Skip to main content

Abstract

The importance of soluble, acidic proteins in the nervous system recently has been recognized, in terms of quantity and possibly of function. This has come about partly as a result of application of new techniques of protein fractionation such as chromatography and zone electrophoresis. “Acidic proteins” can be defined as those proteins which move faster than serum albumin on zone electrophoresis (starch or acrylamide gel) and which bind most strongly to the basic ion exchangers used in protein chromatography, such as DEAE-cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Bailey and P. J. Heald, The separation of the cytoplasmic proteins of brain by electrophoresis in a starch gel medium, J. Neurochem. 6: 342 (1961).

    Article  PubMed  CAS  Google Scholar 

  2. J. Vas and H. J. Van Der Helm, Electrophoresis of brain proteins in polyacrylamide gel, J. Neurochem. 11: 209 (1964).

    Article  Google Scholar 

  3. B. W. Moore and D. McGregor, Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver, J. Biol. Chem. 240: 1647 (1965).

    PubMed  CAS  Google Scholar 

  4. B. W. Moore, A soluble protein characteristic of the nervous system, Biochem. Biophys. Res. Commun. 19: 739 (1965).

    Article  CAS  Google Scholar 

  5. G. Vincendou, A. Waksman, K. Uyemura, J. Tardy, and G. Gombos, Ultracentrifugal behavior of beef brain S-100 protein fraction, Arch. Biochem. Biophys. 120: 233 (1967).

    Article  Google Scholar 

  6. D. Kessler, L. Levine, and G. Fasman, Some conformational and immunological properties of a bovine brain acidic protein (S-100), Biochemistry 7: 758 (1968).

    Article  PubMed  CAS  Google Scholar 

  7. G. Gombos, G. Vincendou, J. Tardy, and P. Mandel, Hétérogénéité électrophorétique et préparation rapide de la fraction protéique S-100, Compt. Rend. Acad. Sci. (Paris) 263: 150 (1966).

    Google Scholar 

  8. L. Levine and B. W. Moore, Structural relatedness of a vertebrate brain acidic protein as measured immunochemically, Neurosci. Res. Progr. Bull. 3: 18 (1965).

    Google Scholar 

  9. B. W. Moore and V. J. Perez, Specific acidic proteins of the nervous system, Soc. Gen. Phys. Symp., Wood’s Hole, Mass., 1967 (in press).

    Google Scholar 

  10. B.W. Moore, V. J. Perez, and M. Gehring, Assay and regional distribution of a soluble protein characteristic of the nervous system, J. Neurochem. (in press).

    Google Scholar 

  11. H. Hyden and B. McEwen, A glial protein specific for the nervous system, Proc. Natl. Acad. Sci. (U.S.) 55: 354 (1966).

    Google Scholar 

  12. A. R. Dravid and J. A. Burdman, Acidic proteins in rat brain nuclei: Disc electrophoresis, J. Neurochem. 15: 25 (1968).

    Article  CAS  Google Scholar 

  13. V. J. Perez and B. W. Moore, Wallerian degeneration in rabbit tibial nerve, changes in amounts of the S-100 protein, J. Neurochem. (in press).

    Google Scholar 

  14. B. S. McEwen and H. Hyden, A study of specific brain proteins on the semi-micro scale, J. Neurochem. 13: 823 (1966).

    Article  PubMed  CAS  Google Scholar 

  15. A. L. Rubin and K. H. Stenzel, In vitro synthesis of brain protein, Proc. Natl. Acad. Sci. (U.S.) 53: 963 (1963).

    Google Scholar 

  16. P. Davison, F. Huneeus-Cox, D. Lusted, and F. O. Schmitt, The subunit structure of neuro-filament protein (Abstract), in First Intern. Meeting, Intern. Soc. Neurochem., p. 50 (1967).

    Google Scholar 

  17. F. Huneeus-Cox, Electrophoretic and immunological studies of squid axoplasm proteins, Science 143: 1036 (1964).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press

About this chapter

Cite this chapter

Moore, B.W. (1969). Acidic Proteins. In: Lajtha, A. (eds) Chemical Architecture of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7154-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7154-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7156-8

  • Online ISBN: 978-1-4615-7154-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics