Skip to main content

Abstract

In reference to studies on the uptake of amino acids from blood, Waelsch(1) pointed out that “Experiments in which the amino acid concentration in blood is raised to an unphysiological level may elicit an aspect of the blood—brain barrier not operative under physiological conditions. For determining the uptake of amino acids of the brain under physiological conditions, accurate measurements of the arterio—venous differences would be required.” Although brain slices in vitro and other brain preparations have proved of considerable value in biochemical research, it is true that, as Geiger(2) observed, “they obviously do not possess all the metabolic machinery which is involved in the physiological activity of the nerve cell.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Waelsch, in Neurochemistry (K. A. C. Elliott, I. H. Page, and J. H. Quastel, eds.), p. 290, Charles C. Thomas, Springfield, Ill. (1962).

    Google Scholar 

  2. A. Geiger, Correlation of brain metabolism and function by the use of a brain perfusion method in situ. Physiol. Rev. 38:1–20 (1958).

    Google Scholar 

  3. P. R. Dumke and C. F. Schmidt, Quantitative measurements of cerebral blood flow in the macaque monkey. Am. J. Physiol. 138: 421–431 (1943).

    Google Scholar 

  4. S. S. Kety and C. F. Schmidt, The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am. J. Physiol. 143:53–66 (1945).

    Google Scholar 

  5. S. S. Kety, in Methods in Medical Research, Vol. 1, pp. 204–217, Year Book Publishers, Chicago (1948).

    Google Scholar 

  6. S. S. Kety, in Neurochemistry (K. A. C. Elliott, I. H. Page, and J. H. Quastel, eds.), p. 113, Charles C. Thomas, Springfield, Ill. (1962).

    Google Scholar 

  7. W. Sacks, Cerebral oxidation of fumarate-2-C14 in normal human subjects. J. Appl. Physiol. 9:43–48 (1956).

    Google Scholar 

  8. W. Sacks, Cerebral metabolism of isotopic glucose in normal human subjects. J. Appl. Physiol. 10: 37–44 (1957).

    PubMed  CAS  Google Scholar 

  9. R. V. Coxon and R. J. Robinson, Specific activity of carbon dioxide dioxide in arterial and venous blood following injection of 14C-labelled glucose. J. Physiol. 132:48–49P (1956).

    Google Scholar 

  10. R. J. Robinson and R. V. Coxon, Radioactivity of blood carbon dioxide in animals oxidizing glucose labelled with carbon-14 and other labelled substances. Nature 180:1279–1281 (1957).

    Google Scholar 

  11. R. V. Coxon and R. J. Robinson, The transport of radioactive carbon dioxide in the blood stream of the dog after administration of radioactive bicarbonate. J. Physiol. 147: 469–486 (1959).

    PubMed  CAS  Google Scholar 

  12. R. V. Coxon and R. J. Robinson, Movements of radioactive carbon dioxide within the animal body during oxidation of 14C-labelled substances. J. Physiol. 147: 487–510 (1959).

    PubMed  CAS  Google Scholar 

  13. A. Geiger and J. Magnes, The isolation of the cerebral circulation and the perfusion of the brain in the living cat. Am. J. Physiol. 149: 517–537 (1947).

    PubMed  CAS  Google Scholar 

  14. A. Geiger and S. Yamasaki, Cytidine and uridine requirement of the brain. J. Neurochem. 1:93–100 (1956).

    Google Scholar 

  15. C. Allweis and J. Magnes, The uptake and oxidation of glucose by the perfused cat brain. J. Neurochem. 2:326–336 (1958).

    Google Scholar 

  16. W. Sacks, Cerebral metabolism of glucose-3-C14, pyruvate-1-C14 and lactate-1-C14 in mental disease. J. Appl. Physiol. 16:175–180 (1961).

    Google Scholar 

  17. U. Gottstein, A. Bernsmeirer, and J. Sedlmeyer, Der Kohlenhydratstoffwechsel des menschlichen Gehirns. I. Untersuchungen mit substratspezifischen enzymatischen Methoden bei normaler Hirndurchblutung. Klin Wschr. 41:943–948 (1963).

    Google Scholar 

  18. P. Scheinberg, B. Bourne, and O. M. Reinmuth, Human cerebral lactate and pyruvate extraction. Arch. Neurol. 12: 246–250 (1965).

    Article  PubMed  CAS  Google Scholar 

  19. S. Sato, M. Tateyama, C. Sasamori, S. Kobayashi, Y. Chiba, and Y. Takeda, On the intermediate metabolism of carbohydrates in the brain of healthy persons. Tohoku J. Exptl. Med. 81:215–221 (1963).

    Google Scholar 

  20. J. Kneinerman, S. M. Sancetta, and D. B. Hackel, Effect of high spinal anesthesia on cerebral circulation and metabolism in man. J. Clin. Invest. 37: 285–293 (1958).

    Article  Google Scholar 

  21. H. I. Otani, Pathophysiological study on cerebral carbohydrate metabolism in essential hypertension and cerebral arteriosclerosis: I. Study on cerebral carbohydrate metabolism during rest. Jap. Circ. J. 27: 534–546 (1963).

    Article  PubMed  CAS  Google Scholar 

  22. G. G. Rowe, G. M. Maxwell, C. A. Castillo, D. J. Freeman, and C. W. Crumpton. A study in man of cerebral blood flow and cerebral glucose, lactate, and pyruvate metabolism before and after eating. J. Clin. Invest. 38:2154–2158 (1959).

    Google Scholar 

  23. W. Sacks, The cerebral metabolism of L- and D-lactate-C14 in humans in vivo. Ann. N. Y. Acad. Sci. 119:1091–1108 (1965).

    Google Scholar 

  24. R. K. Andjus, K. Suhara, and H. A. Sloviter, An isolated, perfused rat brain preparation, its spontaneous and stimulated activity. J. Appl. Physiol. 22:1033–1039 (1967).

    Google Scholar 

  25. D. D. Gilboe, W. W. Cotanch, and M. B. Glover, Extracorporeal perfusion of the isolated head of a dog. Nature 202:399–400 (1964).

    Google Scholar 

  26. D. D. Gilboe, W. W. Cotanch, and M. B. Glover, Isolation and mechanical maintenance of the dog brain. Nature 206:94–96 (1965).

    Google Scholar 

  27. D. D. Gilboe, W. W. Cotanch, M. B. Glover, and V.A. Levin, Changes in electrolytes, pH, and pressure of blood perfusing isolated dog brain. Am. J. Physiol. 212: 589–594 (1967).

    PubMed  CAS  Google Scholar 

  28. R. J. White, M. S. Albin, and J. Verdura, Preservation of viability in the isolated monkey brain utilizing a mechanical extracorporeal circulation. Nature 202:1082–1083 (1964).

    Google Scholar 

  29. R. J. White, M. S. Albin, G. E. Locke, and E. Davidson, Brain transplantation: Prolonged survival of brain after carotid-jugular interposition. Science 150: 779–781 (1965).

    Google Scholar 

  30. G. Moss, Cerebral arterial isolation: The effects of differential pressure perfusion. J. Surg. Res. 4:170–177 (1964).

    Google Scholar 

  31. G. Moss, The contribution of the hexose monophosphate shunt to cerebral glucose metabolism. Diabetes 13:585–591 (1964).

    Google Scholar 

  32. R. L. Swank and W. Hissen, Isolated cat head perfusion by donor dog. Arch. Neurol. 13:93–10 (1965).

    Google Scholar 

  33. D. D. Gilboe, M. B. Glover, and W. W. Cotanch, Blood filtration and its effect on glucose metabolism by the isolated dog brain. Am. J. Physiol. 213:11–15 (1967).

    Google Scholar 

  34. C. Allweis, M. Abeles, and J. Magnes, Perfusion of cat brain with simplified blood after filtration through glass wool. Am. J. Physiol. 213:83–86 (1967).

    Google Scholar 

  35. S. S. Kety, in Neurochemistry (K. A. C. Elliott, I. H. Page, and J. H. Quastel, eds.), p. 119, Charles C. Thomas, Springfield, Ill. (1962).

    Google Scholar 

  36. A. Geiger, Y. Kawakita, and S. S. Barkulis, Major pathways of glucose utilization in the brain in brain perfusion experiments in vivo and in situ. J. Neurochem. 5:323–338 (1960).

    Google Scholar 

  37. C. L. Allweis, H. Gainer, and I. L. Chaikoff, Method for kinetic study of in vitro conversion of a C14-labeled substrate to CO2. J. Appl. Physiol. 15:949–952 (1960).

    Google Scholar 

  38. H. Gainer, C. L. Allweis, and I. L. Chaikoff, Precursors of metabolic CO2 produced by the brain of the anaesthetized, intact dog: The effect of electrical stimulation. J. Neurochem. 10: 903–908 (1963).

    Article  PubMed  CAS  Google Scholar 

  39. A. Barkai and C. Allweis, The contribution of blood glucose to the carbon dioxide produced by the narcotized brain of the intact cat. J. Neurochem. 13: 23–33 (1966).

    Article  PubMed  CAS  Google Scholar 

  40. G. Gombos, S. Otsuki, W. Scruggs, G. Whitney, A. Schmolinske, and A. Geiger, Brain metabolites of normal intact narcotized cats. Fed. Proc. 22: 633 (1963).

    Google Scholar 

  41. W. Sacks, Isolation and properties of mutarotase in erythrocytes. Arch. Biochem. Biophys. 123: 507–513 (1968).

    Article  PubMed  CAS  Google Scholar 

  42. W. Sacks, Conversion of glucose phosphate-14C to glucose-14C in passage through human brain in vivo. J. Appl. Physiol. 24: 817–827 (1968).

    CAS  Google Scholar 

  43. W. Sacks, Cerebral metabolism of doubly labeled glucose in humans in vivo. J. Appl. Physiol. 20:117–130 (1965).

    Google Scholar 

  44. S. S. Barkulis, A. Geiger, Y. Kawakita, and V. Aguilar, A study of the incorporation of i4C derived from glucose into the free amino acids of the brain cortex. J. Neurochem. 5:339–348 (1960).

    Google Scholar 

  45. A. Geiger, N. Horvath, and Y. Kawakita, The incorporation of 14C derived from glucose into the proteins of the brain cortex, at rest and during activity. J. Neurochem. 5: 311–322 (1960).

    Article  PubMed  CAS  Google Scholar 

  46. R. U. Margolis, S. S. Barkulis, and A. Geiger, A comparison between the incorporation of i4C from glucose into N-acetyl-L-aspartic acid and aspartic acid in brain perfusion experiments. J. Neurochem. 5:379–382 (1960).

    Google Scholar 

  47. G. Gombos, A. Geiger, and S. Otsuki, The metabolic pattern of the brain in brain perfusion experiments in vivo-II. Pyruvate and lactate formation from 14C-labelled aspartate. J. Neurochem. 10: 405–413 (1963).

    Article  PubMed  CAS  Google Scholar 

  48. E. L. Gibbs, W. G. Lennox, L. F. Nims, and F. A. Gibbs, Arterial and cerebral venous blood, arterial-venous differences in man. J. Bio!. Chem. 144: 325–332 (1942).

    CAS  Google Scholar 

  49. W. A. Himwich and H. E. Himwich, Pyruvic acid exchange of the brain. J. Neurophysiol. 9: 133–136 (1946).

    PubMed  CAS  Google Scholar 

  50. R. V. Coxon, in Metabolism of the Nervous System (D. Richter, ed.), pp. 303–322, Pergamon Press, London (1957).

    Google Scholar 

  51. K. Y. Hostetler, B. R. Landau, R. J. White, M. S. Albin, and D. Yoshon, Pentose cycle contribution to glucose metabolism in isolated, perfused monkey brain (in preparation).

    Google Scholar 

  52. W. Sacks and C. O. Jensen, Malease, a hydrase from corn kernels. J. Biol. Chem. 192: 231236 (1951).

    Google Scholar 

  53. W. Sacks, Evidence for the metabolism of maleic acid in dogs and human beings. Science 127: 594 (1958).

    Article  PubMed  CAS  Google Scholar 

  54. S. Angielski, The effect and metabolism of maleic acid in the kidney. Acta Bio!. Med. Soc. Sc. Gedan. 7: 61–97 (1963).

    CAS  Google Scholar 

  55. S. Englard, J. S. Britten, and I. Listowsky, Stereochemical course of the maleate hydratase reaction. J. Biol. Chem. 242: 2255–2259 (1967).

    PubMed  CAS  Google Scholar 

  56. E. Figueroa and A. Pfeifer, Incorporation of 16C-glucose and 14C-glucose-6-phosphate into glycogen and CO2 by rat liver slices. Nature 204: 576–577 (1964).

    Article  PubMed  CAS  Google Scholar 

  57. B. R. Landau and E. A. H. Sims, On the existence of two separate pools of glucose 6-phosphate in rat diaphragm. J. Biol. Chem. 242: 163–172 (1967).

    PubMed  CAS  Google Scholar 

  58. D. G. Fraenkel, F. Falcoz-Kelly, and B. L. Horecker, The utilization of glucose 6-phosphate by glucokinaseless and wild-type strains of Escherichia coli. Proc. Natl. Acad. Sci. 52: 12071213 (1964).

    Google Scholar 

  59. A. Geiger, J. Magnes, R. M. Taylor, and M. Veralli, Effect of blood constituents on uptake of glucose and on metabolic rate of the brain in perfusion experiments. Am. J. Physiol. 177: 138–149 (1954).

    PubMed  CAS  Google Scholar 

  60. S. Sato, M. Tateyama, C. Sasamori, S. Kobayshi, Y. Chiba, and Y. Takeda, On the intermediate metabolism of carbohydrates in the brain of hypertensive and postapoplectic patients. Tohoku J. Exptl. Med. 81: 207–214 (1963).

    Article  CAS  Google Scholar 

  61. U. Gottstein, K. Held, H. Sebening, and G. Walpurger, Der Glucoseverbrauch des menschlichen Gehirns unter dem Einfluss intravenöser Infusionen von Glucose, Glucogon und Glucose—Insulin. Klin. Wschr. 43: 965–975 (1965).

    Article  PubMed  CAS  Google Scholar 

  62. H. E. Himwich, K. M. Bowman, J. F. Fazekas, and W. Goldfarb, Biochemical changes occurring in the cerebral blood during the insulin treatment of schizophrenia. J. Nerv. Ment. Dis. 89: 273–293 (1939).

    Article  CAS  Google Scholar 

  63. U. Gottstein and K. Held, Insulinwirkung auf den menschlichen Hirnmetabolismus von Stoffwechselgesunden und Diabetikern. Klin. Wschr. 45: 18–23 (1967).

    Article  PubMed  CAS  Google Scholar 

  64. W. J. H. Butterfield, R. A. Sells, M. E. Abrams, G. Sterky, and M. J. Whichelow, Insulin sensitivity of the human brain. Lancet 1: 557–560 (1966).

    Article  PubMed  CAS  Google Scholar 

  65. E. Eidelberg, J. Fishman, and M. L. Hams, Penetration of sugars across the blood—brain barrier. J. Physiol. 191: 47–57 (1967).

    PubMed  CAS  Google Scholar 

  66. W. Sacks, Cerebral metabolism of isotopic lipid and protein derivatives in normal human subjects. J. Appl. Physiol. 12: 311–318 (1958).

    PubMed  CAS  Google Scholar 

  67. C. Allweis, T. Landau, M. Abeles, and J. Magnes, The oxidation of uniformly labelled albumin-bound palmitic acid to CO2 by the perfused cat brain. J. Neurochem. 13: 795–804 (1966).

    Article  PubMed  CAS  Google Scholar 

  68. C. Voegtlin, E. R. Dunn, and J. W. Thompson, The antagonistic action of certain sugars, amino acids, and alcohol on insulin intoxication. Am. J. Physiol. 71: 574–582 (1925).

    CAS  Google Scholar 

  69. W. Sacks, Phenylalanine metabolism in control subjects, mental patients and phenylketo-nurics. J. Appl. Physiol. 17: 985–992 (1962).

    PubMed  CAS  Google Scholar 

  70. G. Bianchi Porro, A. T. Maiolo, P. Della Porta, E. Rossella, and E. Polli, Cerebral metabolism of L-[U-14C] glutamine and of L-[U-14C] glutamic acid in chronic mental disease and in therapeutic insulin coma, in Abstracts of 1st International Society for Neurochemistry, p. 25 (1967).

    Google Scholar 

  71. H. G. Knauff, U. Gottstein, and B. Miller, Untersuchungen über den Austausch vori freien Aminosäuren und Harnstoff zwichen Blut und Zentralnervensystem. Klin. Wschr. 42: 27–39 (1964).

    Article  PubMed  CAS  Google Scholar 

  72. W. Sacks, Cerebral metabolism of isotopic glucose in chronic mental disease. J. Appl. Physiol. 14: 849–854 (1959).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press

About this chapter

Cite this chapter

Sacks, W. (1969). Cerebral Metabolism in Vivo . In: Lajtha, A. (eds) Chemical Architecture of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7154-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7154-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7156-8

  • Online ISBN: 978-1-4615-7154-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics