Advertisement

Molecular Biology of the Fimbriae of Dichelobacter (Previously Bacteroides) nodosus

  • John S. Mattick
  • Matthew Hobbs
  • Peter T. Cox
  • Brian P. Dalrymple
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)

Abstract

Dichelobacter nodosus is a gramnegative anaerobe and the essential causative agent of ovine footrot (Egerton, 1977). Virulent isolates of this organism contain large numbers of fine surface filaments termed fimbriae (or common pili) (Figure 39.1), which have a diameter of about 6 nm and may extend up to several micrometers (µm) in length (Stewart, 1973). In other bacteria such fimbriae have been shown to have adhesive properties (Paranchych and Frost, 1988; Moore and Rutter, 1989; see also following) and to represent a primary mechanism for colonization of animal cell surfaces. Although the exact function of D. nodosus fimbriae has not yet been clearly defined, they appear to play a central role in the invasion by the bacterium of the epidermal matrix of the hoof (see Mattick et al., 1985a).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albano, M., R. Breitling, and D.A. Dubnau. 1989. Nucleotide sequence and genetic organisation of the Bacillus subtilis comG operon. J. Bacteriol. 171:5386–5404.PubMedGoogle Scholar
  2. Albright, L.M., E. Huala, and F.M. Ausubel. 1989. Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu. Rev. Genet. 23:311–336.PubMedCrossRefGoogle Scholar
  3. Anderson, B.J., M.M. Bills, J.R. Egerton, and J.S. Mattick. 1984. Cloning and expression in Escherichia coli of the gene encoding the structural subunit of Bacteroides nodosus fimbriae. J. Bacteriol. 160:748–754.PubMedGoogle Scholar
  4. Anderson, B.J., C.L. Kristo, J.R. Egerton, and J. Mattick. 1986. Variation in the structural subunit and basal protein antigens of Bacteroides nodosus fimbriae. J. Bacteriol. 166:453–460.PubMedGoogle Scholar
  5. Anderson, B.J., J.S. Mattick, P.T. Cox, C.L. Kristo, and J.R. Egerton. 1987. Western blot (immunoblot) analysis of the hmbrial antigens of Bacteroides nodosus. J. Bacteriol. 169:4018–4023.Google Scholar
  6. Baga, M., M. Norgren, and S. Normark. 1987. Biogenesis of E. coli pap pili: papH a minor pilin subunit involved in cell anchoring and length modulation. Cell 49:241–251.PubMedCrossRefGoogle Scholar
  7. Bailey, G.D. and D.N. Love. 1986. Eubacterium fossor sp. no v., an agarcorroding organism from normal pharynx and oral and respiratory tract lesions of horses. Int. J. Syst. Bacteriol. 36:383–387.CrossRefGoogle Scholar
  8. Bally, M., G. Ball, A. Badere, and A. Lazdunski. 1991. Protein secretion in Pseudomonas aeruginosa: the xcpA gene encodes an integral inner membrane protein homologous to Klebsiella pneumoniae secretion function protein PulO. J. Bacteriol. 173:479–486.PubMedGoogle Scholar
  9. Beard, M.K.M., J.S. Mattick, L.J. Moore, M.R. Mott, CF. Marrs, and J.R. Egerton. 1990. Morphogenetic expression of Moraxella bovis fimbriae (pili) in Pseudomonas aeruginosa. J. Bacteriol. 172:2601–2607.PubMedGoogle Scholar
  10. Beveridge, W.I.B. 1941. Foot-rot in sheep: a trans-missable disease due to infection with Fusiformis nodosus (n. sp.). Bull. No. 140, Council for Scientific and Industrial Research, Melbourne, Australia.Google Scholar
  11. Biswas, G.D., T. Sox, E. Blackman, and P.F. Sparling. 1977. Factors affecting genetic transformation of Neisseria gonorrhoeae. J. Bacteriol. 129:983–992.PubMedGoogle Scholar
  12. Boslego, J.W., E.C. Tramont, R.C. Chung, D.G. McChesney, J. Ciak, J.C. Sadoff, M.P. Piziak, J.D. Brown, C.C. Brinton, Jr., S.W. Wood, and J.R. Bryan, 1991. Efficacy of a parenteral gonococcal pilus vaccine in men. Vaccine 9:153–162.CrossRefGoogle Scholar
  13. Bradley, D.E. 1972. Evidence for the retraction of Pseudomonas aeruginosa RNA phage pili. Biochem. Biophys. Res. Commun. 47:142–149.PubMedCrossRefGoogle Scholar
  14. Bradley, D.E. 1974. The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili. Virology 58:149–163.PubMedCrossRefGoogle Scholar
  15. Bradley, D.E. 1980. A function of Pseudomonas aeruginosa PAO pili: twitching motility. Can. J. Microbiol. 26:146–154.PubMedCrossRefGoogle Scholar
  16. Brinton, C.C., S.W. Wood, A. Brown, A.M. Labik, J.R. Bryan, and S.W. Lee. 1982. The development of a Neisserial pilus vaccine for gonorrhea and meningococcal meningitis. In: Seminars in Infectious Disease, Vol IV: Bacterial Vaccines, J.B. Robbins, J.C. Hill, and J.C. Sadoff, eds., pp. 140–159. New York: Thieme-Stratton.Google Scholar
  17. Bovre, K. and L.O. Fraholm. 1972. Competence in genetic transformation related to colony type and fimbriation in three species of Moraxella. Acta Path. Microbiol. Scand. Sect. B 80:649–659.Google Scholar
  18. Chetwin, D.H., L.C. Whitehead, and S.E.J. Thorley. 1991. The recognition and prevalence of Bacteroides nodosus serotype M in Australia and New Zealand. Aust. Vet. J. 68:154–155.PubMedCrossRefGoogle Scholar
  19. Claxton, P.D. 1981. Studies on Bacteroides nodosus vaccines with particular reference to factors associated with their efficacy in protecting against ovine virulent footrot. Ph.D. thesis, University of Sydney, Australia.Google Scholar
  20. Claxton, P.D. 1986. Serogrouping of Bacteroides nodosus isolates. In: Footrot in Ruminants: Proceedings of a Workshop, Melbourne, 1985. D.J. Stewart, N.M. McKern, and D.L. Emery, eds., pp. 131–134. Syndey, Australia: CSIRO Press.Google Scholar
  21. Claxton, P.D. 1989. Antigenic classification of Bacteroides nodosus. In: Footrot and Foot Abscess of Ruminants. J.R. Egerton, W.K. Yong, and G.G. Riffkin, eds., pp. 155–166. Boca Raton, Florida: CRC Press.Google Scholar
  22. Claxton, P.D., L.A. Ribeiro, and J.R. Egerton. 1983. Classification of Bacteroides nodosus by agglutination tests. Aust. Vet. J. 60:331–334.PubMedCrossRefGoogle Scholar
  23. d’Enfert, C, I. Reyss, C. Wandersman, and A.P. Pugsley. 1989. Protein secretion by Gram-negative bacteria. Characterization of two membrane proteins required for pullulanase secretion by Escherichia coli K-12. J. Biol. Chem. 264:17462–17468.PubMedGoogle Scholar
  24. Dalrymple, B. and J.S. Mattick. 1986. Genes encoding threonine tRNAs with the anticodon CGU from Escherichia coli and Pseudomonas aeruginosa. Biochem. Int. 13:547–553.PubMedGoogle Scholar
  25. Dalrymple, B. and J.S. Mattick. 1987. An analysis of the organization and evolution of type 4 fimbrial (MePhe) subunit proteins. J. Mol. Evol. 25:261–269.PubMedCrossRefGoogle Scholar
  26. Day, S.E.J., CM. Thorley, and J.E. Beesley. 1986. Serotyping of Bacteroides nodosus: proposal for 9 further serotypes (J-R) and a study of the antigenic complexity of B. nodosus pili. In: Footrot in Ruminants: Proceedings of a Workshop, Melbourne, 1985. D.J. Stewart, N.M. McKern, and D.L. Emery, eds., pp. 147–159, Sydney, Australia: CSIRO Press.Google Scholar
  27. Depiazzi, L.J. and R.B. Richards. 1985. Motility in relation to virulence of Bacteroides nodosus. Vet. Microbiol. 10:107–116.PubMedCrossRefGoogle Scholar
  28. Deretic, V., W.M. Konyecsni, C.D. Mohr, D.W. Martin, and N.S. Hibler. 1989. Common denominators of promoter control in Pseudomonas and other bacteria. Bio/Technology 7:1249–254.Google Scholar
  29. Dewhirst, F.E., B.J. Paster, S. La Fontaine, and J.I. Rood, 1990. Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb, nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelo-bacter nodosus comb, nov.; and assignment of the genera Cardiobacterium, Dichelobacter and Suttonella to Cardiobacteriaceae fam. nov. in the gamma subdivision of Proteobacteria based upon 16S ribosomal ribonucleic acid sequence comparisons. Int. J. Syst. Bacteriol. 40:426–433.PubMedCrossRefGoogle Scholar
  30. Egerton, J.R. 1973. Surface and somatic antigens of Fusiform nodosus. J. Comp. Pathol 83:151–159.PubMedCrossRefGoogle Scholar
  31. Egerton, J.R. 1974. Significance of Fusiformis nodosus serotypes in resistance of vaccinated sheep to experimental foot-rot. Aust. Vet. J. 50:59–62.PubMedCrossRefGoogle Scholar
  32. Egerton, J.R. 1977. Foot-rot of sheep—pathogenesis and immunity. Prog. Immunol. 3:645–650.Google Scholar
  33. Egerton, J.R., P.T. Cox, B.J. Anderson, K. Kristo, M. Norman, and J.S. Mattick. 1987. The protection of sheep against footrot with a recombinant DNΑ-based fimbrial vaccine. Vet. Microbiol. 14:393–409.PubMedCrossRefGoogle Scholar
  34. Elleman, T. 1988. Pilins of Bacteroides nodosus: molecular basis of serotypic variation and relationships to other bacterial pilins. Microbiol. Rev. 52:233–247.PubMedGoogle Scholar
  35. Elleman, T.C, P.A. Hoyne, D.L. Emery, D.J. Stewart, and B.L. Clark. 1984. Isolation of the gene encoding pilin of Bacteroides nodosus (strain 198), the causal organism of ovine footrot. FEBS Lett. 173:103–107.PubMedCrossRefGoogle Scholar
  36. Elleman, T.C, P.A. Hoyne, D.L. Emery, D.J. Stewart, and B.L. Clark. 1986a. Expression of the pilin gene from Bacteroides nodosus in Escherichia coli. Infect. Immun. 51:187–192.Google Scholar
  37. Elleman, T.C, P.A. Hoyne, N.M. McKern, and D.J. Stewart. 1986b. Nucleotide sequence of the gene encoding the two-subunit pilin of Bacteroides nodosus 265. J. Bacteriol. 167:243–250.PubMedGoogle Scholar
  38. Elleman, T.C, P.A. Hoyne, D.J. Stewart, N.M. McKern, and J.E. Peterson. 1986c. Expression of pili from Bacteroides nodosus in Pseudomonas aeruginosa. J. Bacteriol. 168:574–580.PubMedGoogle Scholar
  39. Elleman, T.C, D.J. Stewart, K.G. Finney, P.A. Hoyne, and C.W. Ward. 1990. Pilins from the B-serogroup of Bacteroides nodosus—characterization, expression, and cross-protection. Infect. Immun. 58:1545–1551.PubMedGoogle Scholar
  40. Emery, D.L., D.J. Stewart, and B.L. Clark. 1984. The structural integrity of pili from Bacteroides nodosus is required to elicit protective immunity against footrot. Aust. Vet. J. 61:237–238.PubMedCrossRefGoogle Scholar
  41. Every, D. 1979. Purification of pili from Bacteroides nodosus and an examination of their chemical physical and serological properties. J. Gen. Microbiol. 115:309–316.PubMedGoogle Scholar
  42. Every, D. and T.M. Skerman. 1982. Protection of sheep against experimental footrot by vaccination with pili purified from Bacteroides nodosus. N.Z. Vet, J. 30:156–158.CrossRefGoogle Scholar
  43. Every, D. and T.M. Skerman. 1983. Surface structure of Bacteroides nodosus in relation to virulence and immunoprotection in sheep. J. Gen. Microbiol. 129:225–234.PubMedGoogle Scholar
  44. Filloux, A., M. Bally, G. Ball, M. Akrim, J. Tom-masson, and A. Lazdunski. 1991. Protein secretion in Gram-negative bacteria: transport across the outer membrane involves common mechanisms in different bacteria. EMBO J. 9:4323–4329.Google Scholar
  45. Fontaine, E.A.R., S.P. Borriello, D. Taylor-Robinson, and H.A. Davies. 1984. Differential characteristics of a small gram-negative anaerobe associated with non-gonococcal urethritis which morphologically resembles Bacteriodes ureolyticus. Scand. J. Urol. Nephrol 86:157–165 (Suppl.).Google Scholar
  46. Froholm, L.O.F. and K. Bovre. 1972. Fimbriation associated with the spreading-corroding colony type in Moraxella kingii. Acta Pathol. Microbiol. Scand. Sect. B 80:641–648.Google Scholar
  47. Fulks, K.A., C.F. Marrs, S.P. Stevens, and M.R. Green. 1990. Sequence analysis of the inversion region containing the pilin genes of Moraxella bovis. J. Bacteriol. 172:310–316.PubMedGoogle Scholar
  48. Goodman, S.D. and J.J. Scocca. 1988. Identification and arrangement of the DNA sequence recognised in specific transformation of Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 85:6982–6986.PubMedCrossRefGoogle Scholar
  49. Gottesman, S., C. Squires, E. Pichersky, M. Carrington, M. Hobbs, J.S. Mattick, B. Dalrymple, H. Kuramitsu, T. Shiroza, T. Foster, W.P. Clark, B. Ross, C.L. Squires, and M.R. Maurizi. 1990. Conservation of the regulatory subunit for the Clp ATP-dependent protease in pro-karyotes and eukaryotes. Proc. Natl. Acad. Sci. USA 87:3513–3517.PubMedCrossRefGoogle Scholar
  50. Grantham, R., C. Gautier, M. Gouy, M. Jacobzone, and R. Mercier. 1981. Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res. 9:43–75.CrossRefGoogle Scholar
  51. Graves, J.F., G.D. Biswas, and P.F. Sparling. 1982. Sequence-specific DNA uptake in transformation of Neisseria gonorrhoeae. J. Bacteriol. 152: 1071–1077.PubMedGoogle Scholar
  52. Grosjean, H. and W. Fiers. 1982. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene (Amst.) 18:199–209.CrossRefGoogle Scholar
  53. Haas, R. and T.F. Meyer. 1986. The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44:107–115.PubMedCrossRefGoogle Scholar
  54. Henrichsen, J. 1983. Twitching motility Annu. Rev. Microbiol. 37:81–93.CrossRefGoogle Scholar
  55. Henrichsen, J., L.O. Froholm, and K. Bovre. 1972. Studies on bacterial surface translocation. 2. Correlation of twitching motility and fimbria-tion in colony variants of Moraxella nonliquefα-ciens, M. bovis and M. kingii. Acta. Pathol. Microbiol. Scand. Sect. B 80:445–452.Google Scholar
  56. Henriksen, S.D. and L.O. Froholm. 1975. A fimbriated strain of Pasteurella multocida with spreading and corroding colonies. Acta Pathol. Microbiol. Scand. Sect. B 83:129–132.Google Scholar
  57. Henriksen, S.D. and J. Henrichsen. 1975. Twitching motility and possession of polar fimbriae in spreading Streptococcus sanguis isolates from the human throat. Acta. Pathol. Microbiol. Scand. Sect. B 83:133–140.Google Scholar
  58. Hindmarsh, F. and J. Fraser. 1985. Serogroups of Bacteroides nodosus isolated from ovine footrot in Britain. Vet. Res. 116:187–188.Google Scholar
  59. Hobbs, M., B. Dalrymple, S.F. Delaney, and I.S. Mattick. 1988. Transcription of the fimbrial subunit gene and an associated transfer RNA gene of Pseudomonas aeruginosa. Gene (Amst.) 62:219–227.CrossRefGoogle Scholar
  60. Hobbs, M., B. Dalrymple, P.T. Cox, S.P. Livingston, S.F. Delaney, and J.S. Mattick. 1991. Organisation of the fimbrial gene region of Bacteroides nodosus: class I and class II strains. Mol Microbiol. 5:543–560.PubMedCrossRefGoogle Scholar
  61. Holdeman, L.V., R.W. Kelley, and W.E.C. Moore. 1984. Family I. The Bacteroidaceae. Genus I. Bacteroides. In: Bergey’s Manual of Systematic Bacteriology, Vol. 1, N.R. Kreig, and J.G. Holt, eds. pp. 604–631. Baltimore: Williams & Wilkins.Google Scholar
  62. Hoyne, P.A., T.C. Elleman, N.M. McKern, and D.J. Stewart. 1989. Sequence of pilin from Bacteroides nodosus 351 (serogroup H) and implications for serogroup classification. J. Gen. Microbiol. 135:1113–1122.PubMedGoogle Scholar
  63. Jennings, P.A., M.M. Bills, D.O. Irving, and J.S. Mattick. 1989. Fimbriae of Bacteroides nodosus: protein engineering of the structural subunit for the production of an exogenous peptide. Protein Eng. 2:365–369.PubMedCrossRefGoogle Scholar
  64. Johnson, K., M.L. Parker, and S. Lory. 1986. Nucleotide sequence and transcriptional initiation site of two Pseudomonas aeruginosa pilin genes. J. Biol. Chem. 261:15703–15708.PubMedGoogle Scholar
  65. Jonsson, A.B., G. Nyberg, and S. Normark. 1991. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J. 10:477–488.PubMedGoogle Scholar
  66. Kingsley, D.F., F.H. Hindmarsh, D.M. Liardet, and D.H. Chetwin. 1986. Distribution of serogroups of Bacteroides nodosus with particular reference to New Zealand and the United Kingdom. In: Footrot in Ruminants: Proceedings of a Workshop, Melbourne, 1985, D.J. Stewart, N.M. McKern, and D.L. Emery, eds., pp. 143–146. Sydney, Australia: CSIRO Press.Google Scholar
  67. La Fontaine, S. and J.R. Rood. 1990. Evidence that Bacteroides nodosus belongs in subgroup gamma of the class Proteobacteria, not in the genus Bacteroides: partial sequence analysis of a B. nodosus 16S rRNA gene. Int. J. Syst. Bacterial. 40:154–159.CrossRefGoogle Scholar
  68. Lazdunski, A., J. Guzzo, A. Filloux, M. Bally, and M. Murgier. 1990. Secretion of extracellular proteins by Pseudomonas aeruginosa. Biochemie (Paris) 72:147–156.Google Scholar
  69. Lee, S.W., B. Alexander, and B. McGowan. 1983. Purification characterization and serologic characteristics of Bacteroides nodosus pili and the use of a purified vaccine in sheep. Am. J. Vet. Res. 44:1676–1681.PubMedGoogle Scholar
  70. Lehr, C, H.G. Jayappa, and R.A. Goodnow. 1985. Serological and protective characterization of Moraxella bovis pili. Cornell Vet. 75:484–492.PubMedGoogle Scholar
  71. Lepper, A.W. 1988. Vaccination against infectious bovine keratoconjunctivitis: protective efficacy and antibody response induced by pili of homologous and heterologous strains of Moraxella bovis. Aust. Vet. J. 65:310–316.PubMedCrossRefGoogle Scholar
  72. Lepper, A.W.D. and L.R. Hermans. 1986. Characterisation and quantitation of pilus antigens of Moraxella bovis by ELISA. Aust. Vet. J. 63:401–405.PubMedGoogle Scholar
  73. Liardet, D.M., D.H. Chetwin, D.F. Kingsley, and F.H. Hindmarsh. 1986. Results of field trials in New Zealand to confirm the protective and curative effects of a 10-strain ovine footrot vaccine. In: Footrot in Ruminants: Proceedings of a Workshop, Melbourne, 1985, D.J. Stewart, N.M. McKern, and D.L. Emery, eds., pp. 181–184. Sydney, Australia: CSIRO Press.Google Scholar
  74. Love, D.N., R.F. Jones, M. Bailey, and A. Calverly. 1984. Comparison of strains of gram-negative anaerobic agar-corroding rods isolated from soft tissue infection in cats and dogs with type strains of Bacteroides gracilis, Wolinella recta, Wolinella succinogenes and Campylobacter concisus. J. Clin. Microbiol. 20:747–750.PubMedGoogle Scholar
  75. Marrs, C.F., G. Schoolnik, J.M. Koomey, J. Hardy, J. Rothbard, and S. Falkow. 1985. Cloning and sequencing of a Moraxella bovis pilin gene. J. Bacteriol. 163:132–139.PubMedGoogle Scholar
  76. Maruyama, T., T. Gojobori, S. Aota, and T. Ikemura. 1986. Codon usage tabulated from the Genbank genetic sequence data. Nucleic Acids Res. 14:r151–r197.PubMedGoogle Scholar
  77. Mattick, J.S. 1989. The molecular biology of the fimbriae (pili) of Bacteroides nodosus and the development of a recombinant DNΑ-based vaccine. In: Footrot and Foot Abscess of Ruminants, J.R. Egerton, W.K. Yong, and G.G. Riffkin, eds., pp. 195–218. Boca Raton, Florida: CRC Press.Google Scholar
  78. Mattick, J.S., B.J. Anderson, M.R. Mott, and J.R. Egerton. 1984. Isolation and characterization of Bacteroides nodosus fimbriae: structural subunit and basal protein antigens. J. Bacteriol. 160:740–747.PubMedGoogle Scholar
  79. Mattick, J.S., B.J. Anderson, J.R. Egerton. 1985a. Molecular biology and footrot of sheep. In: Reviews in Rural Science, Vol 6, Biotechnology and Recombinant DNA Technology in the Animal Production Industries, R.A. Leng, J.S.F. Barker, D.B. Adams, and K.R. Hutchinson, eds., pp. 79–91. Armidale, N.S. W.: University of New England.Google Scholar
  80. Mattick, J.S., B.J. Anderson, and T.C. Elleman. 1985b. Australian Patent Application 50154/85; New Zealand Patent Application 214017; European Patent Application 85905494.2; Patent Corporation Treaty Application W086/02557.Google Scholar
  81. Mattick, J.S., M.M. Bills, B.J. Anderson, B. Dalrymple, M.R. Mott, and J.R. Egerton. 1987. Morphogenetic expression of Bacteroides nodosus fimbriae in Pseudomonas aeruginosa. J. Bacteriol. 169:33–41.PubMedGoogle Scholar
  82. Mattick, J.S., B.J. Anderson, P.T. Cox, B.P. Dalrymple, M.M. Bills, M. Hobbs, and J.R. Egerton, 1991. Gene sequences and comparison of the fimbrial subunits representative of Bacteroides nodosus serogroups A to I: Class I and class II strains. Mol. Microbiol. 5:561–573.PubMedCrossRefGoogle Scholar
  83. Meyer, T.F., N. Mlawer, and M. So. 1982. Pilus expression in Neisseria gonorrhoeae involves chromosomal rearrangement. Cell 30:45–52.PubMedCrossRefGoogle Scholar
  84. Meyer, T.F., E. Billyard, R. Haas, S. Storzbach, and M. So. 1984. Pilus genes of Neisseria gonorrheal chromosomal organization and DNA sequence. Proc. Natl. Acad. Sci. USA 81:6110–6114.PubMedCrossRefGoogle Scholar
  85. Mohan, S., J. Aghion, N. Guillen, and D.A. Dubnau. 1989. Molecular cloning and characterization of comC, a late competence gene of Bacillus subtilis. J. Bacteriol. 171:6043–6051.PubMedGoogle Scholar
  86. Mooi, F.R. and F.K. de Graaf. 1985. Molecular biology of fimbriae of enterotoxigenic Escherichia coli. Curr. Topics Microbiol. Immunol. 118:119–138.CrossRefGoogle Scholar
  87. Moore, L.J. and J.M. Rutter. 1987. Antigenic analysis of fimbrial proteins from Moraxella bovis. J. Clin. Microbiol. 25:2063–2070.PubMedGoogle Scholar
  88. Moore, L.J. and J.M. Rutter. 1989. Attachment of Moraxella bovis to calf corneal cells and inhibition by antiserum. Aust. Vet. J. 66:39–42.PubMedCrossRefGoogle Scholar
  89. Mraz, O. 1963. Schizomycetes. In: Nomina und Svnonyma der Pathogenen und Saprophytaren Microben, O. Mraz, J. Tesarcik, and F. Varejka, eds., p. 85. Jena, GDR: VEB Gustav Fischer Verlag.Google Scholar
  90. Mulvaney, C.J., R. Jackson, and A.J. Jopp. 1984. Field trials with a killed nine-strain, oil adjuvanted Bacteroides nodosus footrot vaccine in sheep. N.Z. Vet. J. 32:137–139.PubMedCrossRefGoogle Scholar
  91. Nunn, D., S. Bergman, and S. Lory. 1990. Products of three accessory genes, pilB, pilC and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J. Bacteriol. 172:2911–2919.PubMedGoogle Scholar
  92. Ottow, J.CG. 1975. Ecology physiology and genetics of fimbriae and pili. Annu. Rev. Microbiol. 29:79–108.PubMedCrossRefGoogle Scholar
  93. Paranchych, W. and L.S. Frost. 1988. The physiology and biochemistry of pili. Adv. Microbiol. Physiol 29:53–114.CrossRefGoogle Scholar
  94. Pasloske, B.L., B.B. Finlay and W. Paranchych. 1985. Cloning and sequencing of the Pseudomonas aeruginosa PAK pilin gene. FEBS Lett. 183:408–412.PubMedCrossRefGoogle Scholar
  95. Pasloske, B.L., P.A. Sastry, B.B. Finlay, and W. Paranchych. 1988. Two unusual pilin sequences from different isolates of Pseudomonas aeruginosa. J. Bacteriol. 170:3738–3741.PubMedGoogle Scholar
  96. Pedersen, K.B., L.O. Froholm, K. Bovre. 1972. Fimbriation and colony type of Moraxella bovis in relation to conjunctival colonisation and development of keratoconjunctivitis in cattle. Acta Pathol. Microbiol. Scand. Sect. B 80:911–918.Google Scholar
  97. Plant, J.W. and P.D. Claxton. 1986. Efficacy of pairing, footbathing and vaccination in the treatment of footrot. In: Footrot in Ruminants: Proceedings of a Workshop, Melbourne, 1985, D.J. Stewart, N.M. McKern, and D.L. Emery, eds., pp. 57–61. Sydney, Australia: CSIRO Press.Google Scholar
  98. Prévot, A.R. 1948. Manual de Classification et de Détermination des Bactéries Anaérobies. Paris: Masson.Google Scholar
  99. Pugsley, A.P. and I. Reyss. 1990. Five genes at the 3′ end of the Klebsiella pneumoniae pulC Operon are required for pullulanase secretion. Mol. Microbiol. 4:365–379.PubMedCrossRefGoogle Scholar
  100. Reed, G.A. 1986. The role of footrot vaccines in Australia. In:Footrot in Ruminants: Proceedings of a Workshop, Melbourne, 1985, D.J. Stewart, N.M. McKern, and D.L. Emery, eds., pp. 173–176. Sydney, Australia: CSIRO Press.Google Scholar
  101. Reyss, I. and A.P. Pugsley. 1990. Five additional genes in the pulC-O Operon of the Gram-negative bacterium Klebsiella oxytoca UNF5023 which are required for pullulanase secretion. Mol. Gen. Genet. 222:176–184.PubMedCrossRefGoogle Scholar
  102. Ruehl, W.W., CF. Marrs, R. Fernandez, S. Falkow, and G.K. Schoolnik. 1988. Purification, characterization, and pathogenicity of Moraxella bovis pili. J. Exp. Med. 168:983–1002.PubMedCrossRefGoogle Scholar
  103. Sastry, P.A., B.B. Finlay, B.L. Pasloske, W. Paranchych, J.R. Pearlstone, and L.B. Smillie. 1985. Comparative studies of the amino acid and nucleotide sequences of pilin derived from Pseudomonas aeruginosa PAK and PAO. J. Bacteriol. 164:571–577.PubMedGoogle Scholar
  104. Schmitz, J.A. and J.L. Gradin. 1980. Serotypic and biochemical characterization of Bacteroides nodo-sus isolates from Oregon. Can. J. Comp. Med. 44:440–446.PubMedGoogle Scholar
  105. Segal, E., P. Hagblom, H.S. Seifert, and M. So. 1986. Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments. Proc. Natl. Acad. Sci. USA 83:2177–2181.PubMedCrossRefGoogle Scholar
  106. Seifert, H.S., R.S. Ajioka, C. Marchai, P.F. Sparling, and M. So. 1988. DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae. Nature (London) 336:392–395.CrossRefGoogle Scholar
  107. Shah, H.N. and M.D. Collins. 1983. Genus Bacteroides, a chemotaxonomic perspective. J. Appl. Bacteriol. 55:403–416.PubMedCrossRefGoogle Scholar
  108. Sharp, P.M. and W. Li. 1986. Codon usage in regulatory genes in Escherichia coli does not reflect selection for “rare” codons. Nucleic Acids Res. 14:7737–7749.PubMedCrossRefGoogle Scholar
  109. Short, J.A., CM. Thorley, and P.D. Walker. 1976. An electron microscope study of Bacteroides nodosus: ultrastructure of organisms from primary isolates and different colony types. J. Appl. Bacteriol. 40:311–315.PubMedCrossRefGoogle Scholar
  110. Skerman, T.M., S.K. Erasmuson, and D. Every. 1981. Differentiation of Bacteroides nodosus biotypes and colony variants in relation to their virulence and immunoprotective properties in sheep. Infect. Immun. 32:788–795.PubMedGoogle Scholar
  111. Stern, A., M. Brown, P. Nickel, and T.F. Meyer. 1986. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47:61–71.PubMedCrossRefGoogle Scholar
  112. Stewart, D.J. 1973. An electron microscopic study of Fusiformis nodosus. Res. Vet. Sci. 14:132–134.PubMedGoogle Scholar
  113. Stewart, D.J., B.L. Clark, J.E. Peterson, D.A. Griffiths, and E.F. Smith. 1982. Importance of pilus-associated antigen in Bacteroides nodosus vaccines. Res. Vet. Sci. 32:140–147.PubMedGoogle Scholar
  114. Stewart, D.J., B.L. Clark, J.E. Peterson, D.L. Emery, E.F. Smith, D.A. Griffiths, and I.J. O’Donnell. 1985. The protection given by pilus and whole cell vaccines of Bacteroides nodosus strain 198 against ovine foot-rot induced by strains of different serogroups. Aust. Vet. J. 62:153–159.PubMedCrossRefGoogle Scholar
  115. Stewart, D.J., J.E. Peterson, J.A. Vaughan, B.L. Clark, D.L. Emery, J.B. Caldwell, and A.A. Kortt. 1986. The pathogenicity and cultural characteristics of virulent, intermediate and benign strains of Bacteroides nodosus causing ovine footrot. Aust. Vet. J. 63:317–326.PubMedCrossRefGoogle Scholar
  116. Stock, J.B., A.M. Stock, and J.M. Mottonen. 1990. Signal transduction in bacteria. Nature 344:395–400.PubMedCrossRefGoogle Scholar
  117. Strom, M.S., D. Nunn, and S. Lory. 1991. Multiple roles of the pilus biogenesis protein PilD: involvement of PilD in excretion of enzymes from Pseudomonas aeruginosa. J. Bacteriol. 173:1175–1180.PubMedGoogle Scholar
  118. Taha, M.K., B. Dupuy, W. Saurin, M. So, and C. Marchai. 1991. Control of pilus expression in Neisseria gonorrhoeae as an original system in the family of two-component regulators. Mol. Microbiol. 5:137–148.PubMedCrossRefGoogle Scholar
  119. Taha, M.K., M. So, H.S. Seifert, E. Billyard, and C. Marchai. 1988. Pilin expression in Neisseria gonorrhoeae is under both positive and negative transcriptional control. EMBO J. 7:4367–4378.PubMedGoogle Scholar
  120. Tanner, A.C.R., M.A. Listgarten, and J.L. Ebersole. 1984. Wolinella curva sp. nov.: “Vibrio succinogenes” of human origin. Int. J. Syst. Bacteriol. 34:275–282CrossRefGoogle Scholar
  121. Tanner, A.C.R., S. Badger, C. Lai, M.A. Listgarten, R.A. Visconti, and S.S. Socransky. 1981. Wolinella gen nov. Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov. and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov. and Eikenella corrodens from humans with periodontal disease. Int. J. Syst. Bacteriol. 31:432–445.CrossRefGoogle Scholar
  122. Taylor, R.L., V.L. Miller, D.B. Furlong, and J.J. Mekalanos. 1987. Use of phoA gene fusions to identify a pilus colonisation factor coordinately regulated with cholera toxin. Proc. Natl. Acad. Sci. USA 84:2833–2837.PubMedCrossRefGoogle Scholar
  123. Virji, M. and J.E. Heckels, 1983. Antigenic cross-reactivity of Neisseria pili: investigations with type- and species-specific monoclonal antibodies. J. Gen. Microbiol. 129:2761–2768.PubMedGoogle Scholar
  124. Walker, P.D., J. Short, R.O. Thompson, and D.S. Roberts. 1973. The fine structure of Fusiformis nodosus with special reference to the antigens associated with immunogenicity. J. Gen. Microbiol. 77:351–361.PubMedGoogle Scholar
  125. Whitchurch, C.B., M. Hobbs, S.P. Livingston, V. Krishnapillai, and J.S. Mattick. 1991. Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubac-teria. Gene 101:33–44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • John S. Mattick
  • Matthew Hobbs
  • Peter T. Cox
  • Brian P. Dalrymple

There are no affiliations available

Personalised recommendations