat brain homogenates, J. Am. Chem. Soc. 79:5834 (1957).

    Article  CAS  Google Scholar 

  4. M. Sribney, Enzymatic synthesis of ceramide, Federation Proc. 21:280 (1962).

    Google Scholar 

  5. S. Gatt, Enzymatic hydrolysis of sphingolipids. I. Hydrolysis and synthesis of ceramides by an enzyme from rat brain, J. Biol. Chem. 241:3724 (1966).

    PubMed  CAS  Google Scholar 

  6. J. Cerbon, NMR studies on the water immobilization by lipid systems in vitro and in vivo, Biochim. Biophys. Acta 144:1 (1967).

    Article  PubMed  CAS  Google Scholar 

  7. W. W. Cleland and E. P. Kennedy, The enzymatic synthesis of psychosine, J. Biol. Chem. 235:45 (1960).

    PubMed  CAS  Google Scholar 

  8. K. K. Kopaczyk and N. Radin, In vivo conversions of cerebroside and ceramide in rat brain, J. Lipid Res. 6:140 (1965).

    PubMed  CAS  Google Scholar 

  9. D. Shapiro and H. M. Flowers, Studies on sphingolipids. VII. Synthesis and configuration of natural sphingomyelins, J. Am. Chem. Soc. 84:1047 (1962).

    Article  CAS  Google Scholar 

  10. E. Svennerholm, S. Ställberg-Stenhagen, and L. Svennerholm, Fatty acid composition of sphingomyelins in blood, spleen, placenta, liver, lung, and kidney, Biochim. Biophys. Acta. 125:60 (1966).

    Article  CAS  Google Scholar 

  11. J. M. Kanfer and A. E. Gal, In vivo conversion of erythro and threo dl-sphingosine-3H to ceramide and sphingomyelin, Biochem. Biophys. Res. Commun. 22:442 (1966).

    Article  CAS  Google Scholar 

  12. R. O. Brady, R. M. Bradley, O. M. Young, and H. Kaller, An alternative pathway for the enzymatic synthesis of sphingomyelin, J. Biol. Chem. 240:PC 3693 (1965).

    PubMed  CAS  Google Scholar 

  13. R. O. Brady, Studies on the total enzymatic synthesis of cerebrosides, J. Biol. Chem. 237:PC 2416 (1962).

    PubMed  CAS  Google Scholar 

  14. A. Rosenberg and N. Stern, Changes in the sphingosine and fatty acid components of the gangliosides in developing rat brain, J. Lipid Res. 7:122 (1966).

    PubMed  CAS  Google Scholar 

  15. Y. Fujino and T. Negishi, Investigation of the enzymatic synthesis of sphingomyelin, Biochim. Biophys. Acta 152:428 (1968).

    Article  PubMed  CAS  Google Scholar 

  16. A. Goebel and H. Seckfort, Uber Spaltung von sphingomyelinen durch organe, Biochem. Z. 319:203 (1948).

    CAS  Google Scholar 

  17. A. Soucek, C. Michalec, and A. Souckova, Enzymic hydrolysis of sphingomyelins by a toxin of Corynebacterium ovis, Biochem. Biophys. Acta 144:180 (1967).

    Article  PubMed  CAS  Google Scholar 

  18. F. M. Davidson and C. Long, The structure of the naturally occurring phospho-glycerides, Biochem. J. 69:458 (1958).

    PubMed  CAS  Google Scholar 

  19. S. J. Thannhauser and M. Reichel, Studies on animal lipids. XVI. The occurrence of sphingomyelin as a mixture of sphingomyelin fatty acid ester and free sphingomyelin, demonstrated by enzymatic hydrolysis and mild saponification, J. Biol. Chem. 135:1 (1940).

    CAS  Google Scholar 

  20. M. G. Macfarlane, The biochemistry of bacterial toxins 2. The enzymic specificity of Clostridium welchii lecithinase, Biochem. J. 42:581 (1948).

    Google Scholar 

  21. Y. Fujino, Studies on the conjugated lipid. IV. On the enzymatic hydrolysis of sphingomyelin, J. Biochem. (Japan) 39:55 (1952).

    CAS  Google Scholar 

  22. K. V. Druzhinina and M. G. Kritzman, Lecithinase in animal fatty tissue, Biokhimiya 17:77 (1952).

    CAS  Google Scholar 

  23. M. W. Slein and G. F. Logan, Jr., Characterization of the phospholipases of Bacillus cereus and their effect on erythrocytes, bone, and kidney cells, J. Bacteriol. 90:69 (1965).

    PubMed  CAS  Google Scholar 

  24. M. G. Macfarlane and B. C. J. G. Knight, Biochemistry of bacterial toxins; lecithinase activity of Cl. welchii toxins, Biochem. J. 35:884 (1941).

    PubMed  CAS  Google Scholar 

  25. D. J. Hanahan and R. Vercamer, the action of lecithinase D on lecithin. The enzymatic preparation of D-1,2-dipalmitolein and D-1,2-dipalmitin, J. Am. Chem. Soc. 76:1804 (1954).

    Article  CAS  Google Scholar 

  26. M. Kates, in Lipide Metabolism (K. Bloch, ed.), p. 206 et seq. Wiley, New York (1963).

    Google Scholar 

  27. H. M. Doery, B. J. Magnusson, I. M. Cheyne, and J. Gulasekharan, A phospholipase in staphylococcal toxin which hydrolyzes sphingomyelin, Nature 198:1091 (1963).

    Article  PubMed  CAS  Google Scholar 

  28. A Roitman and S. Gatt, Isolation of phospholipase-C from rat brain, Israel J. Chem. 1:190 (1963).

    Google Scholar 

  29. M. Heller and B. Shapiro, The hydrolysis of sphingomyelin by rat liver, Israel J. Chem. 1:204 (1963).

    Google Scholar 

  30. M. Heller and B. Shapiro, Enzyme hydrolysis of sphingomyelin by rat liver, Biochem. J. 98:763 (1966).

    PubMed  CAS  Google Scholar 

  31. J. H. Kanfer, O. M. Young, D. Shapiro, and R. O. Brady, The metabolism of sphingomyelin. I. Purification and properties of a sphingomyelin-cleaving enzyme from rat liver, J. Biol. Chem. 241:1081 (1966).

    PubMed  CAS  Google Scholar 

  32. Y. Barenholz, A. Roitman, and S. Gatt, Enzymatic hydrolysis of sphingolipids. II. Hydrolysis of sphingomyelin by an enzyme from rat brain, J. Biol. Chem. 241:3731 (1965).

    Google Scholar 

  33. P. B. Schneider and E. P. Kennedy, Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick’s disease, J. Lipid Res. 8:202 (1967).

    PubMed  CAS  Google Scholar 

  34. C. de Duve, in Subcellular Particles (T. Hayashi, ed.), Ronald, New York (1959).

    Google Scholar 

  35. R. O. Brady, J. N. Kanfer, M. B. Mock, and D. Fredrickson, The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick Disease, Proc. Natl. Acad. Sci. U.S. 55:366 (1966).

    Article  CAS  Google Scholar 

  36. B. W. Uhlendorf, A. I. Holtz, M. B. Mock, and D. S. Fredricksson, in Inborn Disorders of Sphingolipid Metabolism (S. M. Aronson and B. W. Volk, eds.), p. 443, Pergamon, New York (1967).

    Google Scholar 

  37. D. O. Shah and J. H. Schulman, The ionic structure of sphingomyelin monlayers, Biochim. Biophys. Acta 135:184 (1967).

    Article  PubMed  CAS  Google Scholar 

  38. L. F. Eng and M. E. Smith, The cholesterol complex in the myelin membrane, Lipids 1:296 (1966).

    Article  PubMed  CAS  Google Scholar 

  39. J. H. Raper, D. B. Gammack, and G. H. Sloane-Stanley, A study of cerebral sphingomyelins in monomolecular films, Biochem. J. 98:21p (1966).

    CAS  Google Scholar 

  40. S. Ställberg-Stenhagen and L. Svennerholm, Fatty acid composition of human brain sphingomyelins: Normal variation with age and changes during myelin disorders, J. Lipid Res. 6:146 (1965).

    Google Scholar 

  41. E. Svennerholm, S. Ställberg-Stenhagen, and L. Svennerholm, Fatty acid composition of sphingomyelins in blood, spleen, placenta, liver, lung and kidney, Biochim. Biophys. Acta 125:60 (1966).

    Article  CAS  Google Scholar 

  42. K.-A. Karlsson, B. E. Samuelson, and G. O. Steen, Studies on sphingosines. 15. Degradation of phytosphingosine to hydroxy fatty acid and ethanolamine by the yeast Hansenella ciferrii, Acta Chem. Scand. 21:2566 (1967).

    Article  CAS  Google Scholar 

  43. K.-A. Karlsson, Studies on sphingosines, the chemical structure of a dienic long chain base of human blood plasma sphingomyelins, Acta Chem. Scand. 21:2577 (1967).

    Article  PubMed  CAS  Google Scholar 

  44. Y. Barenholz and S. Gatt, The utilization and degradation of phytosphingosine by rat liver, Biochem. Biophys. Res. Commun. 27:319 (1967).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Rosenberg, A. (1970). Sphingomyelin: Enzymatic Reactions. In: Lajtha, A. (eds) Metabolic Reactions in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7160-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7160-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7162-9

  • Online ISBN: 978-1-4615-7160-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics