Skip to main content

Abstract

Epoxy resins are among the best matrix materials for many fiber composites. This is true for several reasons:

  • Epoxy resins adhere well to a wide variety of fillers, reinforcing agents, and substrates.

  • The wide variety of available epoxy resins and curing agents can be formulated to give a broad range of properties after cure and to meet a diverse spectrum of processing requirements.

  • The chemical reaction between epoxy resins and a curing agent does not release any volatiles or water. Hence, the shrinkage after cure is usually lower than that for phenolic or polyester resins.

  • Cured epoxy resins are not only resistant to chemicals, but they also provide good electrical insulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Lee and K. Neville, Handbook of Epoxy Resins, McGraw-Hill, New York, 1967.

    Google Scholar 

  2. W. G. Potter, Epoxide Resins (published for the Plastics Institute), Iliffe Books, London, 1970.

    Google Scholar 

  3. C. A. May and Y. Tanaka (editors), Epoxy Resins: Chemistry and Technology, Marcel Dekker, Inc., New York, 1973.

    Google Scholar 

  4. P. F. Bruins, Epoxy Resin Technology, Wiley-Inter-science, New York, 1968.

    Google Scholar 

  5. Kh. Arutyunyan, S. Davtyan, B. Rozenberg, and N. Yenikolopyan, “Kinetics of Hardening of an ED-5 Epoxide Oligomer by Reaction with m-Phenylene-diamine under Adiabatic Conditions,” Polym. Sci. USSR 16, 2452(1975).

    Article  Google Scholar 

  6. M. Ochi, Y. Tanaka, and M. Shimbo, “Curing Mechanism of Epoxy Resin,” Nippon Kagaku Kai-shi 9, 1600(1975).

    Article  Google Scholar 

  7. K. Okahashi, O. Hayashi, and K. Shibayama, “Kinetics of Curing Reaction of Epoxy Resins with Imidazole,” Mitsubishi Denki Giho 47 (5), 547 (1973).

    Google Scholar 

  8. R. B. Prime, “Kinetics of Epoxy Cure: 2. The System Bisphenol-A Diglycidyl Ether/Polyamide,” Polymer 13, 455 (1972).

    Article  Google Scholar 

  9. G. Piloyan, I. Ryabchikov, and O. Novikova, “Determination of Activation Energies of Chemical Reactions by Differential Thermal Analysis,” Nature 212, 1229(1966).

    Article  Google Scholar 

  10. Shell Chemical Company, Epon Resins for Casting, New York, 1967.

    Google Scholar 

  11. W. Fisch and W. Hofmann, “Über den Härtungsmechanismus der Äthoxylinharze,” J. Polym. Sci. 12, 497 (1954).

    Article  Google Scholar 

  12. W. Fisch, W. Hofmann, and J. Koskikallio, “The Curing Mechanism of Epoxy Resins,” J. Appl. Chem. 6, 429 (1956).

    Article  Google Scholar 

  13. S. L. Kaplan, A. Katzakian, and E. L. Mitch, “Fast Curing Acid/Epoxy, Anhydride/Epoxy Resins,” 30th Annual Conference, Reinforced Plastics/Composites Institute, SPI, Washington, D.C., February 4–7, 1975, Section 8-C.

    Google Scholar 

  14. K. M. Hollands and I. L. Kalnin, “The Kinetics of Gelation of Some Accelerated Acid Anhydride Cured Epoxy Resins, Paper presented at Symposium on Epoxy Resins,” sponsored by Division of Organic Coatings and Plastics Chemistry at the 155th Meeting of the ACS, San Francisco, California, April 3–4, 1968, p. 60.

    Google Scholar 

  15. N. B. Godfrey, “Polyamine and Hydrocarbon Sulfonic Acid Accelerator Combination for Epoxy Curing,” U.S. Patent 3,666,721, May 30, 1972.

    Google Scholar 

  16. N. B. Godfrey, “Polyamine and Hydrocarbon Sulfonic Acid Accelerator Combination for Epoxy Curing,” U.S. Patent 3,785,997, January 15, 1974.

    Google Scholar 

  17. A. Lombardi and T. Smeal, “Catalyst Systems for Lowering Epoxy Resin Cure Temperatures,” U.S. Patent 3,903,048, September 3, 1975.

    Google Scholar 

  18. H. Waddill, “Piperazine and Alkanolamine Accelerator for Epoxy Curing,” U.S. Patent 3,875,072, April 1, 1975.

    Google Scholar 

  19. H. Waddill, “Method of Accelerating Epoxy Curing,” U.S. Patent 3,943,104, March 9, 1976.

    Google Scholar 

  20. A. M. Partansky, “A Study of Accelerators for Epoxy-Amine Condensation Reaction,” paper presented at Symposium on Epoxy Resins, Sponsored by Division of Organic Coatings and Plastics Chemistry at the 155th Meeting of the ACS, San Francisco, California, April 3–4, 1968, p. 29.

    Google Scholar 

  21. T. T. Chiao, E. S. Jessop, and H. A. Newey, “A Moderate-Temperature-Curable Epoxy for Advanced Composites,” SAMPE Quart. 6 (3), 38 (1975).

    Google Scholar 

  22. T. T. Chiao and R. L. Moore, “A Room-Tempera-ture-Curable Epoxy for Advanced Fiber Composites,” 29th Annual Conference, Reinforced Plastics/Composites Institute, SPI, Washington, D.C., February 5–8, 1974, Section 16-B.

    Google Scholar 

  23. T. Kamon, K. Saito, Y. Miwa, and K. Saeki, “Relation between Epoxy Resin Glass Transition Temperature and Heat Distortion Temperature,” Kobunshi Ronbunshu 31 (11), 665 (1974).

    Article  Google Scholar 

  24. T. T. Chiao, E. S. Jessop, and H. A. Newey, “An Epoxy System for Filament Winding,” SAMPE Quart. 6(1), 28(1974).

    Google Scholar 

  25. Ciba-Geigy Corporation technical literature.

    Google Scholar 

  26. J. Rinde, E. T. Mones, and H. A. Newey, “Flexible Epoxies for Wet Filament Winding,”32nd Annual Conference, Reinforced Plastics/Composites Institute, SPI, Washington, DC, February 8–11, 1977, Section 11-D.

    Google Scholar 

  27. J. M. Scott and D. C. Phillips, “Carbon Fiber Composites with Rubber Toughened Matrices,” UK Atomic Energy Authority, Harwell, Rept. AERE-R7793 (1974).

    Google Scholar 

  28. J. V. Larsen, “Fracture Energy of CTBN/Epoxy-Carbon Fiber Composites,” 26th Annual Conference, Reinforced Plastics/Composites Institute, SPI, Washington, D.C., February 9–12, 1971, Section 10-D.

    Google Scholar 

  29. L. S. Penn, B. S. Morra, and E. T. Mones, “A Rubberized Epoxy System for Wet Filament Winding,” Composites 8, 31 (1977).

    Article  Google Scholar 

  30. M. A. Hamstad and E. S. Jessop, “Performance of Filament-Wound Vessels from an Organic Fiber in Several Epoxy Matrices,” in: Proceedings of the 7th National SA M PE Technical Conference, Albuquerque, New Mexico, October 14–16, 1975, Vol. 7, (1975), p. 202.

    Google Scholar 

  31. R. Drake and A. Siebert, “Elastomer-Modified Epoxy Resins for Structural Applications,” SA MPE Quart. 6, 11 (1975).

    Google Scholar 

  32. F. J. McGarry, “Building Design with Fibre Reinforced Materials,” Proc. Roy. Soc. London A319, 59 (1970).

    Google Scholar 

  33. H. Lee and K. Neville, Handbook of Epoxy Resins, McGraw-Hill, New York, 1967, p. 4–14.

    Google Scholar 

  34. R. R. Jay, “Direct Titration of Epoxy Compounds and Aziridines,” Anal. Chem. 36, 667 (1964).

    Article  Google Scholar 

  35. H. Jahn and P. Goetzky, “Analysis of Epoxides and Epoxy Resins,” in: Epoxy Resins: Chemistry and Technology (edited by C. A. May and Y. Tanaka), Marcel Dekker, Inc., New York, 1973, p. 653.

    Google Scholar 

  36. J. S. Fritz, “Titration of Bases in Nonaqueous Solvents,” Anal. Chem. 22, 1028 (1950).

    Article  Google Scholar 

  37. S. Siggia, J. G. Hanna, and I. R. Kervenski, “Quantitative Analysis of Mixtures of Primary, Secondary, and Tertiary Aromatic Amines,” Anal. Chem. 22, 1295 (1950).

    Article  Google Scholar 

  38. C. D. Wagner, R. H. Prown, and E. D. Peters, “The Analysis of Aliphatic Amine Mixtures; Determination of Tertiary Aliphatic Amines in the Presence of Primary and Secondary Amines and Ammonia,” J. Amer. Chem. Soc. 69, 2609 (1947).

    Article  Google Scholar 

  39. H. Jahn and P. Goetzky, “Analysis of Epoxides and Epoxy Resins,” in: Epoxy Resins: Chemistry and Technology (edited by C. A. May and Y. Tanaka), Marcel Dekker, Inc., New York, 1973, p. 683.

    Google Scholar 

  40. W. Selig, “Micro and Semimicro Determination of Sulfur in Organic Compounds by Potentiometric Titration with Lead Perchlorate,” Microchimica Acta (Wien), 168 (1970).

    Google Scholar 

  41. “Determination of Hydroxyl Group in Organic Compounds,” Shell Chemical Company, Shell Method Series 237/55 (1960).

    Google Scholar 

  42. D. H. Reed, F. E. Critchfield, and D. K. Elder, “Phenyl Isoyanate Method for Determination of Hydroxyl Equivalent Weights of Polyoxyalkylene Compounds,” Anal. Chem. 35, 571 (1963).

    Article  Google Scholar 

  43. O. E. Schupp III, “Gas Chromatography,” in: Technique of Organic Chemistry (edited by E. S. Perry and A. Weissberger), Vol. 13, (Wiley-Interscience, New York, 1968.

    Google Scholar 

  44. D. W. Hadad, “Chemical Quality Assurance of Epoxy Resin Formulations by Gel Permeation, Liquid, and Thin Layer Chromatography,” in: Proceedings of the 22nd National SAMPE Symposium and Exhibition, San Diego, California, April 26–28, 1977, Vol. 22(1977), p. 301.

    Google Scholar 

  45. I. L. Kalnin, M. Meisters, and H. J. Notarius, “Characterization of Epoxy Resin Advancement in Fiber Reinforced Composite Prepregs,” 26th Annual Conference, Reinforced Plastics/Composites Institute, SPI, Washington, D.C., February 9–12, 1971, Section 14-A.

    Google Scholar 

  46. H. Batzer and S. Zahir, “Studies in the Molecular Weight Distribution of Epoxide Resins. I. Gel Permeation Chromatography of Epoxide Resins,” J. Appl. Polym. Sci. 19, 585 (1975).

    Article  Google Scholar 

  47. B. Miller, “Why Gooď Resin Makes Bad Parts— And What You Can Do about It,” Plastics World (February 16, 1976).

    Google Scholar 

  48. S. D. Abbott, “High Performance Size Exclusion Chromatography Using Porous Silica Packings”, paper presented at 27th Pittsburgh Conference, Cleveland, Ohio, March 15, 1976.

    Google Scholar 

  49. L. S. Penn and T. T. Chiao, “A Long Pot-Life Epoxy System for Filament Winding,” in: Proceedings of the 7 th National SAMPE Technical Conference, Albuquerque, New Mexico, October 14–16, 1975, Vol. 7(1975), p. 177.

    Google Scholar 

  50. T. T. Chiao, E. S. Jessop, and L. S. Penn, “Screening of Epoxy Systems for High Performance Filament Winding Applications,” in: Proceedings of the 7th National SAMPE Technical Conference, Albuquerque, New Mexico, October 14–16, 1975, Vol. 7 (1975), p. 167.

    Google Scholar 

  51. T. Kakurai and T. Noguchi, “Viscometric Studies on the Gelation of Epoxy Resins with Amines,” Kobunshi Kagaku 19, 542 (1962);

    Article  Google Scholar 

  52. T. Kakurai and T. Noguchi, “Gelation in the Reaction of Epoxy Resin with Amines,” Kobunshi Kagaku 20, 17(1963).

    Article  Google Scholar 

  53. L. J. Gough and I. T. Smith, “A Gel Point Method for the Estimation of Overall Apparent Activation Energies of Polymerization,” J. Appl. Polym. Sci. 3, 362(1960).

    Article  Google Scholar 

  54. B. A. Hills, “Gelation Timing,” J. Oil Colour Chem. Assoc. 45, 251 (1962).

    Google Scholar 

  55. H. G. Manfield, “The Measurement of Exotherms of Casting and Laminating Resins,” Brit. Plastics 26, 230 (1953).

    Google Scholar 

  56. G. Mensching, “Eigenschaftsbildende Einflusse bei der Giessharztechnologie, Speziell in der Elektrotechnik,” Plaste Kautschuk 8, 179 (1961).

    Google Scholar 

  57. D. D. Smith, “Computerized Exotherm Calculations for Large Epoxy Castings,” Bendix Corporation, Bendix Technical Journal (Spring 1969), p. 79.

    Google Scholar 

  58. W. Selig, “Estimation of the Curing Rate of Epoxy Resins: Improvement in Methods,” Z Anal. Chem. 255, 130 (1971).

    Google Scholar 

  59. W. Selig and G. L. Crossman, “Estimation of the Cure Rate of Epichlorohydrin/Bisphenol A Type Epoxy Resins,” Z. Anal. Chem. 253, 279 (1971).

    Article  Google Scholar 

  60. H. Dannenberg and W. R. Harp, Jr., “Determination of Cure and Analysis of Cured Epoxy Resins,” Anal. Chem. 28, 86 (1956).

    Article  Google Scholar 

  61. J. F. Carpenter, “Assessment of Composite Starting Materials: Physiochemical Quality Control of Prepregs,” paper presented at AIAA/ASME Symposium on Aircraft Composites: The Emerging Methodology for Structural Assurance, San Diego, California, March 24–25, 1977; McDonnell Aircraft Company Rept. MCAIR No. 77–001 (1977).

    Google Scholar 

  62. H. Dannenberg, “Determination of Functional Groups in Epoxy Resins by Near Infrared Spectroscopy,” SPE Trans. 3, 78 (1963).

    Google Scholar 

  63. M. A. Acitelli, R. B. Prime, and E. Sacher, “Kinetics of Epoxy Cure: 1. The System Bisphenol-A Diglycidyl Ether/m-Phenylene Diamine,” Polymer 12, 335 (1971).

    Article  Google Scholar 

  64. W. B. Moniz, C. F. Poranski, Jr., and S. A. Sojka, “Carbon-13 Fourier Transform NMR—An Important New Analysis Tool,” Naval Research Laboratory, Washington, D.C., Report of NRL Progress (August 1975).

    Google Scholar 

  65. O. D. Lascoe, “Shrink Tests Developed for Tool Plastic,” Tool Engineering 39 (11), 117 (1957).

    Google Scholar 

  66. W. Fisch and W. Hofmann, “Reaction Mechanisms, Chemical Structure, and Changes in Properties during the Curing of Epoxy Resins,” Plastics Tech. 7 (8), 28 (1961).

    Google Scholar 

  67. T. Shimazaki and I. Motoki, “Occurrence of Stress which Accompanies Shrinkage during Epoxy Curing,” Kobunshi Kagaku 28 (319), 884 (1971).

    Article  Google Scholar 

  68. H. L. Parry and H. H. Mackay, “Cure Shrinkage of Epoxy Systems,” SPEJ. 14 (7), 22 (1958).

    Google Scholar 

  69. V. V. Bolotkin and K. S. Bolotina, “Shrinkage of Epoxy Cements during Hardening,” Mekh. Polim. 1, 178 (1972) [p. 165 of English translation].

    Google Scholar 

  70. H. Lee and K. Neville, Handbook of Epoxy Resins, McGraw-Hill, New York, 1967, pp. 6–29 and 17–11.

    Google Scholar 

  71. B. Rosen and A. Fornof, Absolute and Differential Dilatometry for Measurement of Unrestrained Shrinkage on Resin Curing, ASTM, Philadelphia, Pennsylvania, ASTM Special Technical Publication No. 327, 1962, p. 40.

    Google Scholar 

  72. A. Lewis, “Dynamic Mechanical Behavior during the Thermosetting Curing Process,” SPE Trans. 3, 201 (1963).

    Google Scholar 

  73. J. K. Gillham, J. A. Benci, and A. Noshay, “Isothermal Transitions of a Thermosetting System,” Technical Report No. 18 prepared for Office of Naval Research (August 1973); available from National Technical Information Service, Springfield, Virginia, Publication No. AD-765 765.

    Google Scholar 

  74. J. K. Gillham and P. G. Babayevsky, “Epoxy Thermosetting Systems: Dynamic Mechanical Analysis of Aromatic Diamines with the Diglycidyl Ether of Bisphenol A,” Technical Report No. 17 prepared for Office of Naval Research (April 1973); available from National Technical Information Service, Springfield, Virginia, Publication No. AD-759 995.

    Google Scholar 

  75. W. W. Wendtland, Thermal Methods of Analysis, 2nd ed., J. Wiley and Sons, New York, 1974.

    Google Scholar 

  76. R. Fava, “Differential Scanning Calorimetry of Epoxy Resins,” Polymer 9, 137 (1968).

    Article  Google Scholar 

  77. O. R. Abolafia, “Application of Differential Scanning Calorimetry to Epoxy Curing Studies,” paper presented at 27th Annual Technical Conference, Society of Plastics Engineers, Chicago, Illinois, May 5–8, 1969, Technical Papers 15, 610 (1969).

    Google Scholar 

  78. R. B. Prime, “Dynamic Cure Analysis of Thermosetting Polymers,” Anal. Calorimetry 2, 201 (1970);

    Google Scholar 

  79. R. B. Prime, Proceedings of the Symposium on Analytical Calorimetry at the meeting of the American Chemical Society, Chicago, Illinois, September 13–18, 1970 (edited by R. S. Porter and J. F. Johnson), Plenum Press, 1970.

    Google Scholar 

  80. C. A. May, D. K. Whearty, and J. S. Fritzen, “Composite Cure Studies by Dielectric and Calorimetric Analyses,” in: Proceedings of the 21st National SAMPE Symposium, Los Angeles, California, April 6–8, 1976, Vol. 21 (1976), p. 803.

    Google Scholar 

  81. J. F. Carpenter and T. T. Bartels, “Characterization and Control of Composite Prepregs and Adhesives,” in: Proceedings of the 7th National SAMPE Technical Confidence, Albuquerque, New Mexico, October 14–16, 1975, Vol. 7 (1975), p. 43.

    Google Scholar 

  82. R. P. Kreahling and D. E. Kline, “Thermal Conductivity, Specific Heat, and Dynamic Mechanical Behavior of Diglycidyl Ether of Bisphenol A Cured with m-Phenylene Diamine,” J. Appl. Polym. Sci. 13, 2411 (1969).

    Article  Google Scholar 

  83. S. Yalof and W. Wrasidlo, “Crosschecking between Dielectric Measurements, DTA, and Other Methods of Thermal Analysis in Research and Production,” J. Appl. Polym. Sci. 16, 2159 (1972).

    Article  Google Scholar 

  84. M. J. Yokota, “In-Process Controlled Curing of Resin Matrix Composites,” in: Proceedings of the 22nd National SAMPE Symposium and Exhibition, San Diego, California, April 26–28, 1977, Vol. 22 (1977), p. 416.

    Google Scholar 

  85. J. Delmonte, “Electric Properties of Epoxy Resins during Polymerization,” J. Appl. Polym. Sci. 2, 108 (1959).

    Article  Google Scholar 

  86. S. A. Yalof, “The Relationship between Mechanical and Dielectric Properties of Polymers,” in: Proceedings of the 4th National SAMPE Technical Conference, Palo Alto, California, October 17–19, 1972, Vol. 4(1972), p. 391.

    Google Scholar 

  87. S. Yalof, “Tracking Adhesive Behavior with Dynamic Dielectric Spectroscopy,” Adhesives Age, 23 (April 1975).

    Google Scholar 

  88. D. J. Crabtree, “Ion Graphing as an In-Process Cure Monitoring Procedure for Composite and Adhesively Bonded Structures,” in: Proceedings of the 22nd National SAMPE Symposium and Exhibition, San Diego, California, April 26–28, 1977, Vol. 22 (1977), p. 636.

    Google Scholar 

  89. P. V. Sidyakin, “An Infrared Spectroscopic Study of the Curing of Epoxide Resins with Amines,” Vysokomol. Soedin. A14, 979 (1972);

    Google Scholar 

  90. P. V. Sidyakin, “An Infrared Spectroscopic Study of the Curing of Epoxide Resins with Amines,” English translation: Polym. Sci. USSR 14, 1087 (1973).

    Article  Google Scholar 

  91. C. A. May, T. E. Helminiak, and H. A. Newey, “Chemical Characterization Plan for Advanced Composite Prepregs,” in: Proceedings of the 8th National SAMPE Technical Conference, Seattle, Washington, October 12–14, 1976, Vol. 8 (1976), p. 274.

    Google Scholar 

  92. R. Arridge and J. Speake, “Mechanical Relaxation Studies of the Cure of Epoxy Resins: 1. Measurement of Cure,” Polymer 13, 443 (1972).

    Article  Google Scholar 

  93. D. E. Kline, “Dynamic Mechanical Properties of Epoxy Resins during Polymerization,” J. Appl. Polym. Sci. 4, 123 (1960).

    Article  Google Scholar 

  94. P. Babayevsky and J. Gillham, “Epoxy Thermosetting Systems: Dynamic Mechanical Analysis of the Reactions of Aromatic Diamines with the Diglycidyl Ether of Bisphenol A,” J. Appl. Polym. Sci. 17, 2067 (1973).

    Article  Google Scholar 

  95. P. Eyerer and S. Wintergerst, “Hardening of Thin Layers of Epoxy Resins,” Adhäsion, 106 (1971).

    Google Scholar 

  96. D. H. Kaelble, “The Dynamic Mechanical Properties of Epoxy Resins,” SPEJ. 15, 1071 (1959).

    Google Scholar 

  97. W. W. Wendtland, Thermal Methods of Analysis, 2nd ed., J. Wiley and Sons, New York, 1974, p. 251.

    Google Scholar 

  98. W. W. Wendtland, Thermal Methods of Analysis, 2nd ed., J. Wiley and Sons, New York, 1974, p. 428.

    Google Scholar 

  99. W. W. Wendtland, Thermal Methods of Analysis, 2nd ed., J. Wiley and Sons, New York, 1974, p. 6.

    Google Scholar 

  100. D. C. Ginnings and R. J. Corruccini, “Enthalpy, Specific Heat and Entropy of Aluminum Oxide from 0° to 900°C,” Research Paper RP 1797, J. Res. Natl. Bureau Standards 38 (June 1947).

    Google Scholar 

  101. A. P. Gray, “Simple Generalized Theory for the Analysis of Dynamic Thermal Measurement,” Perkin-Elmer Instrument News 16 (2) (1970).

    Google Scholar 

  102. D. H. Kaelble, “Dynamic and Tensile Properties of Epoxy Resins,” J, Appl. Polym. Sci. 9, 1213 (1965).

    Article  Google Scholar 

  103. T. T. Chiao, A. D. Cummins, and R. L. Moore, “Fabrication and Testing of Epoxy Tensile Specimens,” Composites 3, 10 (1972).

    Article  Google Scholar 

  104. W. B. Hillig, Impact Response Characteristics of Polymeric Matrices, General Electric Company, Technical Information Series Rept. No. 74CRD213 (September 1974).

    Google Scholar 

  105. W. B. Hillig, Impact Response Characteristics of Polymeric Matrices, General Electric Company, Technical Information Series Rept. No. 75CRD198 (August 1975).

    Google Scholar 

  106. K. Selby and L. Miller, “Fracture Toughness and Mechanical Behaviour of an Epoxy Resin,” J. Mater. Sci. 10, 12 (1975).

    Article  Google Scholar 

  107. Y. W. Mai and A. G. Atkins, “On the Velocity-Dependent Fracture Toughness of Epoxy Resins,” J. Mater. Sci. 10, 2000 (1975).

    Article  Google Scholar 

  108. W. F. Brown, Jr., and J. E. Srawley, Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM, Philadelphia, Pennsylvania, ASTM Special Technical Publication No. 410 (1966).

    Google Scholar 

  109. R. D. Ezell, A. Torsional Pendulum for Measuring Dynamic Mechanical Properties of Polymers, Naval Ordnance Laboratory (Naval Surface Weapons Laboratory), Silver Spring, Maryland, Rept. NOLTR 73–183 (November 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Van Nostrand Reinhold Company Inc.

About this chapter

Cite this chapter

Penn, L.S., Chiao, T.T. (1982). Epoxy Resins. In: Lubin, G. (eds) Handbook of Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7139-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7139-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7141-4

  • Online ISBN: 978-1-4615-7139-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics