Skip to main content

Cloning, Sequencing, and Expressions of Genes Encoding Enzymes of the Autotrophic Acetyl-CoA Pathway in the Acetogen Clostridium thermoaceticum

  • Chapter
Genetics and Molecular Biology of Anaerobic Bacteria

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

Clostridium thermoaceticum, first described by Fontaine et al. (1942), is a thermophilic anaerobic bacterium that ferments glucose, fructose and xylose to acetate as the only product (Reactions 1 and 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bache, R. and N. Pfennig. 1981. Selective isolation of Acetdbacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130:255–261.

    Article  CAS  Google Scholar 

  • Barker, H.A. and M.D. Kamen. 1945. Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum. Proc. Natl. Acad. Sci. USA 31:219–225.

    Article  PubMed  CAS  Google Scholar 

  • Barlowe, C.K., M.E. Williams, J.C. Rabinowitz, and D.R. Appling. 1989. Site-directed mutagenesis of yeast Q-tetrahydrofolate synthase: analysis of an overlapping active site in a multifunctional enzyme. Biochemistry 28:2099–2106.

    Article  PubMed  CAS  Google Scholar 

  • Bastian, N.R.G., Diekert, E.C., Niederhoffer, B.-K. Teo, C.T. Walsh, and W.H. Orme-Johnson. 1988. Nickel and iron EXAFS of carbon monoxide dehydrogenase from Clostridium thermoaceticum strain DSM. J. Am. Chem. Soc. 110: 5581–5582.

    Article  CAS  Google Scholar 

  • Beckmann, J.D., P.O. Ljungdahl, and B.L. Trum-power. 1989. Mutational analysis of mitochondrial Rieske iron-sulfur protein of Saccharomyces cerevesiae. J. Biol Chem. 264:3713–3722.

    PubMed  CAS  Google Scholar 

  • Buck, D., M.E. Spencer, and J.R. Guest. 1985. Primary structure of the succinyl-CoA synthetase of Escherichia coli. Biochemistry 24:6245–6252.

    Article  PubMed  CAS  Google Scholar 

  • Buttlaire, D.H. 1980. Purification and properties of formyltetrahydrofolate synthetase. Methods Enzymol. 66:585–599.

    Article  PubMed  CAS  Google Scholar 

  • Chou, C.-F. 1990. Studies of a large plasmid and the gene encoding 5,10-methyl enetetrahydrofolate reductase from Clostridium thermoaceticum. Dissertation, Department of Biochemistry, University of Georgia, Athens, Georgia.

    Google Scholar 

  • Chou, C.-F. and L.G. Ljungdahl. 1990. Cloning, expression and sequencing of the gene encoding the methylenetetrahydrofolate reductase from Clostridium thermoaceticum. In: Abstracts, 90th Annual Meeting of the American Society for Microbiology, Abstr. K-99, 236. Washington, D.C.: American Society for Microbiology.

    Google Scholar 

  • Chou, C.-F., L.H. Carreira, and L.G. Ljungdahl. 1984. Isolation of a large plasmid from Clostridium thermoaceticum. In: Abstracts, Plasmid in Bacteria Conference, University of Illinois, Urbana.

    Google Scholar 

  • Clark, J.E. and L.G. Ljungdahl. 1984. Purification and properties of 5,10-methylenetetrα-hydrofolate reductase, an iron-sulfur flavopro-tein from Clostridium formicoaceticum. J. Biol Chem. 259:10845–10849.

    PubMed  CAS  Google Scholar 

  • Cramer, S.P., M.K. Eidsness, W.-H. Pan, T.A. Morton, S.W. Ragsdale, D.V. DerVartanian, L.G. Ljungdahl, and R.A. Scott. 1987. X-ray absorption spectroscopic evidence for a unique nickel site in Clostridium thermoaceticum carbon monoxide dehydrogenase. Inorg. Chem. 26: 2477–2479.

    Article  CAS  Google Scholar 

  • Daubner, S.C. and R.G. Matthews. 1982. Purification and properties of methylenetetrahydrofolate reductase from pig liver. J. Biol Chem. 257:140–145.

    PubMed  CAS  Google Scholar 

  • Dev, I.K. and R.J. Harvey. 1978. A complex of N5,N10-me thylene-tetrahy drofolate dehydrogenase and N5,N10-methenyltetrahydrofolate cyclohydrolase in Escherichia coli. J. Biol Chem. 253:4245–4253.

    PubMed  CAS  Google Scholar 

  • Diekert, G. and M. Ritter. 1983. Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum. FEBS Lett. 15:41–44.

    Article  Google Scholar 

  • Diekert, G.B. and R.K. Thauer. 1978. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J. Bacteriol. 136:597–606.

    PubMed  CAS  Google Scholar 

  • Diekert, G.B. and R.K. Thauer. 1980. The effect of nickel on carbon monoxide dehydrogenase formation in Clostridium thermoaceticum and Clostridium formicoaceticum. FEMS Microbiol. Lett. 7:187–189.

    Article  CAS  Google Scholar 

  • Drake, H.L. 1982. Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum. J. Bacteriol. 150:702–709.

    PubMed  CAS  Google Scholar 

  • Drake, H.L., S.-I. Hu, and H.G. Wood. 1981. Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. J. Biol. Chem. 256:11137–11144.

    PubMed  CAS  Google Scholar 

  • Duncan, T.M., D. Parsonage, and A.E. Senior. 1986. Structure of the nucleotide-binding domain in the β-subunit of Escherichia coli F1 ATPase. FEBS Lett. 208:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, J. and L.G. Ljungdahl. 1982. Chemical modification of cysteine and tyrosine residues in formyltetrahydrofolate synthase from Clostridium thermoaceticum. Arch. Biochem. Biophys. 215:245–252.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, J.I., S.-S. Yang, L.G. Ljungdahl, J. Travis, and C.F. Rielly. 1982. Complete amino acid sequence of the 4Fe-4S thermostable ferredoxin from Clostridium thermoaceticum. Biochemistry 21:3294–3298.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine, F.E., W.H. Peterson, E. McCoy, M.J. Johnson, and G.J. Ritter. 1942. A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43:701–715.

    PubMed  CAS  Google Scholar 

  • Fry, D.C., S.A. Kuby, and A.S. Mildvan. 1986. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proc. Natl. Acad. Sci. USA 83:907–911.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, G. 1986. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39:181–213.

    Article  CAS  Google Scholar 

  • Gamier, J., D.J. Osguthorpe, and B. Robson. 1978. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol Biol 120:97–120.

    Article  Google Scholar 

  • Graves, M.C. and J.C. Rabinowitz. 1986. In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. J. Biol. Chem. 261:11409–11415.

    PubMed  CAS  Google Scholar 

  • Hager, P.W. and J.C. Rabinowitz. 1985. Trans-lational specificity in Bacillus subtilis. In: The Molecular Biology of the Bacilli, Vol. II, D. A. Dubnau, ed., pp. 1–32. New York: Academic Press.

    Google Scholar 

  • Han, E.Y. 1987. Purification and characterization of methylenetetrahydrofolate reductase from Clostridium thermoaceticum. Thesis, Department of Biochemistry, University of Georgia, Athens, Georgia.

    Google Scholar 

  • Harder, S.R., W.-P. Lu, B.A. Feinberg, and S.W. Ragsdale. 1989. Spectroelectrochemical studies of the corrinoid/iron-sulfur protein involved in acetyl coenzyme A synthesis by Clostridium thermoaceticum. Biociemistry 28:9080–9087.

    Article  CAS  Google Scholar 

  • Harmony, J.A.K., R.H. Himes, and R.L. Schowen. 1975. The monovalent cation-induced association of formyltetrahydrofolate synthetase subunits: a solvent isotope effect. Biochemistry 14:5379–5386.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, C.F., I.D. Hiles, G.P.C. Salmond, D.R. Gill, J.A. Downie, I.J. Evans, I.B. Holland, L. Gray, S.D. Buckel, A.W. Bell, and M.A. Hermodson. 1986. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature (London) 323:448–450.

    Article  CAS  Google Scholar 

  • Hsu, T., S.L. Daniel, M.F. Lux, and H.L. Drake. 1990. Biotransformation of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum. Generation of growth-supportive CO2 equivalents under CO2-limited conditions. J. Bacteriol. 172:212–217.

    PubMed  CAS  Google Scholar 

  • Hu, S.-L, H.L. Drake, and H.G. Wood. 1982. Synthesis of acetyl-coenzyme A from carbon monoxide, methyl-H4folate and coenzyme A by enzymes from Clostridium thermoaceticum. J. Bacteriol. 149:440–448.

    PubMed  CAS  Google Scholar 

  • Hu, S.-L, E. Pezacka, and H.G. Wood. 1984. Acetate synthesis from carbon monoxide by Clostridium thermoaceticum. Purification of the corri-noid protein. J. Biol. Chem. 259:8892–8897.

    PubMed  CAS  Google Scholar 

  • Hugenholtz, J. and L.G. Ljungdahl. 1990. Metabolism and energy generation in homoacetogenic Clostridia. FEMS Microbiol. Rev. 87:383–390.

    Article  CAS  Google Scholar 

  • Hugenholtz, J., D.M. Ivey, and L.G. Ljungdahl. 1987. Carbon monoxide-driven electron transport in Clostridium thermoautotrophicum membranes. J. Bacteriol. 169:5845–5847.

    PubMed  CAS  Google Scholar 

  • Jencks, D.A. and R.G. Matthews. 1987. Allosteric inhibition of methylenetetrahydrofolate reductase by adenosylmethionine. J. Biol. Chem. 262:2485–2493.

    PubMed  CAS  Google Scholar 

  • Katzen, H.M. and J.M. Buchanan. 1965. Enzymatic synthesis of the methyl group of methionine. Repression-derepression, purification, and properties of 5,10-methylenetetrahy-drolate reductase from Escherichia coli. J. Biol. Chem. 240:825–835.

    PubMed  CAS  Google Scholar 

  • Kerby, R. and J.G. Zeikus. 1983. Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr. Microbiol. 8:27–30.

    Article  CAS  Google Scholar 

  • Krauth-Siegel, R.L., R. Blatterspiel, M. Saleh, E. Schütz, R.H. Schirmer, and R. Untucht-Grau. 1982. Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain. Eur. J. Biochem. 121:259–267.

    Article  PubMed  CAS  Google Scholar 

  • Kyte, J. and R.F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, P.A., S.W. Ragsdale, and E. Münck. 1990. Mössbauer study of CO dehydrogenase from Clostridium thermoaceticum. J. Biol. Chem. 265:3880–3888.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L.G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 40:415–450.

    Article  CAS  Google Scholar 

  • Ljungdahl, L.G., J.M. Brewer, S.H. Neece, and T. Fairwell. 1970. Purification, stability and composition of the formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J. Biol. Chem. 245:4791–4797.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L.G., W.E. O’Brien, M.R. Moore, and M.-T. Liu. 1980. Methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum and methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydro-lase (combined) from Clostridium thermoaceticum. Methods Enzymol. 66:599–609.

    Article  PubMed  CAS  Google Scholar 

  • Lovell, C.R., A. Przybyla, and L.G. Ljungdahl. 1988. Cloning and expression in Escherichia coli of the Clostridium thermoaceticum gene encoding thermostable formyltetrahydrofolate synthetase. Arch. Microbiol. 149:280–285.

    Article  PubMed  CAS  Google Scholar 

  • Lovell, C.R., A. Przybyla, and L.G. Ljungdahl. 1990. Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry 29:5687–5694.

    Article  PubMed  CAS  Google Scholar 

  • Lu, W.-P., S.R. Harder, and S.W. Ragsdale. 1990. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J. Biol. Chem. 265:3124–3133.

    PubMed  CAS  Google Scholar 

  • Lux, M.F., E. Keith, T. Hsu, and H.L. Drake. 1990. Biotransformation of aromatic aldehydes by acetogenic bacteria. FEMS Microbiol. Lett. 67:73–78.

    Article  CAS  Google Scholar 

  • MacKenzie, R.E. 1984. Biogenesis and interconversion of substituted tetrahydrofolates. In: Folates and Pterins, Vol. 1, Chemistry and Biochemistry of Folates, R.L. Blakley and S.J. Benkovic, eds., pp. 255–306. New York: Wiley.

    Google Scholar 

  • Mayer, F., J.I. Elliott, D. Sherod, and L.G. Ljungdahl. 1982. Formyltetrahydrofolate synthetase from Clostridium thermoaceticum. An electron microscopic study and specific interaction of the enzyme with ATP and ADP. Eur. J. Biochem. 124:397–404.

    Article  PubMed  CAS  Google Scholar 

  • McClure, W.R. 1985. Mechanism and control of transcription initiation in procaryotes. Ann. Rev. Biochem. 54:171–204.

    Article  PubMed  CAS  Google Scholar 

  • Mejillano, M.R., H. Jahansouz, T.O. Matsunaga, G.L. Kenyon, and R.H. Himes. 1989. Formation and utilization of formyl phosphate by N10-formyltetrahydrofolate synthetase : evidence for formyl phosphate as an intermediate in the reaction. Biochemistry 28:5136–5145.

    Article  PubMed  CAS  Google Scholar 

  • Morton, T.A., J.A. Runquist, S.W. Ragsdale, T. Shanmugasundaram, H.G. Wood, and L.G. Ljungdahl. 1991. The primary structure of the subunits of carbon monoxide dehydrogenase/ acetyl-CoA synthase from Clostridium thermo-aceticum. J. Biol. Chem. 266:23824–23828.

    PubMed  CAS  Google Scholar 

  • Mulligen, M.E., D.K. Hawley, R. Entriken, and W.R. McClure. 1984. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res. 12:789–800.

    Article  Google Scholar 

  • O’Brien, W.E., J.M. Brewer, and L.G. Ljungdahl. 1976. Chemical, physical, and enzymatic comparisons of formyltetrahydrolate synthetase from thermo- and mesophilic Clostridia. In:Enzymes and Proteins from Thermophilic Microorganisms, Structure and Functions, H. Zuber, ed., pp. 249–262. Basel: Birkhäuser.

    Google Scholar 

  • Park, E.Y., J.E. Clark, D.V. DerVartanian, and L.G. Ljungdahl. 1991. 5,10-Methylene-tetrα-hydrofolate reductases: iron-sulfur-zinc flavo-proteins of two acetogenic Clostridia. In: Chemistry and Biochemistry of Flavoenzymes, Vol. I. F. Müller, ed., Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Petersen, J.G.L., and S. Holmberg. 1986. The ILV5 gene of Saccharomyces cerevisiae is highly expressed. Nucl. Acid Res. 14:9631–9651.

    Article  CAS  Google Scholar 

  • Pezacka, E. and H.G. Wood, 1986. The autotrophic pathway of acetogenic bacteria: Role of CO dehydrogenase disulfide reductase. J. Biol. Chem. 261:1609–1615.

    PubMed  CAS  Google Scholar 

  • Pezacka, E. and H.G. Wood. 1988. Acetyl-CoA pathway of autotrophic growth. Identification of the methyl-binding site of the CO dehydrogenase. J. Biol. Chem. 263:16000–16006.

    PubMed  CAS  Google Scholar 

  • Poston, J.M., K. Kuratomi, and E.R. Stadtman. 1966. The conversion of carbon dioxide to acetate. I. The use of cobalt-methylcobalamin as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium ther-moaceticum. J. Biol. Chem. 241:4209–4216.

    PubMed  CAS  Google Scholar 

  • Rabinowitz, J.C. and W.E. Pricer, Jr. 1962. For-myltetrahydrofolate synthetase. I. Isolation and crystallization of the enzyme. J. Biol. Chem. 237:2898–2902.

    PubMed  CAS  Google Scholar 

  • Ragsdale, S.W. and H.G. Wood. 1985. Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final step of the synthesis. J. Biol Chem. 260:3970–3977.

    PubMed  CAS  Google Scholar 

  • Ragsdale, S.W., J.E. Clark, L.G. Ljungdahl, L.L. Lundie, and H.L. Drake, 1983a. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein. J. Biol. Chem. 258:2364–2369.

    PubMed  CAS  Google Scholar 

  • Ragsdale, S.W., L.G. Ljungdahl, and D.V. DerVartanian. 1983b. 13C and 61Ni isotope substitutions confirm the presence of a nickel (III)-carbon species in acetogenic CO dehydrogenase. Biochem. Biophys. Res. Commun. 115: 658–665.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale, S.W., H.G. Wood, and W.E. Antholine. 1985. Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum. Proc. Natl. Acad. Sci. USA 82:6811–6814.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale, S.W., P.A. Lindahl, and E. Münck. 1987. Mössbauer, EPR and optical studies of the corrinoid/iron-sulfur protein involved in the synthesis of acetyl coenzyme A by Clostridium thermoaceticum. J. Biol. Chem. 262:14289–14297.

    PubMed  CAS  Google Scholar 

  • Ragsdale, S.W., H.G. Wood, T.A. Morton, L.G. Ljungdahl, and D.V. DerVartanian. 1988. Nickel in CO dehydrogenase. In: The Bioinorganic Chemistry of Nickel, J.R. Lancaster Jr., ed., pp. 311–332. New York: VCH Publishers.

    Google Scholar 

  • Ramer, S.E., S.A. Raybuck, W.H. Orme-Johnson, and C.T. Walsh. 1989. Kinetic characterization of the [3’-32P] coenzyme A/acetyl coenzyme A exchange catalyzed by a three-subunit form of the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum. Biochemistry 28:4675–4680.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, D.L., J.E. James-Hagstrom, D.K. Garvin, CM. Gorst, J.A. Runquist, J.R. Bauer, F.L. Haase, and S.W. Ragsdale. 1989. Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltrans-ferase. Proc. Natl. Acad. Sci. USA 86:32–36.

    Article  PubMed  CAS  Google Scholar 

  • Robson, R.L. 1984. Identification of possible adenine nucleotide-binding sites in nitrogenase Fe-and MoFe-proteins by amino acid sequence comparison. FEBS Lett. 173:394–397.

    Article  PubMed  CAS  Google Scholar 

  • Saint-Girons, I., N. Duchange, M.M. Zakin, I. Park, D. Margarita, P. Ferrara, and G.N. Cohen. 1983. Nucleotide sequence of metF, the E. coli structural gene of 5–10-methylene tet-rahydrofolate reductase and of its control region. Nucleic Acids Res. 11:6723–6732.

    Article  PubMed  CAS  Google Scholar 

  • Saraste, M., P.R. Sibbald, and A. Wittinghofer. 1990. The P-loop—a common motif in ATP-and GTP-binding proteins. Trends Biochem. Sci. 15:430–434.

    Article  PubMed  Google Scholar 

  • Shanmugasundaram, T., G.K. Kumar, and H.G. Wood. 1988. Involvement of tryptophan residues at the coenzyme A binding site of carbon monoxide dehydrogenase from Clostridium ther-moaceticum. Biochemistry 27:6499–6503.

    Article  PubMed  CAS  Google Scholar 

  • Shanmugasundaram, T., G.K. Kumar, B.C. She-noy, and H.G. Wood. 1989. Chemical modification of the functional arginine residues of carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry 28:7112–7116.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, K.W. and J.C. Rabinowitz. 1988. Isolation and characterization of the Saccharomyces cerevisiae Ml SI gene encoding mitochondrial Q-tetrahydrofolate synthase. J. Biol. Chem. 263:7717–7725.

    PubMed  CAS  Google Scholar 

  • Shimoi, H., S. Nagata, N. Esaki, H. Tanaka, and K. Soda. 1987. Leucine dehydrogenase of a thermophilic anaerobe, Clostridium thermoaceticum: gene cloning, purification and characterization. Agric. Biol Chem. 51:3375–3381.

    Article  CAS  Google Scholar 

  • Stäben, C. and J.C. Rabinowitz. 1986. Nucleotide sequence of the Saccharomyces cerevisiae ADE3 gene encoding Q-tetrahydrofolate synthase. J. Biol Chem. 261:4629–4637.

    PubMed  Google Scholar 

  • Stauffer, G.V. and L.T. Stauffer. 1988. Cloning and nucleotide sequence of the Salmonella tyhi-murium LT2 metF gene and its homology with the corresponding sequence of Escherichia coli. Mol. Gen. Genet. 212:246–251.

    Article  PubMed  CAS  Google Scholar 

  • Stormo, G.D. 1986. Translation initiation. In: Maximizing Gene Expression, W. Reznikoff and L. Gold, eds., pp. 195–224.

    Google Scholar 

  • Varalakshmi, K., H.S. Savithri, and N.A. Rao. 1986. Identification of amino acid residues essential for enzyme activity of sheep liver 5,10-methylenetetrahydrofolate reductase. Biochem. J. 236:295–298.

    PubMed  CAS  Google Scholar 

  • Villar, E., B. Schuster, D. Peterson, and V. Schitch. 1985. C1-terrahydrofolate synthase from rabbit liver: structural and kinetic properties of the enzyme and its two domains. J. Biol. Chem. 260:2245–2252.

    PubMed  CAS  Google Scholar 

  • Walker, J.E., M. Saraste, M.J. Runswick, and N.J. Gay. 1982. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945–951.

    PubMed  CAS  Google Scholar 

  • Weije, W.J., J. Hofsteenge, J.M. Vereijken, P.A. Jekel, and J.J. Beintema. 1982. Primary structure of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Biochim. Biophys. Acta 704:385–388.

    Article  Google Scholar 

  • Wek, R.C., and G.W. Hatfield. 1986. Nucleotide sequence and in vivo expression of the ilvY and ilvC genes in Escherichia coli K12: Transcription from divergent overlapping promotors. J. Biol. Chem. 261:2441–2450.

    PubMed  CAS  Google Scholar 

  • Whitehead, T.R. and J.C. Rabinowitz. 1988. Nucleotide sequence of the Clostridium acidiurici (“Clostridium acidi-urici”) gene for 10-formyl-tetrahydrofolate synthetase shows extensive amino acid homology with the Q-tetrahydro-folato synthase from Saccharomyces cerevisiae. J. Bacteriol. 170:3255–3261.

    PubMed  CAS  Google Scholar 

  • Whiteley, H.R., M.J. Osborn, and F.M. Huen-nekens. 1959. Purification and properties of the formate activating enzyme from Micrococcus aerogenes. J. Biol Chem. 234:1538–1543.

    PubMed  CAS  Google Scholar 

  • Wierenga, R.K. and W.G.J. Hol. 1983. Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature (London) 302:842–844.

    Article  CAS  Google Scholar 

  • Wierenga, R.K., M.C.H. DeMaeyer, and W.G.J. Hol. 1985. Interaction of pyrophosphate moieties with α-helixes in dinucleotide binding proteins. Biochemistry 24:1346–1357.

    Article  CAS  Google Scholar 

  • Wohlfarth, G., G. Geerligs, and G. Diekert. 1990. Purification and properties of a NADH-dependent 5,10-methylenetetrahydrofolate reductase from Peptostreptococcus productus. Eur. J. Biochem. 192:411–417.

    Article  PubMed  CAS  Google Scholar 

  • Wood, H.G. 1952. A study of carbon dioxide fixation by mass determination of the types of C13-acetate. J. Biol. Chem. 194:905–931.

    PubMed  CAS  Google Scholar 

  • Wood, H.G. 1989. Past and present of CO2 utilization. In:Autotrophic Bacteria. H.G. Schlegel and B. Bowien, eds., pp. 33–52. Madison: Science Technology.

    Google Scholar 

  • Wood, H.G. and L.G. Ljungdahl. 1991. Autotrophic character of the acetogenic bacteria. In:Variations in Autotrophic Life, J.M. Shively and L.L. Barton, eds., pp. 201–250. London: Academic Press.

    Google Scholar 

  • Wood, H.G., S.W. Ragsdale, and E. Pezacka. 1986. The acetyl-CoA pathway: a newly discovered pathway of autotrophic growth. Trends Biochem. Sci. 11:14–18.

    Article  CAS  Google Scholar 

  • Wu, Z.; S.L. Daniel, and H.L. Drake. 1988. Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum. J. Bacteriol. 170: 5705–5708.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Morton, T.A., Chou, CF., Ljungdahl, L.G. (1993). Cloning, Sequencing, and Expressions of Genes Encoding Enzymes of the Autotrophic Acetyl-CoA Pathway in the Acetogen Clostridium thermoaceticum . In: Sebald, M. (eds) Genetics and Molecular Biology of Anaerobic Bacteria. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7087-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7087-5_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7089-9

  • Online ISBN: 978-1-4615-7087-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics