Skip to main content

Molecular Biology of the Fimbriae of Dichelobacter (Previously Bacteroides) nodosus

  • Chapter
Genetics and Molecular Biology of Anaerobic Bacteria

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

Dichelobacter nodosus is a gramnegative anaerobe and the essential causative agent of ovine footrot (Egerton, 1977). Virulent isolates of this organism contain large numbers of fine surface filaments termed fimbriae (or common pili) (Figure 39.1), which have a diameter of about 6 nm and may extend up to several micrometers (µm) in length (Stewart, 1973). In other bacteria such fimbriae have been shown to have adhesive properties (Paranchych and Frost, 1988; Moore and Rutter, 1989; see also following) and to represent a primary mechanism for colonization of animal cell surfaces. Although the exact function of D. nodosus fimbriae has not yet been clearly defined, they appear to play a central role in the invasion by the bacterium of the epidermal matrix of the hoof (see Mattick et al., 1985a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albano, M., R. Breitling, and D.A. Dubnau. 1989. Nucleotide sequence and genetic organisation of the Bacillus subtilis comG operon. J. Bacteriol. 171:5386–5404.

    PubMed  CAS  Google Scholar 

  • Albright, L.M., E. Huala, and F.M. Ausubel. 1989. Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu. Rev. Genet. 23:311–336.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, B.J., M.M. Bills, J.R. Egerton, and J.S. Mattick. 1984. Cloning and expression in Escherichia coli of the gene encoding the structural subunit of Bacteroides nodosus fimbriae. J. Bacteriol. 160:748–754.

    PubMed  CAS  Google Scholar 

  • Anderson, B.J., C.L. Kristo, J.R. Egerton, and J. Mattick. 1986. Variation in the structural subunit and basal protein antigens of Bacteroides nodosus fimbriae. J. Bacteriol. 166:453–460.

    PubMed  CAS  Google Scholar 

  • Anderson, B.J., J.S. Mattick, P.T. Cox, C.L. Kristo, and J.R. Egerton. 1987. Western blot (immunoblot) analysis of the hmbrial antigens of Bacteroides nodosus. J. Bacteriol. 169:4018–4023.

    CAS  Google Scholar 

  • Baga, M., M. Norgren, and S. Normark. 1987. Biogenesis of E. coli pap pili: papH a minor pilin subunit involved in cell anchoring and length modulation. Cell 49:241–251.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, G.D. and D.N. Love. 1986. Eubacterium fossor sp. no v., an agarcorroding organism from normal pharynx and oral and respiratory tract lesions of horses. Int. J. Syst. Bacteriol. 36:383–387.

    Article  Google Scholar 

  • Bally, M., G. Ball, A. Badere, and A. Lazdunski. 1991. Protein secretion in Pseudomonas aeruginosa: the xcpA gene encodes an integral inner membrane protein homologous to Klebsiella pneumoniae secretion function protein PulO. J. Bacteriol. 173:479–486.

    PubMed  CAS  Google Scholar 

  • Beard, M.K.M., J.S. Mattick, L.J. Moore, M.R. Mott, CF. Marrs, and J.R. Egerton. 1990. Morphogenetic expression of Moraxella bovis fimbriae (pili) in Pseudomonas aeruginosa. J. Bacteriol. 172:2601–2607.

    PubMed  CAS  Google Scholar 

  • Beveridge, W.I.B. 1941. Foot-rot in sheep: a trans-missable disease due to infection with Fusiformis nodosus (n. sp.). Bull. No. 140, Council for Scientific and Industrial Research, Melbourne, Australia.

    Google Scholar 

  • Biswas, G.D., T. Sox, E. Blackman, and P.F. Sparling. 1977. Factors affecting genetic transformation of Neisseria gonorrhoeae. J. Bacteriol. 129:983–992.

    PubMed  CAS  Google Scholar 

  • Boslego, J.W., E.C. Tramont, R.C. Chung, D.G. McChesney, J. Ciak, J.C. Sadoff, M.P. Piziak, J.D. Brown, C.C. Brinton, Jr., S.W. Wood, and J.R. Bryan, 1991. Efficacy of a parenteral gonococcal pilus vaccine in men. Vaccine 9:153–162.

    Article  Google Scholar 

  • Bradley, D.E. 1972. Evidence for the retraction of Pseudomonas aeruginosa RNA phage pili. Biochem. Biophys. Res. Commun. 47:142–149.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D.E. 1974. The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili. Virology 58:149–163.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D.E. 1980. A function of Pseudomonas aeruginosa PAO pili: twitching motility. Can. J. Microbiol. 26:146–154.

    Article  PubMed  CAS  Google Scholar 

  • Brinton, C.C., S.W. Wood, A. Brown, A.M. Labik, J.R. Bryan, and S.W. Lee. 1982. The development of a Neisserial pilus vaccine for gonorrhea and meningococcal meningitis. In: Seminars in Infectious Disease, Vol IV: Bacterial Vaccines, J.B. Robbins, J.C. Hill, and J.C. Sadoff, eds., pp. 140–159. New York: Thieme-Stratton.

    Google Scholar 

  • Bovre, K. and L.O. Fraholm. 1972. Competence in genetic transformation related to colony type and fimbriation in three species of Moraxella. Acta Path. Microbiol. Scand. Sect. B 80:649–659.

    CAS  Google Scholar 

  • Chetwin, D.H., L.C. Whitehead, and S.E.J. Thorley. 1991. The recognition and prevalence of Bacteroides nodosus serotype M in Australia and New Zealand. Aust. Vet. J. 68:154–155.

    Article  PubMed  CAS  Google Scholar 

  • Claxton, P.D. 1981. Studies on Bacteroides nodosus vaccines with particular reference to factors associated with their efficacy in protecting against ovine virulent footrot. Ph.D. thesis, University of Sydney, Australia.

    Google Scholar 

  • Claxton, P.D. 1986. Serogrouping of Bacteroides nodosus isolates. In: Footrot in Ruminants: Proceedings of a Workshop, Melbourne, 1985. D.J. Stewart, N.M. McKern, and D.L. Emery, eds., pp. 131–134. Syndey, Australia: CSIRO Press.

    Google Scholar 

  • Claxton, P.D. 1989. Antigenic classification of Bacteroides nodosus. In: Footrot and Foot Abscess of Ruminants. J.R. Egerton, W.K. Yong, and G.G. Riffkin, eds., pp. 155–166. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Claxton, P.D., L.A. Ribeiro, and J.R. Egerton. 1983. Classification of Bacteroides nodosus by agglutination tests. Aust. Vet. J. 60:331–334.

    Article  PubMed  CAS  Google Scholar 

  • d’Enfert, C, I. Reyss, C. Wandersman, and A.P. Pugsley. 1989. Protein secretion by Gram-negative bacteria. Characterization of two membrane proteins required for pullulanase secretion by Escherichia coli K-12. J. Biol. Chem. 264:17462–17468.

    PubMed  Google Scholar 

  • Dalrymple, B. and J.S. Mattick. 1986. Genes encoding threonine tRNAs with the anticodon CGU from Escherichia coli and Pseudomonas aeruginosa. Biochem. Int. 13:547–553.

    PubMed  CAS  Google Scholar 

  • Dalrymple, B. and J.S. Mattick. 1987. An analysis of the organization and evolution of type 4 fimbrial (MePhe) subunit proteins. J. Mol. Evol. 25:261–269.

    Article  PubMed  CAS  Google Scholar 

  • Day, S.E.J., CM. Thorley, and J.E. Beesley. 1986. Serotyping of Bacteroides nodosus: proposal for 9 further serotypes (J-R) and a study of the antigenic complexity of B. nodosus pili. In: Footrot in Ruminants: Proceedings of a Workshop, Melbourne, 1985. D.J. Stewart, N.M. McKern, and D.L. Emery, eds., pp. 147–159, Sydney, Australia: CSIRO Press.

    Google Scholar 

  • Depiazzi, L.J. and R.B. Richards. 1985. Motility in relation to virulence of Bacteroides nodosus. Vet. Microbiol. 10:107–116.

    Article  PubMed  CAS  Google Scholar 

  • Deretic, V., W.M. Konyecsni, C.D. Mohr, D.W. Martin, and N.S. Hibler. 1989. Common denominators of promoter control in Pseudomonas and other bacteria. Bio/Technology 7:1249–254.

    Google Scholar 

  • Dewhirst, F.E., B.J. Paster, S. La Fontaine, and J.I. Rood, 1990. Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb, nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelo-bacter nodosus comb, nov.; and assignment of the genera Cardiobacterium, Dichelobacter and Suttonella to Cardiobacteriaceae fam. nov. in the gamma subdivision of Proteobacteria based upon 16S ribosomal ribonucleic acid sequence comparisons. Int. J. Syst. Bacteriol. 40:426–433.

    Article  PubMed  CAS  Google Scholar 

  • Egerton, J.R. 1973. Surface and somatic antigens of Fusiform nodosus. J. Comp. Pathol 83:151–159.

    Article  PubMed  CAS  Google Scholar 

  • Egerton, J.R. 1974. Significance of Fusiformis nodosus serotypes in resistance of vaccinated sheep to experimental foot-rot. Aust. Vet. J. 50:59–62.

    Article  PubMed  CAS  Google Scholar 

  • Egerton, J.R. 1977. Foot-rot of sheep—pathogenesis and immunity. Prog. Immunol. 3:645–650.

    Google Scholar 

  • Egerton, J.R., P.T. Cox, B.J. Anderson, K. Kristo, M. Norman, and J.S. Mattick. 1987. The protection of sheep against footrot with a recombinant DNΑ-based fimbrial vaccine. Vet. Microbiol. 14:393–409.

    Article  PubMed  CAS  Google Scholar 

  • Elleman, T. 1988. Pilins of Bacteroides nodosus: molecular basis of serotypic variation and relationships to other bacterial pilins. Microbiol. Rev. 52:233–247.

    PubMed  CAS  Google Scholar 

  • Elleman, T.C, P.A. Hoyne, D.L. Emery, D.J. Stewart, and B.L. Clark. 1984. Isolation of the gene encoding pilin of Bacteroides nodosus (strain 198), the causal organism of ovine footrot. FEBS Lett. 173:103–107.

    Article  PubMed  CAS  Google Scholar 

  • Elleman, T.C, P.A. Hoyne, D.L. Emery, D.J. Stewart, and B.L. Clark. 1986a. Expression of the pilin gene from Bacteroides nodosus in Escherichia coli. Infect. Immun. 51:187–192.

    CAS  Google Scholar 

  • Elleman, T.C, P.A. Hoyne, N.M. McKern, and D.J. Stewart. 1986b. Nucleotide sequence of the gene encoding the two-subunit pilin of Bacteroides nodosus 265. J. Bacteriol. 167:243–250.

    PubMed  CAS  Google Scholar 

  • Elleman, T.C, P.A. Hoyne, D.J. Stewart, N.M. McKern, and J.E. Peterson. 1986c. Expression of pili from Bacteroides nodosus in Pseudomonas aeruginosa. J. Bacteriol. 168:574–580.

    PubMed  CAS  Google Scholar 

  • Elleman, T.C, D.J. Stewart, K.G. Finney, P.A. Hoyne, and C.W. Ward. 1990. Pilins from the B-serogroup of Bacteroides nodosus—characterization, expression, and cross-protection. Infect. Immun. 58:1545–1551.

    PubMed  CAS  Google Scholar 

  • Emery, D.L., D.J. Stewart, and B.L. Clark. 1984. The structural integrity of pili from Bacteroides nodosus is required to elicit protective immunity against footrot. Aust. Vet. J. 61:237–238.

    Article  PubMed  CAS  Google Scholar 

  • Every, D. 1979. Purification of pili from Bacteroides nodosus and an examination of their chemical physical and serological properties. J. Gen. Microbiol. 115:309–316.

    PubMed  CAS  Google Scholar 

  • Every, D. and T.M. Skerman. 1982. Protection of sheep against experimental footrot by vaccination with pili purified from Bacteroides nodosus. N.Z. Vet, J. 30:156–158.

    Article  CAS  Google Scholar 

  • Every, D. and T.M. Skerman. 1983. Surface structure of Bacteroides nodosus in relation to virulence and immunoprotection in sheep. J. Gen. Microbiol. 129:225–234.

    PubMed  CAS  Google Scholar 

  • Filloux, A., M. Bally, G. Ball, M. Akrim, J. Tom-masson, and A. Lazdunski. 1991. Protein secretion in Gram-negative bacteria: transport across the outer membrane involves common mechanisms in different bacteria. EMBO J. 9:4323–4329.

    Google Scholar 

  • Fontaine, E.A.R., S.P. Borriello, D. Taylor-Robinson, and H.A. Davies. 1984. Differential characteristics of a small gram-negative anaerobe associated with non-gonococcal urethritis which morphologically resembles Bacteriodes ureolyticus. Scand. J. Urol. Nephrol 86:157–165 (Suppl.).

    CAS  Google Scholar 

  • Froholm, L.O.F. and K. Bovre. 1972. Fimbriation associated with the spreading-corroding colony type in Moraxella kingii. Acta Pathol. Microbiol. Scand. Sect. B 80:641–648.

    CAS  Google Scholar 

  • Fulks, K.A., C.F. Marrs, S.P. Stevens, and M.R. Green. 1990. Sequence analysis of the inversion region containing the pilin genes of Moraxella bovis. J. Bacteriol. 172:310–316.

    PubMed  CAS  Google Scholar 

  • Goodman, S.D. and J.J. Scocca. 1988. Identification and arrangement of the DNA sequence recognised in specific transformation of Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 85:6982–6986.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman, S., C. Squires, E. Pichersky, M. Carrington, M. Hobbs, J.S. Mattick, B. Dalrymple, H. Kuramitsu, T. Shiroza, T. Foster, W.P. Clark, B. Ross, C.L. Squires, and M.R. Maurizi. 1990. Conservation of the regulatory subunit for the Clp ATP-dependent protease in pro-karyotes and eukaryotes. Proc. Natl. Acad. Sci. USA 87:3513–3517.

    Article  PubMed  CAS  Google Scholar 

  • Grantham, R., C. Gautier, M. Gouy, M. Jacobzone, and R. Mercier. 1981. Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res. 9:43–75.

    Article  Google Scholar 

  • Graves, J.F., G.D. Biswas, and P.F. Sparling. 1982. Sequence-specific DNA uptake in transformation of Neisseria gonorrhoeae. J. Bacteriol. 152: 1071–1077.

    PubMed  CAS  Google Scholar 

  • Grosjean, H. and W. Fiers. 1982. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene (Amst.) 18:199–209.

    Article  CAS  Google Scholar 

  • Haas, R. and T.F. Meyer. 1986. The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44:107–115.

    Article  PubMed  CAS  Google Scholar 

  • Henrichsen, J. 1983. Twitching motility Annu. Rev. Microbiol. 37:81–93.

    Article  CAS  Google Scholar 

  • Henrichsen, J., L.O. Froholm, and K. Bovre. 1972. Studies on bacterial surface translocation. 2. Correlation of twitching motility and fimbria-tion in colony variants of Moraxella nonliquefα-ciens, M. bovis and M. kingii. Acta. Pathol. Microbiol. Scand. Sect. B 80:445–452.

    CAS  Google Scholar 

  • Henriksen, S.D. and L.O. Froholm. 1975. A fimbriated strain of Pasteurella multocida with spreading and corroding colonies. Acta Pathol. Microbiol. Scand. Sect. B 83:129–132.

    CAS  Google Scholar 

  • Henriksen, S.D. and J. Henrichsen. 1975. Twitching motility and possession of polar fimbriae in spreading Streptococcus sanguis isolates from the human throat. Acta. Pathol. Microbiol. Scand. Sect. B 83:133–140.

    CAS  Google Scholar 

  • Hindmarsh, F. and J. Fraser. 1985. Serogroups of Bacteroides nodosus isolated from ovine footrot in Britain. Vet. Res. 116:187–188.

    CAS  Google Scholar 

  • Hobbs, M., B. Dalrymple, S.F. Delaney, and I.S. Mattick. 1988. Transcription of the fimbrial subunit gene and an associated transfer RNA gene of Pseudomonas aeruginosa. Gene (Amst.) 62:219–227.

    Article  CAS  Google Scholar 

  • Hobbs, M., B. Dalrymple, P.T. Cox, S.P. Livingston, S.F. Delaney, and J.S. Mattick. 1991. Organisation of the fimbrial gene region of Bacteroides nodosus: class I and class II strains. Mol Microbiol. 5:543–560.

    Article  PubMed  CAS  Google Scholar 

  • Holdeman, L.V., R.W. Kelley, and W.E.C. Moore. 1984. Family I. The Bacteroidaceae. Genus I. Bacteroides. In: Bergey’s Manual of Systematic Bacteriology, Vol. 1, N.R. Kreig, and J.G. Holt, eds. pp. 604–631. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Hoyne, P.A., T.C. Elleman, N.M. McKern, and D.J. Stewart. 1989. Sequence of pilin from Bacteroides nodosus 351 (serogroup H) and implications for serogroup classification. J. Gen. Microbiol. 135:1113–1122.

    PubMed  CAS  Google Scholar 

  • Jennings, P.A., M.M. Bills, D.O. Irving, and J.S. Mattick. 1989. Fimbriae of Bacteroides nodosus: protein engineering of the structural subunit for the production of an exogenous peptide. Protein Eng. 2:365–369.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K., M.L. Parker, and S. Lory. 1986. Nucleotide sequence and transcriptional initiation site of two Pseudomonas aeruginosa pilin genes. J. Biol. Chem. 261:15703–15708.

    PubMed  CAS  Google Scholar 

  • Jonsson, A.B., G. Nyberg, and S. Normark. 1991. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J. 10:477–488.

    PubMed  CAS  Google Scholar 

  • Kingsley, D.F., F.H. Hindmarsh, D.M. Liardet, and D.H. Chetwin. 1986. Distribution of serogroups of Bacteroides nodosus with particular reference to New Zealand and the United Kingdom. In: Footrot in Ruminants: Proceedings of a Workshop, Melbourne, 1985, D.J. Stewart, N.M. McKern, and D.L. Emery, eds., pp. 143–146. Sydney, Australia: CSIRO Press.

    Google Scholar 

  • La Fontaine, S. and J.R. Rood. 1990. Evidence that Bacteroides nodosus belongs in subgroup gamma of the class Proteobacteria, not in the genus Bacteroides: partial sequence analysis of a B. nodosus 16S rRNA gene. Int. J. Syst. Bacterial. 40:154–159.

    Article  Google Scholar 

  • Lazdunski, A., J. Guzzo, A. Filloux, M. Bally, and M. Murgier. 1990. Secretion of extracellular proteins by Pseudomonas aeruginosa. Biochemie (Paris) 72:147–156.

    CAS  Google Scholar 

  • Lee, S.W., B. Alexander, and B. McGowan. 1983. Purification characterization and serologic characteristics of Bacteroides nodosus pili and the use of a purified vaccine in sheep. Am. J. Vet. Res. 44:1676–1681.

    PubMed  CAS  Google Scholar 

  • Lehr, C, H.G. Jayappa, and R.A. Goodnow. 1985. Serological and protective characterization of Moraxella bovis pili. Cornell Vet. 75:484–492.

    PubMed  CAS  Google Scholar 

  • Lepper, A.W. 1988. Vaccination against infectious bovine keratoconjunctivitis: protective efficacy and antibody response induced by pili of homologous and heterologous strains of Moraxella bovis. Aust. Vet. J. 65:310–316.

    Article  PubMed  CAS  Google Scholar 

  • Lepper, A.W.D. and L.R. Hermans. 1986. Characterisation and quantitation of pilus antigens of Moraxella bovis by ELISA. Aust. Vet. J. 63:401–405.

    PubMed  CAS  Google Scholar 

  • Liardet, D.M., D.H. Chetwin, D.F. Kingsley, and F.H. Hindmarsh. 1986. Results of field trials in New Zealand to confirm the protective and curative effects of a 10-strain ovine footrot vaccine. In: Footrot in Ruminants: Proceedings of a Workshop, Melbourne, 1985, D.J. Stewart, N.M. McKern, and D.L. Emery, eds., pp. 181–184. Sydney, Australia: CSIRO Press.

    Google Scholar 

  • Love, D.N., R.F. Jones, M. Bailey, and A. Calverly. 1984. Comparison of strains of gram-negative anaerobic agar-corroding rods isolated from soft tissue infection in cats and dogs with type strains of Bacteroides gracilis, Wolinella recta, Wolinella succinogenes and Campylobacter concisus. J. Clin. Microbiol. 20:747–750.

    PubMed  CAS  Google Scholar 

  • Marrs, C.F., G. Schoolnik, J.M. Koomey, J. Hardy, J. Rothbard, and S. Falkow. 1985. Cloning and sequencing of a Moraxella bovis pilin gene. J. Bacteriol. 163:132–139.

    PubMed  CAS  Google Scholar 

  • Maruyama, T., T. Gojobori, S. Aota, and T. Ikemura. 1986. Codon usage tabulated from the Genbank genetic sequence data. Nucleic Acids Res. 14:r151–r197.

    PubMed  CAS  Google Scholar 

  • Mattick, J.S. 1989. The molecular biology of the fimbriae (pili) of Bacteroides nodosus and the development of a recombinant DNΑ-based vaccine. In: Footrot and Foot Abscess of Ruminants, J.R. Egerton, W.K. Yong, and G.G. Riffkin, eds., pp. 195–218. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Mattick, J.S., B.J. Anderson, M.R. Mott, and J.R. Egerton. 1984. Isolation and characterization of Bacteroides nodosus fimbriae: structural subunit and basal protein antigens. J. Bacteriol. 160:740–747.

    PubMed  CAS  Google Scholar 

  • Mattick, J.S., B.J. Anderson, J.R. Egerton. 1985a. Molecular biology and footrot of sheep. In: Reviews in Rural Science, Vol 6, Biotechnology and Recombinant DNA Technology in the Animal Production Industries, R.A. Leng, J.S.F. Barker, D.B. Adams, and K.R. Hutchinson, eds., pp. 79–91. Armidale, N.S. W.: University of New England.

    Google Scholar 

  • Mattick, J.S., B.J. Anderson, and T.C. Elleman. 1985b. Australian Patent Application 50154/85; New Zealand Patent Application 214017; European Patent Application 85905494.2; Patent Corporation Treaty Application W086/02557.

    Google Scholar 

  • Mattick, J.S., M.M. Bills, B.J. Anderson, B. Dalrymple, M.R. Mott, and J.R. Egerton. 1987. Morphogenetic expression of Bacteroides nodosus fimbriae in Pseudomonas aeruginosa. J. Bacteriol. 169:33–41.

    PubMed  CAS  Google Scholar 

  • Mattick, J.S., B.J. Anderson, P.T. Cox, B.P. Dalrymple, M.M. Bills, M. Hobbs, and J.R. Egerton, 1991. Gene sequences and comparison of the fimbrial subunits representative of Bacteroides nodosus serogroups A to I: Class I and class II strains. Mol. Microbiol. 5:561–573.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, T.F., N. Mlawer, and M. So. 1982. Pilus expression in Neisseria gonorrhoeae involves chromosomal rearrangement. Cell 30:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, T.F., E. Billyard, R. Haas, S. Storzbach, and M. So. 1984. Pilus genes of Neisseria gonorrheal chromosomal organization and DNA sequence. Proc. Natl. Acad. Sci. USA 81:6110–6114.

    Article  PubMed  CAS  Google Scholar 

  • Mohan, S., J. Aghion, N. Guillen, and D.A. Dubnau. 1989. Molecular cloning and characterization of comC, a late competence gene of Bacillus subtilis. J. Bacteriol. 171:6043–6051.

    PubMed  CAS  Google Scholar 

  • Mooi, F.R. and F.K. de Graaf. 1985. Molecular biology of fimbriae of enterotoxigenic Escherichia coli. Curr. Topics Microbiol. Immunol. 118:119–138.

    Article  CAS  Google Scholar 

  • Moore, L.J. and J.M. Rutter. 1987. Antigenic analysis of fimbrial proteins from Moraxella bovis. J. Clin. Microbiol. 25:2063–2070.

    PubMed  CAS  Google Scholar 

  • Moore, L.J. and J.M. Rutter. 1989. Attachment of Moraxella bovis to calf corneal cells and inhibition by antiserum. Aust. Vet. J. 66:39–42.

    Article  PubMed  CAS  Google Scholar 

  • Mraz, O. 1963. Schizomycetes. In: Nomina und Svnonyma der Pathogenen und Saprophytaren Microben, O. Mraz, J. Tesarcik, and F. Varejka, eds., p. 85. Jena, GDR: VEB Gustav Fischer Verlag.

    Google Scholar 

  • Mulvaney, C.J., R. Jackson, and A.J. Jopp. 1984. Field trials with a killed nine-strain, oil adjuvanted Bacteroides nodosus footrot vaccine in sheep. N.Z. Vet. J. 32:137–139.

    Article  PubMed  CAS  Google Scholar 

  • Nunn, D., S. Bergman, and S. Lory. 1990. Products of three accessory genes, pilB, pilC and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J. Bacteriol. 172:2911–2919.

    PubMed  CAS  Google Scholar 

  • Ottow, J.CG. 1975. Ecology physiology and genetics of fimbriae and pili. Annu. Rev. Microbiol. 29:79–108.

    Article  PubMed  CAS  Google Scholar 

  • Paranchych, W. and L.S. Frost. 1988. The physiology and biochemistry of pili. Adv. Microbiol. Physiol 29:53–114.

    Article  CAS  Google Scholar 

  • Pasloske, B.L., B.B. Finlay and W. Paranchych. 1985. Cloning and sequencing of the Pseudomonas aeruginosa PAK pilin gene. FEBS Lett. 183:408–412.

    Article  PubMed  CAS  Google Scholar 

  • Pasloske, B.L., P.A. Sastry, B.B. Finlay, and W. Paranchych. 1988. Two unusual pilin sequences from different isolates of Pseudomonas aeruginosa. J. Bacteriol. 170:3738–3741.

    PubMed  CAS  Google Scholar 

  • Pedersen, K.B., L.O. Froholm, K. Bovre. 1972. Fimbriation and colony type of Moraxella bovis in relation to conjunctival colonisation and development of keratoconjunctivitis in cattle. Acta Pathol. Microbiol. Scand. Sect. B 80:911–918.

    CAS  Google Scholar 

  • Plant, J.W. and P.D. Claxton. 1986. Efficacy of pairing, footbathing and vaccination in the treatment of footrot. In: Footrot in Ruminants: Proceedings of a Workshop, Melbourne, 1985, D.J. Stewart, N.M. McKern, and D.L. Emery, eds., pp. 57–61. Sydney, Australia: CSIRO Press.

    Google Scholar 

  • Prévot, A.R. 1948. Manual de Classification et de Détermination des Bactéries Anaérobies. Paris: Masson.

    Google Scholar 

  • Pugsley, A.P. and I. Reyss. 1990. Five genes at the 3′ end of the Klebsiella pneumoniae pulC Operon are required for pullulanase secretion. Mol. Microbiol. 4:365–379.

    Article  PubMed  CAS  Google Scholar 

  • Reed, G.A. 1986. The role of footrot vaccines in Australia. In:Footrot in Ruminants: Proceedings of a Workshop, Melbourne, 1985, D.J. Stewart, N.M. McKern, and D.L. Emery, eds., pp. 173–176. Sydney, Australia: CSIRO Press.

    Google Scholar 

  • Reyss, I. and A.P. Pugsley. 1990. Five additional genes in the pulC-O Operon of the Gram-negative bacterium Klebsiella oxytoca UNF5023 which are required for pullulanase secretion. Mol. Gen. Genet. 222:176–184.

    Article  PubMed  CAS  Google Scholar 

  • Ruehl, W.W., CF. Marrs, R. Fernandez, S. Falkow, and G.K. Schoolnik. 1988. Purification, characterization, and pathogenicity of Moraxella bovis pili. J. Exp. Med. 168:983–1002.

    Article  PubMed  CAS  Google Scholar 

  • Sastry, P.A., B.B. Finlay, B.L. Pasloske, W. Paranchych, J.R. Pearlstone, and L.B. Smillie. 1985. Comparative studies of the amino acid and nucleotide sequences of pilin derived from Pseudomonas aeruginosa PAK and PAO. J. Bacteriol. 164:571–577.

    PubMed  CAS  Google Scholar 

  • Schmitz, J.A. and J.L. Gradin. 1980. Serotypic and biochemical characterization of Bacteroides nodo-sus isolates from Oregon. Can. J. Comp. Med. 44:440–446.

    PubMed  CAS  Google Scholar 

  • Segal, E., P. Hagblom, H.S. Seifert, and M. So. 1986. Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments. Proc. Natl. Acad. Sci. USA 83:2177–2181.

    Article  PubMed  CAS  Google Scholar 

  • Seifert, H.S., R.S. Ajioka, C. Marchai, P.F. Sparling, and M. So. 1988. DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae. Nature (London) 336:392–395.

    Article  CAS  Google Scholar 

  • Shah, H.N. and M.D. Collins. 1983. Genus Bacteroides, a chemotaxonomic perspective. J. Appl. Bacteriol. 55:403–416.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, P.M. and W. Li. 1986. Codon usage in regulatory genes in Escherichia coli does not reflect selection for “rare” codons. Nucleic Acids Res. 14:7737–7749.

    Article  PubMed  CAS  Google Scholar 

  • Short, J.A., CM. Thorley, and P.D. Walker. 1976. An electron microscope study of Bacteroides nodosus: ultrastructure of organisms from primary isolates and different colony types. J. Appl. Bacteriol. 40:311–315.

    Article  PubMed  CAS  Google Scholar 

  • Skerman, T.M., S.K. Erasmuson, and D. Every. 1981. Differentiation of Bacteroides nodosus biotypes and colony variants in relation to their virulence and immunoprotective properties in sheep. Infect. Immun. 32:788–795.

    PubMed  CAS  Google Scholar 

  • Stern, A., M. Brown, P. Nickel, and T.F. Meyer. 1986. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47:61–71.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, D.J. 1973. An electron microscopic study of Fusiformis nodosus. Res. Vet. Sci. 14:132–134.

    PubMed  CAS  Google Scholar 

  • Stewart, D.J., B.L. Clark, J.E. Peterson, D.A. Griffiths, and E.F. Smith. 1982. Importance of pilus-associated antigen in Bacteroides nodosus vaccines. Res. Vet. Sci. 32:140–147.

    PubMed  CAS  Google Scholar 

  • Stewart, D.J., B.L. Clark, J.E. Peterson, D.L. Emery, E.F. Smith, D.A. Griffiths, and I.J. O’Donnell. 1985. The protection given by pilus and whole cell vaccines of Bacteroides nodosus strain 198 against ovine foot-rot induced by strains of different serogroups. Aust. Vet. J. 62:153–159.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, D.J., J.E. Peterson, J.A. Vaughan, B.L. Clark, D.L. Emery, J.B. Caldwell, and A.A. Kortt. 1986. The pathogenicity and cultural characteristics of virulent, intermediate and benign strains of Bacteroides nodosus causing ovine footrot. Aust. Vet. J. 63:317–326.

    Article  PubMed  CAS  Google Scholar 

  • Stock, J.B., A.M. Stock, and J.M. Mottonen. 1990. Signal transduction in bacteria. Nature 344:395–400.

    Article  PubMed  CAS  Google Scholar 

  • Strom, M.S., D. Nunn, and S. Lory. 1991. Multiple roles of the pilus biogenesis protein PilD: involvement of PilD in excretion of enzymes from Pseudomonas aeruginosa. J. Bacteriol. 173:1175–1180.

    PubMed  CAS  Google Scholar 

  • Taha, M.K., B. Dupuy, W. Saurin, M. So, and C. Marchai. 1991. Control of pilus expression in Neisseria gonorrhoeae as an original system in the family of two-component regulators. Mol. Microbiol. 5:137–148.

    Article  PubMed  CAS  Google Scholar 

  • Taha, M.K., M. So, H.S. Seifert, E. Billyard, and C. Marchai. 1988. Pilin expression in Neisseria gonorrhoeae is under both positive and negative transcriptional control. EMBO J. 7:4367–4378.

    PubMed  CAS  Google Scholar 

  • Tanner, A.C.R., M.A. Listgarten, and J.L. Ebersole. 1984. Wolinella curva sp. nov.: “Vibrio succinogenes” of human origin. Int. J. Syst. Bacteriol. 34:275–282

    Article  CAS  Google Scholar 

  • Tanner, A.C.R., S. Badger, C. Lai, M.A. Listgarten, R.A. Visconti, and S.S. Socransky. 1981. Wolinella gen nov. Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov. and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov. and Eikenella corrodens from humans with periodontal disease. Int. J. Syst. Bacteriol. 31:432–445.

    Article  CAS  Google Scholar 

  • Taylor, R.L., V.L. Miller, D.B. Furlong, and J.J. Mekalanos. 1987. Use of phoA gene fusions to identify a pilus colonisation factor coordinately regulated with cholera toxin. Proc. Natl. Acad. Sci. USA 84:2833–2837.

    Article  PubMed  CAS  Google Scholar 

  • Virji, M. and J.E. Heckels, 1983. Antigenic cross-reactivity of Neisseria pili: investigations with type- and species-specific monoclonal antibodies. J. Gen. Microbiol. 129:2761–2768.

    PubMed  CAS  Google Scholar 

  • Walker, P.D., J. Short, R.O. Thompson, and D.S. Roberts. 1973. The fine structure of Fusiformis nodosus with special reference to the antigens associated with immunogenicity. J. Gen. Microbiol. 77:351–361.

    PubMed  CAS  Google Scholar 

  • Whitchurch, C.B., M. Hobbs, S.P. Livingston, V. Krishnapillai, and J.S. Mattick. 1991. Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubac-teria. Gene 101:33–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Mattick, J.S., Hobbs, M., Cox, P.T., Dalrymple, B.P. (1993). Molecular Biology of the Fimbriae of Dichelobacter (Previously Bacteroides) nodosus . In: Sebald, M. (eds) Genetics and Molecular Biology of Anaerobic Bacteria. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7087-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7087-5_39

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7089-9

  • Online ISBN: 978-1-4615-7087-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics