Skip to main content

The Role of the Pinhole in Confocal Imaging Systems

  • Chapter
Book cover Handbook of Biological Confocal Microscopy

Abstract

Confocal scanning microscopes are particularly attractive by virtue of their enhanced lateral resolution, purely coherent image formation and optical sectioning (Wilson and Sheppard, 1984). It is probably the latter property which is most useful as it gives rise to the ability to image a thick specimen in three-dimensions. This is possible because the optical system images information only from a thin region in the neighbourhood of the focal plane. This permits us to store many image slices in a computer to give a three dimensional data set which describes the object. There are now many sophisticated computer software systems available to display this data in various ways. Obvious examples include the extended focus technique (Wilson and Hamilton, 1982) in which we merely add up (integrate) the images from various depths to provide an image of greatly extended depth of field. We may also produce images where object height is coded as brightness or combine the whole data set to provide an isometric view of the object, Figure 1. It is ;also possible to use false color to label features of interest or, by simple processing, to obtain stereoscopic pairs (van der Voort, 1985). Other forms of image display are discussed in Chapter 10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Awamura, D., Ode, T. & Tonezawa, M. (1987) Colour laser microscope. SPIED, 765, 53–60.

    CAS  Google Scholar 

  • Corle, T.R., Chou, C.H. & Kino, G.S. (1986) Depth response of confocal optical microscopes. Opt. Lett. 11, 770–772.

    Article  PubMed  CAS  Google Scholar 

  • Cox, I.J., Sheppard, C.J.R. & Wilson, T. (1982) Super-resolution by confocal fluorescent microscopy. Optik, 60, 391–396.

    Google Scholar 

  • Cox, I.J. & Sheppard, C.J.R. (1986) Image Capacity and resolution in an optical system. J. Opt. Soc. Am (A), 3, 1152–1158.

    Article  Google Scholar 

  • Egger, M. D. & Petran, M.(1967) New reflected light microscope for viewing unstained brain and ganglian cells. Science, 157. 305–308.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, D.K., and Wilson, T. (1982a) Surface profile measurement using the confocal microscope. J. Appl. Phys. 53, 5320–5322.

    Article  Google Scholar 

  • Hamilton, D.K., and Wilson, T. (1982b) Three dimensional surface measurement using the confocal scanning microscope. Appl. Phys. B, 27,211–213.

    Article  Google Scholar 

  • Koester, C.J., (1980) Appl. Opt. 19, 1749.

    Article  PubMed  CAS  Google Scholar 

  • Mathews, HJ., D. Phil Thesis, (1987) Oxford University.

    Google Scholar 

  • Schutt, W. (1988) Proc. Conf. on Physical Characterisation of Biological Cells. Rostock GDR.

    Google Scholar 

  • Sheppard, C.J.R. & Wilson T. (1981a) The theory of the direct-view confocal microscope. J. Microsc. 124, 107–117.

    Article  PubMed  CAS  Google Scholar 

  • Sheppard, C.J.R. & Wilson, T. (1981b) Effects of high angles of convergence on V(z) in the scanning acoustic microscope. Appl. Phys. Lett. 38, 858–859.

    Article  Google Scholar 

  • Wilson, T. & Hamilton, D.K. (1982) Dynamic focussing in the scanning microscope. J. Microsc. 128, 139–143.

    Article  Google Scholar 

  • Wilson, T. & Sheppard, C.J.R. (1984) Theory and Practice of Scanning Optical Microscopy. Academic Press, London.

    Google Scholar 

  • Wilson, T. (1988) Depth response of scanning microscopes. Optik (in press).

    Google Scholar 

  • Wilson, T. & Carlini, A.R. (1987) Size of the detector in confocal imaging systems. Opt. Lett. 12, 227–229.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, T. & Carlini, A.R. (1988a) Three dimensional imaging in confocal imaging systems with finite sized detectors. J. Microsc. 149, 51–66.

    Article  Google Scholar 

  • Wilson, T. (1989) Optical sectioning in confocal fluorescent microscopes. J. Microsc.

    Google Scholar 

  • Van der Voort, H.T.M., Brakenhoff, G.J., Valkenburg, J.A.C., Nanninga, N. (1985) Design and use of a computer controlled confocal microscope. Scanning, 7, 66–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Wilson, T. (1990). The Role of the Pinhole in Confocal Imaging Systems. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7133-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7133-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7135-3

  • Online ISBN: 978-1-4615-7133-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics