Skip to main content

Abstract

Glutamate and glutamine are present in nervous tissue in large amounts. Both amino acids play a role in a large number of reactions in brain. The incorporation of carbon or nitrogen from a variety of precursors in these amino acids is fast and extensive, indicating a rapid turnover of these compounds. The conversion of glutamate to glutamine is thought to be important for the detoxification of ammonia in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Waelsch, Glutamic acid and cerebral function, Advan. Protein Chem. 6:299–341 (1951).

    Article  CAS  Google Scholar 

  2. H. Weil-Malherbe, Significance of glutamic acid for the metabolism of nervous tissue, Physiol Rev 30:549–568 (1950).

    PubMed  CAS  Google Scholar 

  3. H. Weil-Malherbe,in Neurochemistry (K. A. C. Elliot, I. H. Page, and J. H. Quastel, eds.), pp. 321–330, Charles V. Thomas, Springfield, Illinois (1962).

    Google Scholar 

  4. H. J. Strecker, in Metabolism of the Nervous System (D. Richter, ed.), pp. 459–474, Pergamon Press, New York (1957).

    Google Scholar 

  5. D. R. Curtis and J. C. Watkins, The pharmacology of amino acids related to gamma-aminobutyric acid, Pharmacol. Rev. 17:347–391 (1965).

    PubMed  CAS  Google Scholar 

  6. H. H. Tallan, in Amino Acid Pools (J. T. Holden, ed.), pp. 471–485, Elsevier, Amsterdam (1962).

    Google Scholar 

  7. C. F. Baxter and C. L. Ortiz, Amino acids and the maintenance of osmotic equilibrium in brain tissue, Life Sci 5:2321–2329 (1966).

    Article  PubMed  CAS  Google Scholar 

  8. N. Okumura, S. Otsuki, and T. Aoyama, Studies on the free amino acids and related compounds in the brains of fish, amphibia, reptile, aves and mammal by ion exchange chromatography, J. Biochem. (Tokyo) 46:207–212 (1959).

    CAS  Google Scholar 

  9. Y. Tsukada, in Progress in Brain Research (T. Tokizane and J. P. Schadé, eds.), Vol. 21A, pp. 268–291, Elsevier, Amsterdam (1966).

    Google Scholar 

  10. S. Berl and H. Waelsch, Determination of glutamic acid, glutamine, glutathione and γ-aminobutyric acid and their distribution in brain tissue, J. Neurochem. 3:161–169 (1958).

    Article  PubMed  CAS  Google Scholar 

  11. S. Berl, Compartmentation of glutamic acid metabolism in developing cerebral cortex, J. Biol. Chem. 240:2047–2054 (1965).

    PubMed  CAS  Google Scholar 

  12. S. Berl and D. P. Purpura, Regional development of glutamic acid compartmentation in immature brain, J. Neurochem. 13: 293–304 (1966).

    Article  CAS  Google Scholar 

  13. R. L. Young and O. H. Lowry, Quantitative methods for measuring the histo-chemical distribution of alanine, glutamate and glutamine in brain, J. Neurochem. 13:785–793 (1966).

    Article  PubMed  CAS  Google Scholar 

  14. L. T. Graham, R. P. Shank, R. Werman, and M. H. Aprison, Distribution of some synaptic transmitter suspects in cat spinal cord, J. Neurochem. 14:465–472 (1967).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Nagata, Y. Yokoi, and Y. Tsukada, Studies on free amino acid metabolism in excised cervical sympathetic ganglia from the rat, J. Neurochem. 13:1421–1431 (1966); Y. Tsukada, personal communication.

    Article  PubMed  CAS  Google Scholar 

  16. E. A. Kravitz, S. W. Kuffler, and D. D. Potter, Gamma-aminobutyric acid and other blocking compounds in Crustacea, III, J. Neurophysical. 26:739–751 (1963).

    CAS  Google Scholar 

  17. L. G. Abood, I. Koyama, and V. Thomas, Relationship of depolarization to phosphorus metabolism and transport in excitable tissues, Am. J. Physiol. 207:1435–1440 (1964).

    PubMed  CAS  Google Scholar 

  18. A. K. Huggins, J. T. Rick, and G. A. Kerkut, A comparative study of the intermediary metabolism of L-glutamate in muscle and nervous tissue, Comp. Biochem. Physiol. 21:23–30 (1967).

    Article  PubMed  CAS  Google Scholar 

  19. M. Otsuka, E. A. Kravitz, and D. D. Potter, Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate, J. Neurophysiol. 30:725–752 (1967).

    PubMed  CAS  Google Scholar 

  20. S. Berl and D. P. Purpura, Postnatal changes in amino acid content of kitten cerebral cortex, J. Neurochem. 10: 237–240 (1963).

    Article  PubMed  CAS  Google Scholar 

  21. S. M. Bayer and W. C. McMurray, The metabolism of amino acids in developing rat brain, J. Neurochem. 14:695–706 (1967).

    Article  PubMed  CAS  Google Scholar 

  22. A. R. Dravid and L. Jilek, Influence of stagnant hypoxia (oligaemia) on some free amino acids in rat brain during ontogeny, J. Neurochem. 12:837–843 (1965).

    Article  PubMed  CAS  Google Scholar 

  23. J. L. Mangan and V. P. Whittaker, The distribution of free amino acids in subcellular fractions of guinea-pig brain Biochem. J. 98:128–137 (1966).

    PubMed  CAS  Google Scholar 

  24. M. K. Gaitonde, D. R. Dahl, and K. A. C. Elliott, Entry of glucose carbon into amino acids of rat brain and liver in vivo after injection of uniformly 14C-labelled glucose, Biochem. J. 94:345–352 (1965).

    PubMed  CAS  Google Scholar 

  25. P. Schwerin, S. P. Bessman, and H. Waelsch, The uptake of glutamic acid and glutamine by brain and other tissues of the rat and mouse, J. Biol. Chem. 184:37–44 (1950).

    PubMed  CAS  Google Scholar 

  26. W. A. Himwich, J. C. Peterson, and M. L. Allen, Hematoencephalic exchange as a function of age, Neurology 7:705–710 (1957).

    Article  PubMed  CAS  Google Scholar 

  27. A. Lajtha, S. Berl, and H. Waelsch, Amino acid and protein metabolism of the brain—IV, J. Neurochem. 3:322–332 (1959).

    Article  PubMed  CAS  Google Scholar 

  28. R. B. Roberts, J. B. Flexner, and L. B. Flexner, Biochemical and physiological differentiation during morphogenesis—XXIII, J. Neurochem. 4:78–90 (1959).

    Article  PubMed  CAS  Google Scholar 

  29. R. M. O’Neal and R. E. Koeppe, Precursors in vivo of glutamate, aspartate and their derivatives of rat brain, J. Neurochem. 13:835–847 (1966).

    Article  PubMed  Google Scholar 

  30. J. E. Adams, H. A. Harper, G. S. Gordan, M. Hutchin, and R. C. Bentinck, Cerebral metabolism of glutamic acid in multiple sclerosis, Neurology 5:100–107 (1955).

    Article  PubMed  CAS  Google Scholar 

  31. H. G. Knauff, U. Gottstein, and B. Miller, Untersuchungen über den Austausch von freien Aminosäuren und Harnstoff zwischen Blut und Zentralnervensystem, Klin. Wochschr. 42:27–39 (1964).

    Article  CAS  Google Scholar 

  32. R. Rodnight, H. McIlwain, and M. A. Tresize, Analysis of arterial and cerebral venous blood from the rabbit, J. Neurochem. 3:209–218 (1959).

    Article  PubMed  CAS  Google Scholar 

  33. W. Sacks, Cerebral metabolism of isotopic lipid and protein derivatives in normal human subjects, J. Appl. Physiol. 12:311–318 (1958).

    PubMed  CAS  Google Scholar 

  34. S. Berl, A. Lajtha, and H. Waelsch, Amino acid and protein metabolism—VI. Cerebral compartments of glutamic acid metabolism, J. Neurochem. 7:186–197 (1961).

    Article  CAS  Google Scholar 

  35. S. Berl, G. Takagaki, D. D. Clarke, and H. Waelsch, Metabolic compartments in vivo, J. Biol. Chem. 237:2562–2569 (1962).

    PubMed  CAS  Google Scholar 

  36. J. C. Dickinson and P. B. Hamilton, The free amino acids of human spinal fluid determined by ion exchange chromatography, J. Neurochem. 13:1179–1187 (1966).

    Article  PubMed  CAS  Google Scholar 

  37. E. Levin, G. J. Nogueira, and C. A. Garcia Argiz, Ventriculo-cisternal perfusion of amino acids in cat brain—I, J. Neurochem. 13:761–767 (1966).

    Article  PubMed  CAS  Google Scholar 

  38. E. Levin, C. A. Garcia Argiz and G. J. Nogueira, Ventriculo cisternal perfusion of amino acids in cat brain—II. J. Neurochem, 13 979–988 (1966).

    Article  PubMed  CAS  Google Scholar 

  39. H. H. Jasper, R. T. Khan, and K. A. C. Elliott, Amino acids released from the cerebral cortex in relation to its state of activation, Science 147:1448–1449 (1965).

    Article  PubMed  CAS  Google Scholar 

  40. A. Van Harreveld and M. Kooiman, Amino acid release from the cerebral cortex during spreading depression and asphyxiation, J. Neurochem. 12:431–439 (1965).

    Article  Google Scholar 

  41. K. Crowshaw, S. J. Jessup, and P. W. Ramwell, Thin-layer chromatography of l-dimethylaminonaphthalene-5-sulphonyl derivatives of amino acids present in superfusates of cat cerebral cortex, Biochem. J. 103:79–85 (1967).

    PubMed  CAS  Google Scholar 

  42. R. W. Albers, G. J. Koval, and W. B. Jakoby, Transamination reactions of rat brain Exptl. Neurol. 6:85–89 (1962).

    Article  CAS  Google Scholar 

  43. J. Awapara and B. Seale, Distribution of transaminase in rat organs, J. Biol. Chem. 194:497–502 (1952).

    PubMed  CAS  Google Scholar 

  44. O. Tangen, F. Fonnum, and R. Haavaldsen, Separation and purification of aromatic amino acid transaminases from rat brain, Biochim. Biophys. Acta 96:82–90 (1965).

    Article  PubMed  CAS  Google Scholar 

  45. G. Amore and V. Bonavita, Aspartate aminotransferase in the brain of the developing rat, Life Sci 4:2417–2424 (1965).

    Article  PubMed  CAS  Google Scholar 

  46. F. Fonnum, The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea-pig brain, Biochem. J. 106:401–412 (1968).

    PubMed  CAS  Google Scholar 

  47. C. Frieden, in The Enzymes, 2nd ed. (P. D. Boyer, H. Lardy, and K. Myrbäck, eds.), Vol. 7, pp. 3–24, Academic Press, New York (1963).

    Google Scholar 

  48. M. Klingenberg and D. Pette, Proportions of mitochondrial enzymes and pyridine nucleotides, Biochem. Biophys. Res. Commun. 7:430–432 (1962).

    Article  PubMed  CAS  Google Scholar 

  49. L. Garcia-Bunuel, D. B. McDougal, H. B. Burch, E. M. Jones, and E. Touhill, J. Neurochem. 9:589–594 (1962).

    Article  PubMed  CAS  Google Scholar 

  50. D. H. Williamson, P. Lund, and H. A. Krebs, The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver, Biochem. J. 103:514–527 (1967).

    PubMed  CAS  Google Scholar 

  51. N. D. Goldberg, J. V. Passonneau, and O. H. Lowry, Effects of changes in brain metabolism on the levels of citric acid cycle intermediates, J. Biol. Chem. 241:3997–4003 (1966).

    PubMed  CAS  Google Scholar 

  52. H. A. Krebs, Metabolism of amino acids, Biochem. J. 29: 1951–1969 (1935).

    PubMed  CAS  Google Scholar 

  53. C. Wu, Glutamine Synthetase—I. A comparative study of its distribution in animals and its inhibition by DL-allo-S-hydroxylysine, Comp. Biochem. Physiol. 8:335–351 (1963).

    Article  CAS  Google Scholar 

  54. C. A. Woolfolk, and E. R. Stadtman, Regulation of glutamine synthetase, Arch. Biochem. Biophys. 118:736–755 (1967).

    Article  PubMed  CAS  Google Scholar 

  55. K. Schnackerz, and L. Jaenicke, Reinigung und Eigenschaften der Glutamin-Synthetase aus Schweinehirn, Z. Physiol. Chem. 347:127–144 (1966).

    Article  CAS  Google Scholar 

  56. J. P. Greenstein and F. M. Leuthardt, Effect of phosphate and other anions on the enzymatic desamidation of various amides, Arch. Biochem. Biophys. 17:105–114 (1948).

    CAS  Google Scholar 

  57. E. Kvamme, G. Svenneby, and B. Tveit, in Molecular Basis of Some Aspects of Mental Activity (O. Walaas, ed.), Vol. 1, pp. 211–219, Academic Press, London (1966).

    Google Scholar 

  58. E. Kvamme, B. Tveit, and G. Svenneby, Glutaminase from pig kidney, an allo-steric protein, Biochem. Biophys. Res. Commun. 20:566–572 (1965).

    Article  PubMed  CAS  Google Scholar 

  59. L. Salganicoff and E. De Robertis, J. Neurochem. 12: 287–309 (1965).

    Article  PubMed  CAS  Google Scholar 

  60. G. M.J. van Kempen, C. J. van den Berg, H. J. van der Helm, and H. Veldstra, Intracellular localization of glutamate decarboxylase, y-aminobutyrate transaminase and some other enzymes in brain tissue, J. Neurochem. 12:581–588 (1965).

    Article  PubMed  Google Scholar 

  61. A. Neidle, C. J. van den Berg, and A. Grynbaum, The heterogeneity of rat brain mitochondria isolated on continuous sucrose gradients, J. Neurochem. 16:225–234 (1969).

    Article  PubMed  CAS  Google Scholar 

  62. E. De Robertis, O. Z. Sellinger, G. Rodriguez de Lores Arnaiz, M. Alberici, and L. M. Zieher, Nerve endings in methionine sulphoximine convulsant rats, a neurochemical and ultrastructural study, J. Neurochem. 14:81–89 (1967).

    Article  PubMed  Google Scholar 

  63. O. H. Lowry, N. R. Roberts, and M. W. Chang, The analysis of single cells, J. Biol. Chem. 222:97–107 (1956).

    PubMed  CAS  Google Scholar 

  64. E. Robins, D. E. Smith, K. M. Eydt, and R. E. McCaman, The quantitative histochemistry of the cerebral cortex—II, J. Neurochem 1:68–76 (1956).

    Article  PubMed  CAS  Google Scholar 

  65. D. B. McDougal, E. M. Jones, and U. I. Sila, in Ultrastructure and Metabolism of the Nervous System (S. R. Corey, A. Pope, and E. Robins, eds.), Vol. 40, pp. 182–188, Williams & Wilkins, Baltimore (1962).

    Google Scholar 

  66. R. E. Kuhlman and O. H. Lowry, Quantitative histochemical changes during the development of the rat cerebral cortex, J. Neurochem. 1:173–180 (1956).

    Article  PubMed  CAS  Google Scholar 

  67. O. H. Lowry, in Morphological and Biochemical Correlates of Neural Activity (M. M. Cohen and R. S. Snider, eds.), pp. 178–191, Harper & Row, New York (1964).

    Google Scholar 

  68. R. A. Salvador and R. W. Albers, The distribution of glutamin-y-aminobutyrate transaminase in the nervous system of the rhesus monkey, J. Biol. Chem. 234: 922–925 (1959).

    PubMed  CAS  Google Scholar 

  69. R. W. Albers and R. O. Brady, The distribution of glutamic decarboxylase in the nervous system of the rhesus monkey, J. Biol. Chem. 234:926–928 (1959).

    PubMed  CAS  Google Scholar 

  70. S. Berl, Glutamine synthetase. Determination of its distribution in brain during development, Biochemistry 5:916–922 (1966).

    Article  PubMed  CAS  Google Scholar 

  71. T. Tursky and E. Valovićová, Asparaginase in the brain of guinea pig in experimental allergic encephalomyelitis, J. Neurochem. 11:99–108 (1964).

    Article  PubMed  CAS  Google Scholar 

  72. J. M. Pasquini, B. Kaplún, C. A. Garcia Argiz, and C. J. Gomez, Hormonal regulation of brain development, Brain Res 6:621–634 (1967).

    Article  PubMed  CAS  Google Scholar 

  73. C. Wu, Glutamine synthetase, Arch. Biochem. Biophys. 106:394–401 (1964).

    Article  PubMed  CAS  Google Scholar 

  74. C. J. van den Berg, G. M. J. van Kempen, J. P. Schadée, and H. Veldstra, Levels and intracellular localization of glutamate decarboxylase and γ-aminobutyrate transaminase and other enzymes during the development of the brain, J. Neurochem. 12:863–869 (1965).

    Article  PubMed  Google Scholar 

  75. O. H. Lowry, N. R. Roberts, and C. Lewis, The quantitative histochemistry of the retina, J. Biol. Chem. 220:879–892 (1956).

    PubMed  CAS  Google Scholar 

  76. R. Balázs and R. J. Haslam, Exchange transamination and the metabolism of glutamate in brain, Biochem. J. 94:131–141 (1965).

    PubMed  Google Scholar 

  77. R. Balázs, Control of glutamate oxidation in brain and liver mitochondrial systems, Biochem. J. 95:497–508 (1965).

    PubMed  Google Scholar 

  78. N. E. Lofrumento, G. De Gregorio, S. Papa, C. Serra, and E. Quagliariello,

    Google Scholar 

  79. Metabolismo dell’acido glutammico nei mitochondri de cervello, Boll. Soc. Ital. Biol. Sper. 40:1452–1455 (1964).

    Google Scholar 

  80. E. J. De Haan, J. M. Tager, and E. C. Slater, Factors affecting the pathway of glutamate oxidation in rat-liver mitochondria, Biochim. Biophys. Acta 131:1–13 (1967).

    Article  Google Scholar 

  81. B. Sacktor and L. Packer, Reactions of the respiratory chain in brain mitochondrial preparations, J. Neurochem. 9:371–382 (1962).

    Article  PubMed  CAS  Google Scholar 

  82. H. A. Krebs, Metabolism of amino acids, Biochem. J. 29:1620–1644 (1935).

    PubMed  CAS  Google Scholar 

  83. H. Weil-Malherbe, Studies on brain metabolism, Biochem. J. 30:665–676 (1936).

    PubMed  CAS  Google Scholar 

  84. R. J. Woodman and H. McIlwain, Glutamic acid, other amino acids and related compounds as substrates for cerebral tissues: Their effects on tissue phosphates, Biochem. J. 81:83–93 (1961).

    PubMed  CAS  Google Scholar 

  85. F. Dickens and G. D. Greville, Metabolism of normal and tumour tissue, Biochem. J. 27:1123–1133 (1933).

    PubMed  CAS  Google Scholar 

  86. H. Weil-Malherbe and R. H. Green, Ammonia formation in brain, Biochem. J. 61: 210–218 (1955).

    PubMed  CAS  Google Scholar 

  87. G. Takagaki, S. Hirano, and Y. Nagata, Some observations on the effect of d-glutamate on the glucose metabolism and the accumulation of potassium ions in brain cortex slices, J. Neurochem. 4:124–134 (1959).

    Article  PubMed  CAS  Google Scholar 

  88. O. Z. Sellinger, R. Catanzaro, E. B. Chain and F. Pocchiari, The metabolism of glutamate and aspartate in rat cerebral cortical slices, Broc. Roy. Soc. (London) Ser. B 156:148–162 (1962).

    Article  CAS  Google Scholar 

  89. A. Beloff-Chain, R. Catanzaro, E. B. Chain, I. Masi, and F. Pocchiari, Fate of uniformly labelled 14C glucose in brain slices, Proc. Roy. Soc. (London) Ser. B 144: 22–28 (1955).

    Article  CAS  Google Scholar 

  90. E. B. Chain, M. Chiozzotto, F. Pocchiari, C. Rossi, and R. Sandman, Participation of the ammonium ion in the transformation of glucose to amino acids in brain tissue, Proc. Roy. Soc. (London) Ser. B 152:290–297 (1960).

    Article  CAS  Google Scholar 

  91. K. L. Reichelt and E. Kvamme, Acetylated and peptide bound glutamate and aspartate in brain, J. Neurochem 14:987–996 (1967).

    Article  PubMed  CAS  Google Scholar 

  92. G. Simon, J. B. Drori, and M. M. Cohen, Mechanism of conversion of aspartate into glutamate in cerebral-cortex slices, Biochem. J. 102:153–162 (1967).

    PubMed  CAS  Google Scholar 

  93. S. Berl, W. J. Nicklas, and D. D. Clarke, Compartmentation of glutamic acid metabolism in brain slices, J. Neurochem. 15:131–140 (1968).

    Article  PubMed  CAS  Google Scholar 

  94. R. Vrba, M. K. Gaitonde, and D. Richter, The conversion of glucose carbon into protein in the brain and other organs of the rat, J. Neurochem. 9:465–475 (1962).

    Article  PubMed  CAS  Google Scholar 

  95. H. Busch, E. Fujiwara, and L. M. Keer, Metabolic patterns for glucose-l-14C in tissues of tumor-bearing rats, Cancer Res 20:50–57 (1960).

    PubMed  CAS  Google Scholar 

  96. C. J. van den Berg, P. Mela, and H. Waelsch, On the contribution of the tricarboxylic acid cycle to the synthesis of glutamate, glutamine and aspartate in brain, Biochem. Biophys. Res. Commun. 23:479–484 (1966).

    Article  PubMed  Google Scholar 

  97. C. J. van den Berg, Lj. Krzalic, P. Mela, and H. Waelsch, Compartmentation of glutamate metabolism in brain. Evidence for the existence of two different tricarboxylic acid cycles in brain, Biochem. J. 113:281–290 (1969).

    PubMed  Google Scholar 

  98. H. Waelsch, S. Berl, C. A. Rossi, D. D. Clarke, and D. P. Purpura, Quantitative aspects of CO2 fixation in mammalian brain in vivo. J. Neurochem. 1b1:717–728 (1964).

    Article  Google Scholar 

  99. C. F. Baxter, Intrinsic amino acid levels and the blood-brain barrier, Progr. Brain Res. 29: 429–444 (1968).

    Article  CAS  Google Scholar 

  100. S. Roberts and B. S. Morelos, Regulation of cerebral metabolism of amino acids— IV, J. Neurochem. 12:373–387 (1965).

    Article  PubMed  CAS  Google Scholar 

  101. E. Roberts, M. Rothstein, and C. F. Baxter, Some metabolic studies of γ-amino-butyric acid, Proc. Soc. Exptl. Biol. Med. 97:796–802 (1958).

    CAS  Google Scholar 

  102. S. S. Barkulis, A. Geiger, Y. Kawakita, and V. Aguilar, A study on the incorporation of 14C derived from glucose into the free amino acids of the brain cortex, J. Neurochem. 5:339–348 (1960).

    Article  PubMed  CAS  Google Scholar 

  103. S. Otsuki, A. Geiger, and G. Gombos, The metabolic pattern of the brain in brain perfusion experiments in vivo—I, J. Neurochem. 10:397–404 (1963).

    Article  PubMed  CAS  Google Scholar 

  104. M. Proler and P. Kellaway, The methionine sulfoximine syndrome in the cat, Epilepsia 3:117–130 (1962).

    Article  PubMed  CAS  Google Scholar 

  105. O. Z. Sellinger and P. Weiler, The nature of the inhibition in vitro of cerebral glutamine synthetase by the convulsant, methionine sulfoximine, Biochem. Pharmacol. 12:989–1000 (1963).

    Article  PubMed  CAS  Google Scholar 

  106. C. Lamar and O. Z. Sellinger, The inhibition in vivo of cerebral glutamine synthetase and glutamine transferase by the convulsant methionine sulfoximine, Biochem. Pharmacol. 14:489–506 (1965).

    Article  PubMed  CAS  Google Scholar 

  107. O. Z. Sellinger, Inactivation of cerebral glutamine synthetase by DL-methionine-DL-sulfoximine, Biochim. Biophys. Acta 132:514–516 (1967).

    Article  PubMed  CAS  Google Scholar 

  108. J. K. Tews and W. E. Stone, Effects of methionine sulfoximine on levels of free amino acids and related substances in brain, Biochem. Pharmacol. 13:543–544(1964).

    Article  PubMed  CAS  Google Scholar 

  109. J. Folbergrova, Free glutamine level in the rat brain in vivo after methionine sulphoximine administration, Physiol. Bohemoslov. 13:21–27 (1964).

    PubMed  CAS  Google Scholar 

  110. A. P. C. Bot and J. P. Schadé, personal communications.

    Google Scholar 

  111. R. L. Potter and A. Van Harreveld, The effect of metrazol on the glutamate metabolism of cerebral cortex, J. Neurochem. 9:105–112 (1962).

    Article  PubMed  CAS  Google Scholar 

  112. G. M. Clark and B. Eiseman, Studies in ammonia metabolism, New Engl. J. Med. 259:178–180(1958).

    Article  PubMed  CAS  Google Scholar 

  113. J. K. Tews, S. H. Carter, P. D. Roa, and W. E. Stone, Free amino acids and related compounds in dog brain: Post-mortem and anoxic changes, effects of ammonium chloride infusion, and levels during seizures induced by Picrotoxin and by pentylenetetrazol, J. Neurochem. 10:641–653 (1963).

    Article  PubMed  CAS  Google Scholar 

  114. J. Shorey, D. W. McCandless, and S. Schenker, Cerebral α-ketoglutarate in ammonia intoxication, Gastroenterology, 53:706–711 (1967).

    PubMed  CAS  Google Scholar 

  115. S. P. Bessman, in Proceedings of the Fourth International Congress of Biochemistry (F. Brücke, ed.), Vol. 3, pp. 141–145, Pergamon Press, London (1959).

    Google Scholar 

  116. S. Schenker and J. H. Mendelson, Cerebral adenosine triphosphate in rats with ammonia-induced coma, Am. J. Physiol. 206:1173–1176 (1964).

    PubMed  CAS  Google Scholar 

  117. J. P. Du Ruisseau, J. P. Greenstein, M. Winitz, and S. M. Birnbaum, Studies on metabolism of amino acids and related compounds in vivo, Arch. Biochem. Biophys. 68:161–171 (1957).

    Article  Google Scholar 

  118. K. S. Warren and S. Schenker, Effect of an inhibitor of glutamine synthesis (methionine sulfoximine) on ammonia toxicity and metabolism, J. Lab. Clin. Med. 64:442–449 (1964).

    PubMed  CAS  Google Scholar 

  119. S. P. Bessman and A. N. Bessman, The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma, J. Clin. Invest. 34:622–628 (1955).

    Article  PubMed  CAS  Google Scholar 

  120. J. F. Fazekas, H. E. Ticktin, W. R. Ehrmantraut, and R. W. Alman, Cerebral metabolism in hepatic insufficiency, Am. J. Med. 21:843–849 (1956).

    Article  PubMed  Google Scholar 

  121. P. J. McMillan and R. A. Mortensen, The metabolism of brain pyruvate and acetate in the tricarboxylic acid cycle, J. Biol. Chem. 238:91–93 (1963).

    PubMed  CAS  Google Scholar 

  122. E. V. Flock, G. M. Tyce, and C. A. Owen, Utilization of (U-14C) glucose in brain after total hepatectomy in the rat, J. Neurochem. 13:1389–1406 (1966).

    Article  PubMed  CAS  Google Scholar 

  123. R. S. De Ropp and E. H. Snedeker, Effect of drugs on amino acid levels in the rat brain: Hypoglycemic agents, J. Neurochem. 7:128–134 (1961).

    Article  Google Scholar 

  124. R. M. C. Dawson, Studies on the glutamine and glutamic acid content of the rat brain during insulin hypoglycaemia, Biochem. J. 47:386–391 (1950).

    PubMed  CAS  Google Scholar 

  125. J. K. Tews and W. E. Stone, Free amino acids and related compounds in brain and other tissues: effects of convulsant drugs, Progr. Brain Res 16:135–163 (1965).

    Article  CAS  Google Scholar 

  126. R. P. Kamrin and A. A. Kamrin, The effects of pyridoxine antagonists and other convulsive agents on amino acid concentrations of the mouse brain, J. Neurochem. 6:219–225 (1961).

    Article  CAS  Google Scholar 

  127. P. D. Roa, J. K. Tews, and W. E. Stone, A neurochemical study of thiosemicarba-zide seizures and their inhibition by amino-oxyacetic acid, Biochem. Pharmacol. 13:477–487(1964).

    Article  PubMed  CAS  Google Scholar 

  128. D. E. Hathway and A. Mallinson, Chemical studies in relation to convulsive conditions, Biochem. J. 90:51–60 (1964).

    PubMed  CAS  Google Scholar 

  129. R. M. C. Dawson, Cerebral amino acids in fluoroacetate-poisoned, anaesthetised and hypoglycaemic rats, Biochim. Biophys. Acta 11:548–552 (1953).

    Article  PubMed  CAS  Google Scholar 

  130. F. N. Minard and I. K. Mushahwar, The effect of periodic convulsions induced by 1, 1-dimethylhydrazine on the synthesis of rat brain metabolites from (2–14C) glucose, J. Neurochem. 13:1–11 (1966).

    Article  PubMed  CAS  Google Scholar 

  131. B. Sacktor, J. E. Wilson, and C. G. Tiekert, Regulation of glycolysis in brain, in situ, during convulsions, J. Biol. Chem. 241:5071–5075 (1966).

    PubMed  CAS  Google Scholar 

  132. M. B. Sporn, W. Dingman, and A. Defalco, A method for studying metabolic pathways in the brain of the intact animal, J. Neurochem. 4:141–147 (1959).

    Article  PubMed  CAS  Google Scholar 

  133. R. M. C. Dawson, The metabolism and glutamic acid content of rat brain in relation to thiopentone anaesthesia, Biochem. J. 49:138–144 (1951).

    PubMed  CAS  Google Scholar 

  134. H. S. Bachelard and J. R. Lindsay, Effects of neurotropic drugs on glucose metabolism in rat brain in vivo, Biochem. Pharmacol. 15:1053–1058 (1966).

    Article  PubMed  CAS  Google Scholar 

  135. J. R. Stern, L. V. Eggleston, R. Hems, and H. A. Krebs, Accumulation of glutamic acid in isolated brain tissue, Biochem. J. 44:410–418 (1949).

    CAS  Google Scholar 

  136. C. Terner, L. V. Eggleston, and H. A. Krebs, The role of glutamic acid in the transport of potassium in brain and retina, Biochem. J. 47:139–149 (1950).

    PubMed  CAS  Google Scholar 

  137. H. M. Pappius and K. A. C. Elliott, Factors affecting the potassium content of incubated brain slices, Can. J. Biochem. Physiol. 34:1053–1064 (1956).

    Article  PubMed  CAS  Google Scholar 

  138. P. Joanny, H. Hillman, and J. Corriol, The effect of some amino acids, glycolytic intermediates and citric acid cycle intermediates on the swelling, and the potassium and sodium concentrations, of guinea pig cerebral cortex slices in vitro, J. Neurochem. 13:371–374(1966).

    Article  CAS  Google Scholar 

  139. H. F. Bradford and H. Mcllwàin, Ionic basis for the depolarization of cerebral tissue by excitatory acidic amino acids, J. Neurochem 13:1163–1177 (1966).

    Article  PubMed  CAS  Google Scholar 

  140. M. M. Cohen and H. P. Cohen, The effect of glutamic acid on phosphorus metabolism in cerebral tissue preparations, J. Neurochem 13:811–818 (1966).

    Article  PubMed  CAS  Google Scholar 

  141. A. Ames, Studies on water and electrolytes in nervous tissue, J. Neurophys 19: 213–223 (1955).

    Google Scholar 

  142. A. Ames, Y. Tsukada, and F. B. Nesbett, Intracellular Cl-, Na+, K+, Ca2 +, Mg2+, and P on nervous tissue; response to glutamate and to changes in extracellular calcium, J. Neurochem. 14:145–159 (1967).

    Article  PubMed  CAS  Google Scholar 

  143. F. Orrego and F. Lippmann, Protein synthesis in brain slices, J. Biol. Chem. 242: 665–671 (1967).

    PubMed  CAS  Google Scholar 

  144. H. H. Hillman and H. Mcllwain, Membrane potentials in mammalian cerebral tissues in vitro: Dependence on ionic environment, J. Physiol. 157:263–278 (1961).

    PubMed  CAS  Google Scholar 

  145. I. M. Gibson and H. Mcllwain, Continuous recording of changes in membrane

    Google Scholar 

  146. potential in mammalian cerebral tissues in vitro; Recovery after depolarization by added substances, J. Physiol. 176:261–283 (1965).

    Google Scholar 

  147. K. Krnjevic and J. W. Phillis, Iontophoretic studies of neurones in the mammalian cerebral cortex, J. Physiol. 165:274–304 (1963).

    PubMed  CAS  Google Scholar 

  148. F. A. Steiner and K. Ruf, Excitatory effects of L-glutamic acid upon single unit activity in rat brain and their modification by thiosemicarbazide and pyridoxal-5’-phosphate, Helv. Physiol. Pharmacol. Acta 24:181–192 (1966).

    PubMed  CAS  Google Scholar 

  149. A. Van Harreveld, Compounds in brain extracts causing spreading depression of cerebral cortical activity and contraction of crustacean muscle, J. Neurochem. 3: 300–315 (1959).

    Article  Google Scholar 

  150. N. Canal and L. Frattola, Hexosamine synthesis in nervous tissue, Med. Exptl. 8:129–134(1963).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

van den Berg, C.J. (1970). Glutamate and Glutamine. In: Lajtha, A. (eds) Metabolic Reactions in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7160-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7160-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7162-9

  • Online ISBN: 978-1-4615-7160-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics