Recent Advances in the Genetics of Filamentous Fungi

Part of the Tertiary Level Biology book series (TLB)


The rapid progress in molecular genetics has been extended to the analysis of the filamentous fungi (Bennett and Lasure, 1985). The reasons for this have been that they are technically easy to work with, have well-characterized genetic systems, can be characterized biochemically and a number of genera produce commercially important compounds such as antibiotics. Progress has been made in isolating temperature-sensitive mutants, in extending the parasexual cycle to industrial fungi, in detecting protoplast fusion and transformation, in analysis of regulation and in the cloning of fungal genes.


Filamentous Fungus Aspergillus Nidulans Penicillium Chrysogenum Osmotic Stabilizer Phosphomannose Isomerase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arst, H. N. (1983) Fungal systems, in Eukaryotic Genes, Their Structure, Activity and Regulation (eds. N. Maclean, S. P. Gregory and R. A. Flavell), Butterworth, London, 433–450.Google Scholar
  2. Arst, H. N. and Scazzocchio, C. (1985) Formal genetics and molecular biology of the control of gene expression in Aspergillus nidulans, in Gene Manipulations in Fungi (eds. J. W. Bennett and L. L. Lasure), Academic Press, Orlando.Google Scholar
  3. Bainbridge, B. W., Valentine, B. P. and Markham, P. (1979) The use of temperature-sensitive mutants to study wall growth, in Fungal Walls and Hyphal Growth (eds. J. H. Burnett and A. P. J. Trinci), Cambridge University Press, Cambridge.Google Scholar
  4. Ball, C. (1984) Genetics and Breeding of Industrial Microorganisms, CRC Press, Boca Raton.Google Scholar
  5. Bennett, J. W. and Lassure, L. L. (eds.) (1985) Gene Manipulations in Fungi, Academic Press, Boca Raton.Google Scholar
  6. Brody, S. and Tatum, E. L. (1967) Phosphoglucomutase mutants and morphological changes in Neurospora crassa. Proc. Nat. Acad. Sci. Wash. 58, 923–930.CrossRefGoogle Scholar
  7. Hartwell, L. H. (1978) Cell division from a genetic perspective. J. Cell Biol. 77, 627–637.CrossRefGoogle Scholar
  8. Jeggo, P. A, Unrau, P., Banks, G. R. and Holliday, R. (1973) A temperature sensitive DNA polymerase mutant of Ustilago may dis. Nature New Biol. 242, 14–15.Google Scholar
  9. Johnstone, I. L., Hughes, S. G. and Clutterbuck, A. J. (1985) Cloning an Aspergillus nidulans developmental gene by transformation. EMBO Journal 4, 1307–1311.Google Scholar
  10. Katz, D. and Rosenberger, R. F. (1971) Lysis of an Aspergillus nidulans mutant blocked in chitin synthesis and its relation to wall assembly and wall metabolism. Arch. Mikrobiol. 80, 284–292.CrossRefGoogle Scholar
  11. MacDonald, K. D. (1968) The persistence of parental genome segregation in Penicillium chrysogenum after nitrogen mustard treatment. Mut. Res. 5, 302–305.CrossRefGoogle Scholar
  12. MacDonald, K. D. and Holt, G. (1976) Genetics of biosynthesis and overproduction of penicillin. Sci. Prog 63, 547–573.Google Scholar
  13. MacDonald, K. D., Hutchinson, J. M. and Gillet, W. A. (1964) Properties of heterozygous diploids between strains of Penicillium chrysogenum selected for high penicillin yields. Anton, v. Leeuw. J. Micro. & Serol. 30, 209–224.Google Scholar
  14. Markham, P. and Bainbridge, B. W. (1979) Characterization of a new choline locus in Aspergillus nidulans and its significance for choline metabolism. Genet. Res. 32, 303–310.CrossRefGoogle Scholar
  15. Mishra, N. C. (1977) Genetics and biochemistry of morphogenesis in Neurospora. Adv. Genet. 19, 341–405.CrossRefGoogle Scholar
  16. Morris, N. R. (1976) Mitotic mutants of Aspergillus nidulans. Genet. Res. 26, 237–254.CrossRefGoogle Scholar
  17. Morris, N. R. (1980) Chromosome structure and the molecular biology of mitosis in eukaryotic microorganisms, in The Eukaryotic Microbial Cell (eds. G. W. Gooday, D. Lloyd and A. P. J. Trinci), Cambridge University Press, Cambridge.Google Scholar
  18. Morris, N. R., Lui, M. H. and Oakley, C. E. (1979) Identification of a gene for α-tubulin in Aspergillus nidulans. Cell 16, 437–442.Google Scholar
  19. Orr, E. and Rosenberger, R. F. (1976) Initial characterization of Aspergillus nidulans mutants blocked in the nuclear replication cycle. J. Bad. 126, 895–902.Google Scholar
  20. Scott, W. A. (1976) Biochemical genetics of morphogenesis in Neurospora. Ann. Rev. Microbiol. 30, 85–104.CrossRefGoogle Scholar
  21. Scott, W. A. and Tatum, E. L. (1970) Glucose-6-phosphate dehydrogenases and Neurospora morphology. Proc. Nat. Acad. Sci. Wash. 66, 515–522.CrossRefGoogle Scholar
  22. Sederoff, R. R. (1984) Structural variation in mitochondrial DNA. Adv. Genet. 22, 1–108.CrossRefGoogle Scholar
  23. Sheir-Neiss, G., Lui, M. H. and Morris, N. R. (1978) Identification of a gene for β-tubulin in Aspergillus nidulans. Cell 15(2), 639–647.CrossRefGoogle Scholar
  24. Simchen, G. (1978) Cell cycle mutants. Ann. Rev. Genet. 12, 161–191.CrossRefGoogle Scholar
  25. Steele, G. C. and Trinci, A. P. J. (1977) Effect of temperature and temperature shifts on growth and branching of a wild-type and temperature-sensitive colonial mutant (cot 1) of Neurospora crassa. Arch. Microbiol. 113, 43–48.CrossRefGoogle Scholar
  26. Trevithick, J. R. and Metzenberg, R. L. (1966) Genetic alteration of pore size and other properties of the Neurospora cell wall. J. Bact. 92, 1016–1020.Google Scholar
  27. Trinci, A. P. J. and Morris, N. R. (1979) Morphology and growth of a temperature-sensitive mutant of Aspergillus nidulans which forms aseptate mycelia at non-permissive temperatures. J. gen. Microbiol. 114, 53–59.CrossRefGoogle Scholar
  28. Turner, G. and Balance, D. J. (1985) Cloning and transformation of Aspergillus nidulans, in Gene Manipulations of Fungi (eds. J. W. Bennett and L. L. Lassure), Academic Press, Boca Raton.Google Scholar
  29. Unrau, P. and Holliday, R. (1970) A search for temperature-sensitive mutants of Ustilago maydis blocked in DNA synthesis. Genet. Res. 15, 157–169.CrossRefGoogle Scholar
  30. Valentine, B. P. and Bainbridge, B. W. (1978) The relevance of a study of a temperature-sensitive ballooning mutant of Aspergillus nidulans defective in mannose metabolism to our understanding of mannose as a wall component and carbon/energy source. J. gen. Microbiol. 109, 155–168.CrossRefGoogle Scholar
  31. Warr, J. R., Flanagan, D. and Quinn, D. (1978) Mutants of Chlamydomonas reinhardii with altered sensitivity to anti-microtubular agents. Exp. Cell. Res. 11, 37–46.CrossRefGoogle Scholar

Copyright information

© Blackie & Son Ltd 1987

Authors and Affiliations

  1. 1.King’s College LondonUK

Personalised recommendations