Skip to main content

Direct Recording of Stereoscopic Pairs Obtained From Disk-scanning Confocal Light Microscopes

  • Chapter
Book cover Handbook of Biological Confocal Microscopy

Summary

The TSRLM is a practical tool for practical microscopy problems: it gives a real image in real time and real color, and the recording process is direct photomicrography. This chapter represents the advantages of the TSRLM in allowing stereo images to be acquired directly. Through-focussing during photography, repeated twice on inclined axes, provides the simplest direct means of obtaining stereoscopic views at the limit of resolution in light microscopy.

The method will be limited mainly by the characteristics of real objects and objective lenses. The translucency of the object will be impaired in proportion to the density of the light-scattering features which it is hoped to visualise. High resolving power objectives have a short free-working distance and collide with the specimen or its cover glass when one has focussed down through that distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boyde, A. (1985a) The tandem scanning reflected light microscope. Part 2—Pre-Micro 84 applications at UCL. Proc Roy Microsc Soc 20, 131–139.

    Google Scholar 

  • Boyde, A. (1985b) Stereoscopic images in confocal (tandem scanning) microscopy. Science 230, 1270–1272.

    Article  PubMed  CAS  Google Scholar 

  • Boyde, A. (1987) Color-coded stereo images from the tandem scanning reflected light microscope (TSRLM). J. Microsc. 146, 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Boyde, A., Howell P.G.T., Franc F. (1986) A Simple SEM Stereophotogrammetric method for three dimensional evaluation of features on flat substrates, J. Micros 143: 257–264.

    Article  CAS  Google Scholar 

  • Brakenhoff, G.J., Van Der Voort, H.T.M., Van Spronsen, E.A., Linnemans, W.A.M., & Nanninga, N. (1985) Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature 317, 748–749.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, K., Danielsson, P.E., Lenz, R., Liljeborg, A., Majloef, L. & Aslund, N. (1985) Three-dimensional microscopy using a confocal laser scanning microscope. Optics Letters 10, 53–55.

    Article  PubMed  CAS  Google Scholar 

  • Cox, I.J. & Sheppard, C.J.R. (1983) Digital image processing of confocal images. Image and Vision Computing 1, 53.

    Article  CAS  Google Scholar 

  • Howard, V., Reid S.A., Baddeley, A. & Boyde A. (1985) Unbiased estimation of particle density in the tandem scanning reflected light microscope. J. Microsc. 138, 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Minsky, M. Microscopy Apparatus. United States Patent Office. Filed Nov. 7, 1957, granted Dec. 19, 1961. Patent No. 3,013,467.

    Google Scholar 

  • Petran, M. and Hadravsky, M. (1968) Zpusob a zarizeni pro omezeni rozptylu svetla v mikroskopu pro osvetleni shora. Czechoslovak Patent No. 128936, application 5–7–66, granted 15–2–68, published 15–9–68.

    Google Scholar 

  • Petran M., Hadravsky, M. & Boyde, A. (1985) The tandem scanning reflected light microscope. Scanning, 7, 97–108.

    Article  Google Scholar 

  • Sugimoto, S.A., & Ichioka, Y. (1985) Digital composition of images with increased depth of focus considering depth information. Applied Optics 24, 2076–2080.

    Article  PubMed  CAS  Google Scholar 

  • Van der Voort, H.T.M., Brakenhoff, G.J., Valkenburg, J.A.C. & Nanninga, N. (1985) Design and use of a computer controlled confocal microscope for biological applications. Scanning 7, 66–78.

    Article  Google Scholar 

  • Wijnaendts Van Resandt, R.W., Marsman, H.J.B., Kaplan, R., Davoust, J., Stelzer, E.H.K. and Stricker, R. (1985) Optical fluorescence microscopy in three dimensions: microtomoscopy. J. Microsc. 138, 29–34.

    Article  Google Scholar 

  • Wilson, T. & Sheppard, C. (1984) Theory and practice of scanning optical microscopy. Academic Press—London 1984.

    Google Scholar 

  • Wolf, R. (1989) A novel beam-splitting microscope tube for taking stereopairs with full resolution Nomarski optics: phase contrast; or epifluorescence. J Microsc. 153, 181–186.

    Article  Google Scholar 

  • Xiao, G.Q. & Kino, G.S. (1987) A real-time confocal scanning optical microscope, Proc. SPIE, Vol. 809, Scanning Imaging Technology, T. Wilson & L. Balk, Eds. 107–113 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Boyde, A. (1990). Direct Recording of Stereoscopic Pairs Obtained From Disk-scanning Confocal Light Microscopes. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7133-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7133-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7135-3

  • Online ISBN: 978-1-4615-7133-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics