Skip to main content

Methanogen Genes and the Molecular Biology of Methane Biosynthesis

  • Chapter
Book cover Genetics and Molecular Biology of Anaerobic Bacteria

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

Methanogenic bacteria (methanogens) produce methane (natural gas; sometimes called biogas) as the end product of their energy-generating metabolism. This biochemical process, termed methanogenesis, is the rate-limiting and final step in the anaerobic biodegradation of organic compounds. It occurs naturally in freshwater and marine sediments, marshes, paddy fields, geothermal springs, and in the digestive tracts of invertebrates and vertebrates. Termites and ruminants are major sources of biologically produced methane. Approximately 65% of the methane released to the atmosphere, equal to approximately 1% of the atmospheric carbon cycle, is of biological origin; the remainder is produced geologically from wells, mines, and natural vents (Ehhalt, 1974; Daniels, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbanat, D.R. and J.G. Ferry. 1990. Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:7145–7150.

    PubMed  CAS  Google Scholar 

  • Achenbach-Richter, L. and C.R. Woese. 1988. The ribosomal gene spacer region in Archaebacteria. Syst. Appl. Microbiol. 10:211–214.

    Article  PubMed  CAS  Google Scholar 

  • Alex, L.A., J.N. Reeve, W.H. Orme-Johnson and C.T. Walsh. 1990. Cloning, sequence determination and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5-deazaflavin reducing hydrogenase from Methanobacterium thermoautotrophicum AH. Biochemistry 29:7237–7244.

    Article  PubMed  CAS  Google Scholar 

  • Allmansberger, R., C. Bollschweiler, U. Konheiser, B. Muller, E. Muth, G. Pasti, and A. Klein. 1986. Arrangement and expression of methyl CoM reductase genes in Methanococcus voltae. Syst. Appl. Microbiol. 7:13–17.

    Article  CAS  Google Scholar 

  • Auer, J., K. Lechner and A. Bock. 1989a. Gene organization and structure of two transcriptional units from Methanococcus coding for ribosomal proteins and elongation factors. Can. J. Microbiol. 35:200–204.

    Article  PubMed  CAS  Google Scholar 

  • Auer, J., G. Spicker and A. Bock. 1989b. Organization and structure of the Methanococcus transcriptional unit homologous to the Escherichia coli “spectinomycin Operon.” J. Mol. Biol. 209:21–36.

    Article  PubMed  CAS  Google Scholar 

  • Baier, G., W. Piendl, B. Redi, and G. Stoffler. 1990. Structure, organization and evolution of the L1 equivalent ribosomal protein gene of the archaebacterium Methanococcus vannielii. Nucleic Acids Res. 18:719–724.

    Article  PubMed  CAS  Google Scholar 

  • Balch, W.E., G.E. Fox, L.J. Magrum, C.R. Woese, and R.S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260–296.

    PubMed  CAS  Google Scholar 

  • Beckler, G.S. and J.N. Reeve. 1986. Conservation of primary structure in the hisl gene of the archaebacterium, Methanococcus vannielii, the eubacterium Escherichia coli, and the eucaryote Saccharomyces cerevisiae. 1986. Mol. Gen. Genet. 204:133–140.

    Article  PubMed  CAS  Google Scholar 

  • Belay, N., R. Sparking and L. Daniels. 1984. Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature (London) 312:286–288.

    Article  CAS  Google Scholar 

  • Bennetzen, J. and B.D. Hall. 1982. Codon selection in yeast. J. Biol. Chem. 257:3026–3031.

    PubMed  CAS  Google Scholar 

  • Berghöfer, B., L. Kröckel, C. Körtner, M. Truss, J. Schallenberg, and A. Klein. 1988. Relatedness of archaebacterial RNA polymerase core subunits to their eubacterial and eukaryotic equivalents. Nucleic Acids Res. 16:8113–8128.

    Article  PubMed  Google Scholar 

  • Bhatnagar, L., J.A. Krzycki and J.G. Zeikus. 1987. Analysis of hydrogen metabolism in Methano-sarcina barkeri: regulation of hydrogenase and role of CO-dehydrogenase in H2 production. FEMS Microbiol. Lett. 41:337–343.

    Article  CAS  Google Scholar 

  • Birkman, A., F. Zinoni, G. Sawers, and A. Böck. 1987. Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of Escherichia coli. Arch. Microbiol. 148:44–51.

    Article  Google Scholar 

  • Blaut, M. and G. Gottschalk. 1985. Evidence for a chemiosmotic mechanism of ATP synthesis in methanogenic bacteria. Trends Biochem. Sci. 10:486–489.

    Article  CAS  Google Scholar 

  • Blaut, M., V. Müller, and G. Gottschalk. 1987. Proton translocation coupled to methanogenesis from methanol + hydrogen in Methanosarcina barkeri. FEBS Lett. 215:53–57.

    Article  CAS  Google Scholar 

  • Bobik, T.A., K.D. Olson, K.M. Noll, and R.S. Wolfe. 1987. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoyl-threonine phosphate is a product of the methyl-reductase reaction in Methanobacterium. Biochem. Biophys. Res. Commun. 149:455–460.

    Article  PubMed  CAS  Google Scholar 

  • Bokranz, M., G. Baumner, R. Allmansberger, D. Ankel-Fuchs, and A. Klein. 1988. Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum. J. Bacteriol. 170:568–577.

    PubMed  CAS  Google Scholar 

  • Bokranz, M. and A. Klein. 1987. Nucleotide sequence of the methyl coenzyme M reductase gene cluster from Methanosarcina barkeri. Nucleic Acids Res. 15:4350–4351.

    Article  PubMed  CAS  Google Scholar 

  • Bomar, M., K. Knoll, and F. Widdel. 1985. Fixation of molecular nitrogen by Methanosarcina barkeri. FEMS Microbiol. Ecol. 31:47–55.

    Article  CAS  Google Scholar 

  • Bouthier de la Tour, C., C. Portemer, R. Huber, P. Forterre, and M. Duguet. 1991. Reverse gyrase in thermophilic eubacteria. J. Bacteriol. 173:3921–3923.

    Google Scholar 

  • Bouthier de la Tour, C., C. Portemer, M. Nadal. K.O. Stetter, P. Forterre, and M. Duguet. 1990. Reverse gyrase, a hallmark of the hyperther-mophilic Archaebacteria. J. Bacteriol. 172:6803–6808.

    Google Scholar 

  • Bowman, B.J., R. Allen, M.A. Wechser, and E.J. Bowman. 1988a. Isolation of genes encoding the Neurospora vacuolar ATPase. J. Biol. Chem. 263:14002–14007.

    PubMed  CAS  Google Scholar 

  • Bowman, E.J., K. Tenney, and B.J. Bowman. 1988b. Isolation of genes encoding the Neurospora vacuolar ATPase. J. Biol. Chem. 263:13994–14001.

    PubMed  CAS  Google Scholar 

  • Bröckl, G., M. Behr, S. Fabry, R. Hensel, H. Kaudewitz, E. Biendl, and H. König. 1991. Analysis and nucleotide sequence of the genes encoding the surface-layer glycoproteins of the hyperthermophilic methanogens Methanother-musfervidus and Methanothermus sociabilis. Eur. J. Biochem. 199:147–152.

    Article  PubMed  Google Scholar 

  • Brown, J.W., C.J. Daniels, and J.N. Reeve. 1989. Gene structure, organization and expression in archaebacteria. CRC Crit. Rev. Microbiol. 16:287–338.

    Article  CAS  Google Scholar 

  • Brown, J.W. and J.N. Reeve, 1989. Transcription initiation and a RNA polymerase binding site upstream of the purE gene of the archaebacterium Methanobacterium thermoautotrophicum strain AH. FEMS Microbiol. Lett. 60:131–136.

    CAS  Google Scholar 

  • Chartier, F., B. Laine, and P. Sautière. 1988. Characterization of the chromosomal protein MC1 from the thermophilic archaebacterium Methanosarcina spp. CHTI 55 and its effect on the thermal stability of DNA. Biochim. Biophys. Acta 951:149–156.

    PubMed  CAS  Google Scholar 

  • Chartier, F., B. Laine, D. Bélaïche, and P. Sautière. 1989a. Primary structure of the chromosomal proteins MC1a, MC1b and MC1c from the archaebacterium Methanothrix soehngenii. J. Biol. Chem. 264:17006–17015.

    PubMed  CAS  Google Scholar 

  • Chartier, F., B. Laine, D. Bélaïche, J.-P. Touzel, and P. Sautière. 1989b. Primary structure of the chromosomal protein MC1 from the archaebacterium Methanosarcina sp. CHTI 55. Biochim. Biophys. Acta 1008:309–314.

    PubMed  CAS  Google Scholar 

  • Cram, D.S., B.A. Sherf, R.T. Libby, R.J. Mattaliano, K.L. Ramachandran, and J.N. Reeve. 1987. Structure and expression of the genes, mcrBDCGA, which encode the subunits of component C of methyl coenzyme M reductase in Methanococcus vannielii. Proc. Natl Acad. Sci. USA 84:3992–3996.

    Article  PubMed  CAS  Google Scholar 

  • Cue, D., G.S. Beckler, J.N. Reeve, and J. Konisky. 1985. Structure and sequence divergence of two archaebacterial genes. Proc. Natl. Acad. Sci. USA 82:4207–4211.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, L. 1984. Biological methanogenesis: physiological and practical aspects. Trends Biotechnol. 2:91–98.

    Article  CAS  Google Scholar 

  • Daniels, C.J., R. Gupta, and W.F. Doolittle. 1985. Transcription and excision of a large intron in the tRNATrp gene of an archaebacterium, Halobacterium volcanii. J. Biol. Chem. 260:3132–3134.

    PubMed  CAS  Google Scholar 

  • Darnell, J.E. and W.F. Doolittle. 1986. Speculations on the early course of evolution. Proc. Natl Acad. Sci. USA 83:1271–1275.

    Article  PubMed  CAS  Google Scholar 

  • Denda, K., J. Konishi, T. Oshima, T. Date, and M. Yoshida. 1988a. The membrane-associated ATPase from Sulfolobus acidocaldarius is distantly related to F1-ATPase as assessed from the primary structure of its α-subunit. J. Biol. Chem. 263:6012–6015.

    PubMed  CAS  Google Scholar 

  • Denda, K., J. Konishi, T. Oshima, T. Date, and M. Yoshida. 1988b. Molecular cloning of the β-subunit of a possible non-F0F1 type ATP synthase from the acidothermophilic archaebacterium, Sulfolobus acidocaldarius. J. Biol. Chem. 263:17251–17254.

    PubMed  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, and G. Gottschalk. 1989. Dependence on membrane components of methanogenesis from methyl-CoM with formaldehyde or molecular hydrogen as electron donors. Eur. J. Biochem. 186:317–323.

    Article  PubMed  CAS  Google Scholar 

  • Dharmavaram R., P. Gillevet, and J. Konisky. 1991. Nucleotide sequence of the gene encoding the vanadate-sensitive membrane-associated ATPase of Methanococcus voltae. J. Bacteriol. 173: 2131–2133.

    PubMed  CAS  Google Scholar 

  • DiMarco, A.A., T.A. Bobik, and R.S. Wolfe. 1990a. Unusual coenzymes of methanogenesis. Annu. Rev. Biochem. 59:355–394.

    Article  PubMed  CAS  Google Scholar 

  • DiMarco, A.A., K.A. Sment, J. Konisky, and R.S. Wolfe. 1990b. The formylmethanofuran:tetrahydromethanopterin formyltransferase from Methanobacterium thermoautotrophicum AH. J. Biol. Chem. 265:472–476.

    PubMed  CAS  Google Scholar 

  • Donnelly, M.I. and R.S. Wolfe. 1986. The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide. J. Biol. Chem. 261:16653–16659.

    PubMed  CAS  Google Scholar 

  • Eggen R.I.L., H. Harmsen, A.C.M. Geerling, and W.M. de Vos. 1989. Nucleotide sequence of a 16S rRNA encoding gene from the archaebacterium Methanothrix soehngenii. Nucleic Acids Res. 17:9469.

    Article  PubMed  CAS  Google Scholar 

  • Eggen R.I.L., A.C.M. Geerling, M.S.M. Jetten, and W.M. de Vos. 1991. Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii. J. Biol. Chem. 266:6883–6887.

    PubMed  CAS  Google Scholar 

  • Ehhalt, D.H. 1974. The atmospheric cycle of methane. Tellus 26:58–70.

    Article  CAS  Google Scholar 

  • Eikmanns, B. and R.K. Thauer. 1984. Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barken grown on acetate. Arch. Microbiol. 138:365–370.

    Article  CAS  Google Scholar 

  • Eikmanns, B. and R.K. Thauer. 1985. Evidence for the involvement and role of a corrinoid enzyme in methane formation from acetate in Methanosarcina barkeri. Arch. Microbiol. 142:175–179.

    Article  CAS  Google Scholar 

  • Ellefson, W.L. and R.S. Wolfe. 1981. Component C of the methylreductase system of Methanobacterium. J. Biol. Chem. 256:4259–4262.

    PubMed  CAS  Google Scholar 

  • Ellermann, J., R. Hedderich, R. Böcher, and R.K. Thauer. 1988. The final step in methane formation. Eur. J. Biochem. 172:669–677.

    Article  PubMed  CAS  Google Scholar 

  • Ellermann, J., A. Kobelt, A. Pfaltz, and R.K. Thauer. 1987. On the role of N-7-mercaptoheptanoyl-O-phospho-L-threonine (component B) in the enzymatic reduction of methyl-coenzyme M to methane. FEBS Lett. 220:358–362.

    Article  PubMed  CAS  Google Scholar 

  • Ellermann, J., S. Rospert, R.K. Thauer, M. Bokranz, A. Klein, M. Voges, and A. Berkessel. 1989. Methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 184:63–68.

    Article  PubMed  CAS  Google Scholar 

  • Fabry, S. and R. Hensel. 1987. Purification and characterization of D-glyceraldehyde-3-phosphate dehydrogenase from the thermophilic archaebacterium Methanothermus fervidus. Eur. J. Biochem. 165:147–155.

    Article  PubMed  CAS  Google Scholar 

  • Fabry S. and R. Hensel. 1988. Primary structure of glyceraldehyde-3-phosphate dehydrogenase deduced from the nucleotide sequence of the thermophilic archaebacterium Methanothermus fervidus. Gene (Amst.) 64:189–197.

    Article  CAS  Google Scholar 

  • Fabry, S., J. Lang, T. Niermann, M. Vingron, and R. Hensel. 1989. Nucleotide sequence of the glyceraldehyde-3-phosphate dehydrogenase gene from the mesophilic methanogenic archaebacteria Methanobacterium bryantii and Methanobacterium formicicum. Eur. J. Biochem. 179:405–413.

    Article  PubMed  CAS  Google Scholar 

  • Fardeau, M.-L., J.-P. Peillex, and J.-P. Belaïch. 1987. Energetics of the growth of Methanobacterium thermoautotrophicum and Methanococcus ther-molithotrophicus on ammonium chloride and dinitrogen. Arch. Microbiol. 148:128–131.

    Article  CAS  Google Scholar 

  • Fauque, G. 1989. Properties of (NiFe) and (NiFeSe) hydrogenases from methanogenic bacteria. In: Microbiology of Extreme Environments and Its Potential for Biotechnology, M.S. Costa, J.C. Da Duarte, and R.A.D. Williams, eds., pp. 216–236. London: Elsevier.

    Google Scholar 

  • Fiebig, K. and B. Friedrich. 1989. Purification of the F420-reducing hydrogenase from Methanosarcina barkeri (strain Fusaro). Eur.J. Biochem. 184:79–88.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J.A., D.J. Livingston, W.H. Orme-Johnson, and C.T. Walsh. 1987. 8-hydroxy-5-deaza-flavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 1. Purification and characterization. Biochemistry 26:4219–4227.

    Article  PubMed  CAS  Google Scholar 

  • Frey, G., M. Thomm, B. Brüdigam, H.P. Gohl, and W. Hausner. 1990. An archaebacterial cell-free transcription system. The expression of tRNA genes from Methanococcus vannielii is mediated by a transcription factor. Nucleic Acids Res. 18:1361–1387.

    Article  PubMed  CAS  Google Scholar 

  • Frimmer, U. and F. Widdel. 1989. Oxidation of ethanol by methanogenic bacteria. Arch. Microbiol. 152:479–483.

    Article  CAS  Google Scholar 

  • Gay, N.J. and J.E. Walker. 1981. The atp operon: nucleotide sequence of the promoter and the genes for the membrane proteins, and the A subunit of Escherichia coli ATP-synthase. Nucleic Acids Res. 9:3919–3926.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., M. Marchionni, and G. Knight. 1986. On the antiquity of introns. Cell 46:151–154.

    Article  PubMed  CAS  Google Scholar 

  • Görisch, H. and K.-D. Jany. 1989. Archaebacterial malate dehydrogenase: the amino-terminal sequence of the enzyme from Sulfolobus acidocaldarius is homologous to the eubacterial and eukaryotic malate dehydrogenases. FEBS Lett. 247:259–262.

    Article  PubMed  Google Scholar 

  • Gropp, F., W.D. Reiter, A. Sentenac, W. Zillig, R. Schnabel, M. Thomm, and K.O. Stetter. 1986. Homologies of components of DNA-dependent RNA polymerases of archaebacteria, eukaryotes and eubacteria. Syst. Appl. Microbiol. 7: 95–101.

    Article  CAS  Google Scholar 

  • Haas, E.S., C.J. Daniels, and J.N. Reeve. 1989. Genes encoding 5S rRNA and tRNAs in the extremely thermophilic archaebacterium Methanothermus fervidus. Gene (Amst.) 77:253–263.

    Article  CAS  Google Scholar 

  • Haas, E.S., J.W. Brown, C.J. Daniels, and J.N. Reeve. 1990. Genes encoding the 7S RNA and tRNASer are linked to one of the two rRNA operons in the genome of the extremely thermophilic archaebacterium Methanothermus fervidus. Gene (Amst.) 90:51–59.

    Article  CAS  Google Scholar 

  • Hamilton, P.T. and J.N. Reeve. 1985a. Structure of genes and an insertion element in the methane producing archaebacterium Methanobrevibacter smithii. Mol. Gen. Genet. 200:47–59.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, P.T. and J.N. Reeve. 1985b. Sequence divergence of an archaebacterial gene cloned from a mesophilic and a thermophilic methanogen. J. Mol. Evol. 22:351–360.

    Article  PubMed  CAS  Google Scholar 

  • Hatchikian, E.C., M. Bruschi, N. Forget, and M. Scandellari. 1982. Electron transport components from methanogenic bacteria: the ferredoxin from Methanosarcina barkeri (strain fusaro). Biochem. Biophys. Res. Commun. 109:1316–1323.

    Article  PubMed  CAS  Google Scholar 

  • Hatchikian, E.C., M.L. Fardeau, M. Bruschi, J.P. Belaich, A. Chapman, and R. Cammack. 1989. Isolation, characterization and biological activity of the Methanococcus thermolithotrophicus ferredoxin. J. Bacteriol. 171:2384–2390.

    PubMed  CAS  Google Scholar 

  • Hausinger, R.P. 1987. Nickel utilization by microorganisms. Microbiol. Rev. 51:22–42.

    PubMed  CAS  Google Scholar 

  • Hausinger, R.P., I. Moura, J.J.G. Moura, A.V. Xavier, M.H. Santos, J. LeGall, and J.B. Howard. 1982. Amino acid sequence of a 3Fe:3S ferredoxin from the “Archaebacterium” Methanosarcina barkeri (DSM 800). J. Biol. Chem. 257:14192–14197.

    PubMed  CAS  Google Scholar 

  • Hedderich, R. and R.K. Thauer. 1988. Methanobacterium thermoautotrophicum contains a soluble enzyme system that specifically catalyzes the reduction of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate with H2. FEBS Lett. 234:223–227.

    Article  CAS  Google Scholar 

  • Hedderich, R., A. Berkessel, and R.K. Thauer. 1989. Catalytic properties of the heterodisulfide reductase involved in the final step of methanogenesis. FEBS Lett. 255:67–71.

    Article  CAS  Google Scholar 

  • Hippe, H., D. Caspari, Fiebig, and G. Gottschalk. 1979. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl. Acad. Sci. USA 76:494–498.

    Article  PubMed  CAS  Google Scholar 

  • Honka, E., S. Fabry, T. Niermann, P. Palm and R. Hensel. 1990. Properties and primary structure of the L-malate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus. Eur.J. Biochem. 188:623–632.

    Article  PubMed  CAS  Google Scholar 

  • Huber, R., M. Kurr, H.W. Jannasch, and K.O. Stetter. 1989. A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature (London) 342:833–834.

    Article  Google Scholar 

  • Imbert, M., B. Laine, N. Helbecque, J.-P. Mornon, J.-P. Hénichart, and P. Sautière. 1990. Conformational study of the chromosomal protein MC1 from the archaebacterium Methanosarcina barkeri. Biochim. Biophys. Acta. 1038:346–354.

    Article  PubMed  CAS  Google Scholar 

  • Inatomi, K.-L, S. Eya, M. Maeda, and M. Futai. 1989. Amino acid sequence of the α and β subunits of Methanosarcina barkeri ATPase deduced from cloned genes. J. Biol. Chem. 264:10954–10959.

    PubMed  CAS  Google Scholar 

  • Iwabe, N., K.-I. Kuma, M. Hasegawa, S. Osawa, and T. Miyata. 1989. Evolutionary relationship of archaebacteria, eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl. Acad. Sci. USA 86:9355–9359.

    Article  PubMed  CAS  Google Scholar 

  • Jarrel, K.F. and M.L. Kalmokoff. 1988. Nutritional requirements of the methanogenic archaebacteria. Can. J. Microbiol. 34:557–576.

    Article  Google Scholar 

  • Jarrel, K.F. and S.F. Koval. 1989. Ultrastructure and biochemistry of Methanococcus voltae. CRC Crit. Rev. Microbiol. 17:53–87.

    Article  Google Scholar 

  • Jarsch, M., J. Altenbuchner, and A. Böck. 1983. Physical organization of the genes for ribosomal RNA in Methanococcus vannielii. Mol. Gen. Genet. 189:41–47.

    Article  CAS  Google Scholar 

  • Jarsch, M. and A. Böck. 1983. DNA sequence of the 16S rRNA/23S rRNA intercistronic spacer of two rRNA operons of the archaebacterium Methanococcus vannielii. Nucleic Acid Res. 11: 7537–7544.

    Article  PubMed  CAS  Google Scholar 

  • Jarsch, M. and A. Böck. 1985a. Sequence of the 16S ribosomal RNA gene from Methanococcus vannielii: evolutionary implications. Syst. Appl. Microbiol. 6: 54–59.

    Article  CAS  Google Scholar 

  • Jarsch, M. and A. Böck. 1985b. Sequence of the 23S rRNA gene from the archaebacterium Methanococcus vannielii: evolutionary and functional implications. Mol. Gen. Genet. 200:305–312.

    Article  CAS  Google Scholar 

  • Jenal U., T. Rechsteiner, P.Y. Tan, E. Bühlmann, L. Meile and T. Leisinger. 1991. Isoleucyl-tRNA synthetase of Methanobacterium thermoautotrophicum Marburg J. Biol. Chem. 266:10570–10577.

    PubMed  CAS  Google Scholar 

  • Jin, S.-L.C., D.K. Blanchard, and J.-S. Chen. 1983. Two hydrogenases with distinct electron-carrier specificity and subunit composition in Methanobacterium formicicum. Biochim. Biophys. Acta 748:8–20.

    Article  CAS  Google Scholar 

  • Jones, J.B. and T.C. Stadtman. 1977. Methanococcus vannielii: culture and effects of selenium and tungsten on growth. J. Bacteriol. 130:1404–1406.

    PubMed  CAS  Google Scholar 

  • Jones, J.B. and T.C. Stadtman. 1981. Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii.J. Biol. Chem. 256:656–663.

    PubMed  CAS  Google Scholar 

  • Jones, J.W., M.I. Donnelly, and R.S. Wolfe. 1985. Evidence of a common pathway of carbon dioxide reduction to methane in methanogens. J. Bacteriol. 163:126–131.

    PubMed  CAS  Google Scholar 

  • Jones, J.W., J.A. Leigh, F. Mayer, C.R. Woese, and R.S. Wolfe. 1983. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136:254–261.

    Article  CAS  Google Scholar 

  • Jones, W.J., D.P. Nagle Jr., and W.B. Whitman. 1987. Methanogens and the diversity of archaebacteria. Microbiol. Rev. 51:135–177.

    PubMed  CAS  Google Scholar 

  • Jones, W.J., C.E. Stugard, and H.W. Jannasch. 1989. Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch. Microbiol. 151:314–318.

    Article  CAS  Google Scholar 

  • Kaesler, B. and P. Schönheit. 1989a. The role of sodium ions in methanogenesis. Eur.J. Biochem. 184:223–232.

    Article  PubMed  CAS  Google Scholar 

  • Kaesler, B. and P. Schönheit. 1989b. The sodium cycle in methanogenesis. Eur. J. Biochem. 186:309–316.

    Article  PubMed  CAS  Google Scholar 

  • Kaine, B.P. 1987. Intron-containing tRNA genes of Sulfolobus solfataricus. J. Mol. Evol. 25:248–256.

    Article  CAS  Google Scholar 

  • Kaine, B.P. 1990. Structure of the archaebacterial 7S RNA molecule. Mol. Gen. Genet. 221:315–321.

    Article  PubMed  CAS  Google Scholar 

  • Kaine, B.P., R. Gupta, and C.R. Woese. 1983. Putative introns in tRNA genes of procaryotes. Proc. Natl. Acad. Sci. USA 80:3309–3313.

    Article  PubMed  CAS  Google Scholar 

  • Kaine, B.P and V.L. Merkel. 1989. Isolation and characterization of the 7S RNA gene from Methanococcus voltae. J. Bacteriol. 171:4261–4266.

    PubMed  CAS  Google Scholar 

  • Kalmokoff, M.L., T.M. Karnauchow, and K.F. Jarrell. 1990. Conserved N-terminal sequences in the flagellins of archaebacteria. Biochem. Biophys. Res. Commun. 167:154–160.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa, H., T. Kayano, T. Kiyasu, and M. Futai. 1982. Nucleotide sequence of the genes for β and ε subunits of proton-translocation ATPase from Escherichia coli. Biochem. Biophys. Res. Commun. 105:1257–1264.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa, H., T. Kayano, K. Mabuchi, and M. Futai. 1981. Nucleotide sequence of the genes coding for α, β and γ subunits of the proton-translocating ATPase of Escherichia coli. Biochem. Biophys. Res. Commun. 103:604–612.

    Article  PubMed  CAS  Google Scholar 

  • Keltjens, J.T. and C. van der Drift. 1986. Electron transfer reactions in methanogens. FEMS Microbiol. Rev. 39:259–303.

    Article  CAS  Google Scholar 

  • Keltjens, J.T. and G.D. Vogels. 1988. Methanopterin and methanogenic bacteria. BioFactors 1: 95–103.

    PubMed  CAS  Google Scholar 

  • Klein, A. and M. Schnorr. 1984. Genome complexity of methanogenic bacteria. J. Bacteriol. 158: 628–631.

    PubMed  CAS  Google Scholar 

  • Klein, A., R. Allmansberger, M. Bokranz, S. Knaub, B. Muller, and E. Muth. 1988. Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria. Mol. Gen. Genet. 213:409–420.

    Article  PubMed  CAS  Google Scholar 

  • König, H., E. Nusser, and K.O. Stetter. 1985. Glycogen in Methanolobus and Methanococcus. FEMS Microbiol. Lett. 28:265–269.

    Article  Google Scholar 

  • Konisky, J. 1989. Methanogens for biotechnology: application of genetics and molecular biology. Trends Biotechnol. 7:88–92.

    Article  CAS  Google Scholar 

  • Krzycki, J.A. and R.C. Prince. 1990. EPR observation of carbon monoxide dehydrogenase, methyreductase and corrinoid in intact Methanosarcina barkeri during methanogenesis from acetate. Biochim. Biophys. Acta 1015:53–60.

    Article  CAS  Google Scholar 

  • Krzycki, J.A., L.J. Lehman, and J.G. Zeikus. 1985. Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M and methylreductase. J. Bacteriol. 163:1000–1006.

    PubMed  CAS  Google Scholar 

  • Laine, B., F. Chartier, M. Imbert, R. Lewis, and P. Sautière. 1986. Primary structure of the chromosomal protein HMb from the archaebacteria Methanosarcina barkeri. Eur. J. BioChem. 161:681–687.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster, J.R., Jr. 1989. Sodium, protons and energy coupling in the methanogenic bacteria. J. Bioenerg. Biomembr. 21:717–740.

    Article  PubMed  CAS  Google Scholar 

  • Lechner, K., G. Heller, and A. Böck. 1989. Organization and nucleotide sequence of a transcriptional unit of Methanococcus vannielii comprising genes for protein synthesis elongation factors and ribosomal proteins. J. Mol. Evol. 29:20–27.

    Article  PubMed  CAS  Google Scholar 

  • Lechner, K., G. Wich, and A. Böck. 1985. The nucleotide sequence of the 16S rRNA gene and flanking regions from Methanobacterium formicicum: the phylogenetic relationship between methanogenic and halophilic archaebacteria. Syst. Appl. Microbiol. 6:157–163.

    Article  CAS  Google Scholar 

  • Leclerc, M., A. Colbeau, B. Cauvin, and P.M. Vignais. 1988. Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase (hup) of Rhodobacter capsulatus. Mol. Gen. Genet. 214: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Li, C., H.D. Peck Jr., J. LeGall, and A.E. Przybyla. 1987. Cloning, characterization and sequencing of the genes encoding the large and small subunits of the periplasmic [NiFe] hydrogenase of Desulfovibrio gigas. DNA 6:539–551.

    Article  PubMed  CAS  Google Scholar 

  • Lobo, A.L. and S.H. Zinder. 1988. Diazotrophy and nitrogenase activity in the archaebacterium Methanosarcina barkeri 227. Appl. Environ. Microbiol. 54:1656–1661.

    PubMed  CAS  Google Scholar 

  • Lobo, A.L. and S.H. Zinder. 1990. Nitrogenase in the archaebacterium Methanosarcina barkeri 227. J. Bacteriol. 172:6789–6796.

    PubMed  CAS  Google Scholar 

  • Lunnen, K.D., R.D. Morgan, C.J. Timan, J.A. Krzycki, J.N. Reeve, and G.G. Wilson. 1989. Characterization and cloning of Mwol (GCNyGC), a new type-11 restriction-modification system from Methanobacterium wolfei. Gene (Amst.) 77:11–19.

    Article  CAS  Google Scholar 

  • Ma, K. and R.K. Thauer. 1990. Purification and properties of N5, N10-methylene-tetrahydro-methanopterin reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 191:187–193.

    Article  PubMed  CAS  Google Scholar 

  • Magot, M., O. Possot, N. Souillard, M. Henriquet and L. Sibold. 1986. Structure and expression of nif (nitrogen fixation) genes in methanogens. In: Biology of Anaerobic Bacteria, H.C. Dubourguier, G. Albagnac, J. Montreuil, C. Romond, P. Sautiere, and J. Guillaume, eds., pp. 193–199. Amsterdam: Elsevier.

    Google Scholar 

  • Manolson, M.F., B.F.F. Ouellette. M. Filion and R.J. Poole. 1988. cDNA sequence and homologies of the “57-kDa” nucleotide-binding sub-unit of the vacuolar ATPase from Arabidopsis. J. Biol. Chem. 263:17987–17994.

    PubMed  CAS  Google Scholar 

  • May, H.D., P.S. Patel, and J.G. Ferry. 1988. Effect of molybdenum and tungsten on synthesis and composition of formate dehydrogenase in Methanobacterium formicicum. J. Bacteriol. 170: 3384–3389.

    PubMed  CAS  Google Scholar 

  • Mayer, F., M. Rohde, M. Salzmann, A. Jussofie, and G. Gottschalk. 1988. The methanoreducto-some: a high-molecular-weight enzyme complex in the methanogenic bacterium strain Göl that contains components of the methylreductase system. J. Bacteriol. 170:1438–1444.

    PubMed  CAS  Google Scholar 

  • Meile, L., R. Stettler, R. Banholzer, M. Kotik, and T. Leisinger, 1991. Tryptophan gene cluster of Methanobacterium thermoautotrophicum Marburg: molecular cloning and nucleotide sequence of a putative trpEGCFBAD operon. J. Bacteriol. 173:5017–5023.

    PubMed  CAS  Google Scholar 

  • Menon, N.K., H.D. Peck Jr., J. LeGall, and A.E. Przybyla. 1987. Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus. J. Bacteriol. 169:5401–5407.

    PubMed  CAS  Google Scholar 

  • Menon, N.K., J. Robbins, H.D. Peck, C.Y. Chatelus, E.S. Choi, and A.E. Przybyla. 1990. Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-1 Operon containing six open reading frames. J. Bacteriol. 172:1969–1977.

    PubMed  CAS  Google Scholar 

  • Morris, C.J. and J.N. Reeve. 1984. Functional expression of an archaebacterial gene from the methanogen Methanosarcina barkeri in Escherichia coli and Bacillus subtilis. In: Microbial Growth on C1 Compounds, R.L. Crawford, and R.S. Hanson, eds., pp. 205–209. Washington, D.C.: American Society for Microbiology.

    Google Scholar 

  • Morris, C.J. and J.N. Reeve. 1988. Conservation of structure in the human gene encoding argininosuccinate synthetase and the argG genes of the archaebacteria Methanosarcina barkeri MS and Methanococcus vannielii. J. Bacteriol. 170:3125–3130.

    PubMed  CAS  Google Scholar 

  • Moura, J., J.J.G. Moura, B.H. Huynh, and H. Santos. 1982. Ferredoxin from Methanosarcina barkeri: evidence for the presence of a three-iron center. Eur. J. Biochem. 126:95–98.

    Article  PubMed  CAS  Google Scholar 

  • Müller, V., M. Blaut, and G. Gottschalk. 1987a. Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri. Eur. J. Biochem. 162:461–466.

    Article  PubMed  Google Scholar 

  • Müller, V., M. Blaut, and G. Gottschalk. 1988a. The transmembrane electrochemical gradient of Na+ as driving force for methanol oxidation in Methanosarcina barkeri. Eur. J. Biochem. 172:601–606.

    Article  PubMed  Google Scholar 

  • Müller, V., C. Winner, and G. Gottschalk. 1988b. Electron-transport-driven sodium extrusion during methanogenesis from formaldehyde and molecular hydrogen by Methanosarcina barkeri. Eur. J. Biochem. 178:519–525.

    Article  PubMed  Google Scholar 

  • Müller, V., G. Kozianowski, M. Blaut, and G. Gottschalk. 1987b. Methanogenesis from trimethylamine + H2 by Methanosarcina barkeri is coupled to ATP formation by a chemiosmotic mechanism. Biochim. Biophys. Acta 892:207–212.

    Article  Google Scholar 

  • Murray, P.A. and S.H. Zinder. 1984. Nitrogen fixation by a methanogenic archaebacterium. Nature (London) 312:284–286.

    Article  CAS  Google Scholar 

  • Muth, E., E. Morschel, and A. Klein. 1987. Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from the archaebacterium Methanococcus voltae. Eur. J. Biochem. 169:571–577.

    Article  CAS  Google Scholar 

  • Naumann, E., K. Fahlbusch, and G. Gottschalk. 1984. Presence of a trimethylamine: HS-coenzyme M methyltransferase in Methanosarcina barkeri. Arch. Microbiol. 138:79–83.

    Article  CAS  Google Scholar 

  • Nelson, H., S. Mandiyan, and N. Nelson. 1989. A conserved gene encoding the 57-kDa subunit of the yeast vacuolar H+-ATPase. J. Biol. Chem. 264:1775–1778.

    PubMed  CAS  Google Scholar 

  • Noll, K.M., M.I. Donnelly, and R.S. Wolfe. 1987. Synthesis of 7-mercaptoheptanoylthreonine phosphate and its activity in the methylcoenzyme M methylreductase system. J. Biol. Chem. 262:513–515.

    PubMed  CAS  Google Scholar 

  • Noll, K.M., K.L. Rinehart Jr., R.S. Tanner, and R.S. Wolfe. 1986. Structure of component B (7-mercaptoheptanoylthreonine phosphate) of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 83:4238–4242.

    Article  PubMed  CAS  Google Scholar 

  • 0stergaard, L., N. Larsen, H. Leffers, J. Kjems, and R. Garrett. 1987. A ribosomal RNA Operon and its flanking region from the archaebacterium Methanobacterium thermoautotrophicum, Marburg strain: transcription signals, RNA structure and evolutionary implications. Syst. Appl. Microbiol. 9:199–209.

    Article  Google Scholar 

  • Otaka, E. and T. Ooi. 1987. Examination of protein sequence homologies: IV. Twenty-seven bacterial ferredoxins. J. Mol. Evol. 26:257–267.

    Article  PubMed  CAS  Google Scholar 

  • Patel, P.S. and J.G. Ferry. 1988. Characterization of the upstream region of the formate dehydrogenase operon of Methanobacterium formicicum. J. Bacteriol. 170:3390–3395.

    PubMed  CAS  Google Scholar 

  • Perlman, D. and H.D. Halvorson. 1983. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J. Mol. Biol. 167:391–409.

    Article  PubMed  CAS  Google Scholar 

  • Poirot, C.M., S.W.M. Kengen, E. Valk, J.T. Keltjens, C. van der Drift, and G.D. Vogels. 1987. Formation of methyl coenzyme M from formaldehyde by cell free extracts of Methanobacterium thermoautotrophicum: evidence for the involvement of a corrinoid methyl transferase. FEMS Microbiol. Lett. 40:7–14.

    Article  CAS  Google Scholar 

  • Politino, M., L. Tsai, Z. Veres, and T.C. Stadtman. 1990. Biosynthesis of selenium-modified tRNAs in Methanococcus vannielii. Proc. Natl. Acad. Sci. USA 87:6345–6348.

    Article  PubMed  CAS  Google Scholar 

  • Possot, O., M. Henry, and L. Sibold. 1986. Distribution of DNA sequences homologous to nifti among archaebacteria. FEMS Microbiol. Lett. 34:173–177.

    Article  CAS  Google Scholar 

  • Possot, O., P. Gernhardt, M. Foglino, A. Klein, and L. Sibold. 1989a. Expression of an eubacterial puromycin resistance gene in the archaebacterium Methanococcus voltae. In: Microbiology and Biochemistry of Strict Anaerobes Involved In Interspecies Hydrogen Transfer, J.P. Belaich, M. Bruschi, and J.L. Garcia, eds., pp. 527–529. Fed. Eur. Microb. Soc.

    Google Scholar 

  • Possot, O., L. Sibold, and J.-P. Aubert. 1989b. Nucleotide sequence and expression of the glutamine synthetase structural gene, glnA, of the archaebacterium Methanococcus voltae. Res. Microbiol. 140:355–371.

    Article  PubMed  CAS  Google Scholar 

  • Post, L.E., G.D. Strycharz, M. Nomura, H. Lewis, and P.P. Dennis. 1979. Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit β in Escherichia coli. Proc. Natl Acad. Sci. USA 76:1697–1701.

    Article  PubMed  CAS  Google Scholar 

  • Prickril, B.C., M.H. Czechowski, A.E. Przybyla, H.D. Peck Jr., and J. LeGall. 1986. Putative signal peptide on the small subunit of the periplasmic hydrogenase from Desulfovibrio vulgaris. J. Bacteriol. 167:722–725.

    PubMed  CAS  Google Scholar 

  • Reeve, J.N. 1987. Gene structure in methanogenic bacteria. Poultr. Sci. 66:927–933.

    Article  CAS  Google Scholar 

  • Reeve, J.N. 1988. Structure and organization of methane genes. In:Anaerobes Today, J.M. Hardie, and S.P. Borriello, eds., pp. 95–104. Chichester: Wiley.

    Google Scholar 

  • Reeve, J.N. 1989. Molecular biology of methanogens and methanogenesis. In: Genetics and Molecular Biology of Industrial Microorganisms, C.L. Hershberger, S.W. Queener, and G. Hegeman, eds., pp. 207–214. Washington, D.C.: American Society for Microbiology.

    Google Scholar 

  • Reeve, J.N. and G.S. Beckler. 1990. Conservation of primary structure in procaryotic hydrogenases. FEMS Microbiol. Rev. 87:419–424.

    Article  CAS  Google Scholar 

  • Reeve, J.N., N.J. Trun, and P.T. Hamilton. 1982. Beginning genetics with methanogens. In: Genetic Engineering of Microorgansims for Chemicals, A. Hollaender, R.D, DeMoss, S. Kaplan, J. Konisky, D. Savage, and R.S. Wolfe, eds., pp. 233–244. New York: Plenum.

    Google Scholar 

  • Reeve, J.N., P.T. Hamilton, G.S. Beckler, C.J. Morris, and C.H. Clarke. 1986. Structure of methanogen genes. Syst. Appl. Microbiol. 7:5–12.

    Article  CAS  Google Scholar 

  • Reeve, J.N., G.S. Beckler, D.S. Cram, P.T. Hamilton, J.W. Brown, J.A. Krzycki, A.F. Kolodziej, L. Alex, W.H. Orme-Johnson, and C.T. Walsh. 1989. A hydrogenase-linked gene in Methano-bacterium thermoautotrophicum strain AH encodes a polyferredoxin. Proc. Natl Acad. Sci. USA 86:3031–3035.

    Article  PubMed  CAS  Google Scholar 

  • Rospert, S., D. Lindner, J. Ellermann, and R.K. Thauer. 1990. Two genetically distinct methylcoenzyme M reductases in Methanobacterium thermoautotrophicum strain Marburg and A. Eur. J. Biochem. 194:871–877.

    Article  PubMed  CAS  Google Scholar 

  • Rouvière, P.E. and R.S. Wolfe. 1988. Novel biochemistry of methanogenesis. J. Biol. Chem. 263:7913–7916.

    PubMed  Google Scholar 

  • Rouvière, P.E., T.A. Bobik, and R.S. Wolfe. 1988. Reductive activation of the methyl coenzyme M methylreductase system of Methanobacterium thermoautotrophicum AH. J. Bacteriol. 170:3946–3952.

    PubMed  Google Scholar 

  • Sandman, K., J.A. Krzycki, B. Dobrinski, R. Lurz, and J.N. Reeve. 1990. HMf, a DNA-binding protein isolated from the hyperthermophilic archaeal species Methanothermus fervidus, is most closely related to histones. Proc. Natl. Acad. Sci. USA 87:5788–5791.

    Article  PubMed  CAS  Google Scholar 

  • Sapienza, C., M.R. Rose, and W.F. Doolittle. 1982. High-frequency genomic rearrangements involving archaebacterial repeat sequence elements. Nature (London). 295:384–386.

    Article  CAS  Google Scholar 

  • Saraste, M., N.J. Gay, A. Eberle, M.J. Runswick, and J.E. Walker. 1981. The atp Operon: nucleotide sequence of the genes for the α, β and ε subunits of Escherichia coli ATP synthase. Nucleic Acids Res. 9:5287–5296.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, F.D. 1986. Tetrahydromethanopterin methyltransferase, a component of the methane synthesizing complex of Methanobacterium thermoautotrophicum. Biochem. Biophys. Res. Commun. 136:542–547.

    Article  PubMed  CAS  Google Scholar 

  • Schauer, N.L. and J.G. Ferry. 1980. Metabolism of formate in Methanobacterium formicicum. J. Bacteriol. 142:800–807.

    PubMed  CAS  Google Scholar 

  • Schauer, N.L. and J.G. Ferry. 1986. Composition of the coenzyme F420-dependent formate dehydrogenase from Methanobacterium formicicum. J. Bacteriol. 165:405–411.

    PubMed  CAS  Google Scholar 

  • Schmid, K., M. Thomm, A. Laminet, F.G. Laue, C. Kessler, K.O. Stetter, and R. Schmitt. 1984. Three new restriction endonucleases MaeI, Maell and Maelll from Methanococcus aeolicus. Nucleic Acids Res. 12:2619–2628.

    Article  PubMed  CAS  Google Scholar 

  • Schwarzkopf, B., B. Reuke, A. Kiener, and A. Bacher. 1990. Biosynthesis of coenzyme F420 and methanopterin in Methanobacterium thermoautotrophicum. Arch. Microbiol. 153:259–263.

    Article  CAS  Google Scholar 

  • Shah, N.N. and D.S. Clark. 1990. Partial purification and characterization of two hydrogenases from the extreme thermophile Methanococcus jannaschii. Appl. Environ. Microbiol. 56:858–863.

    PubMed  CAS  Google Scholar 

  • Sharp, P.A. 1985. On the origin of RNA splicing andintrons. Cell. 42:397–400.

    Article  PubMed  CAS  Google Scholar 

  • Shepard, J.C. 1981. Method to determine the reading frame of a protein from the purine/ pyrimidine genome sequence and its possible evolutionary significance. Proc. Natl. Acad. Sci. USA 78:1596–1600.

    Article  Google Scholar 

  • Sherf, B.A. and J.N. Reeve. 1990. Identification of the mcrD gene product and its association with component C of methyl coenzyme M reductase in Methanococcus vannielii. J. Bacteriol. 172:1828–1833.

    PubMed  CAS  Google Scholar 

  • Shuber, A.P., E.C. Orr, M.A. Recny, P.F. Schendel, H.D. May, N.L. Schauer, and J.E. Ferry. 1986. Cloning, expression and nucleotide sequence of the formate dehydrogenase genes horn Methanobacterium formicicum. J. Biol. Chem. 261:12942–12947.

    PubMed  CAS  Google Scholar 

  • Sibold, L. and M. Henriquet. 1988. Cloning of the trp genes from the archaebacterium Methanococcus voltae: nucleotide sequence of the trpBA genes. Mol. Gen. Genet. 214:439–450.

    Article  CAS  Google Scholar 

  • Sitzmann J., and A. Klein. 1991. Physical and genetic map of the Methanococcus voltae chromosome. Mol. Microbiol. 52:505–513.

    Article  Google Scholar 

  • Souillard, N. and L. Sibold. 1986. Primary structure and expression of a gene homologous to nifii (nitrogenase Fe protein) from the archaebacterium Methanococcus voltae. Mol. Gen. Genet. 203:21–28.

    Article  CAS  Google Scholar 

  • Souillard, N. and L. Sibold. 1989. Primary structure, functional organization and expression of nitrogenase structural genes of the thermophilic archaebacterium Methanococcus thermolithotrophicus. Mol. Microbiol. 3:541–551.

    Article  PubMed  CAS  Google Scholar 

  • Souillard, N., M. Magot, O. Possot, and L. Sibold. 1988. Nucleotide sequence of regions homologous to nifH (nitrogenase Fe protein) from the nitrogen-fixing archaebacteria Methanococcus thermolithotrophicus and Methanobacterium ivanovii: evolutionary implications. J. Mol. Evol. 27:65–76.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, K.R. and R.P. Gunsalus. 1988. Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J. Bacteriol. 170:998–1002.

    PubMed  CAS  Google Scholar 

  • Sparling, R. and L. Daniels. 1990. Regulation of formate dehydrogenase activity in Methanococcus thermolithotrophkus. J. Bacteriol. 172:1464–1469.

    PubMed  CAS  Google Scholar 

  • Sprott, G.D., K.N. Shaw, and T.J. Beveridge. 1987. Properties of the particulate enzyme F420-reducing hydrogenase isolated from Methanospirillum hungatei. Can. J. Microbiol. 33:896–904.

    Article  CAS  Google Scholar 

  • Steigerwald, V.J., G.S. Beckler, and J.N. Reeve. 1990. Conservation of hydrogenase and polyferredoxin structures in the hyperthermo-philic archaebacterium Methanothermus fervidus.J. Bacteriol. 172:4715–4718.

    PubMed  CAS  Google Scholar 

  • Stetter, K.O. and G. Gaag. 1983. Reduction of molecular sulphur by methanogenic bacteria. Nature (London) 305:309–311.

    Article  CAS  Google Scholar 

  • Stetter, K.O., M. Thomm, J. Winter, G. Wildgruber, H. Huber, W. Zillig, D. Jane-Covic, H. König, P. Palm, and S. Wunderl. 1981. Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zentralbl. Bakteriol. Mikrobiol. Hyg. 1 Abt. Orig. C 2:166–178.

    CAS  Google Scholar 

  • Terlesky, K.C. and J.G. Ferry. 1988a. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4075–4079.

    PubMed  CAS  Google Scholar 

  • Terlesky, K.C. and J.G. Ferry. 1988b. Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4080–4082.

    PubMed  CAS  Google Scholar 

  • Terlesky, K.C., M.J.K. Nelson, and J.G. Ferry. 1986. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila. J. Bacteriol. 168: 1053–1058.

    PubMed  CAS  Google Scholar 

  • Thomas, L.K., D.B. Dix, and R.C. Thompson. 1988. Codon choice and gene expression: synonymous codons differ in their ability to direct aminoacylated-transfer RNA binding to ribosomes in vitro. Proc. Natl. Acad. Sci. USA 85:4242–4246.

    Article  PubMed  CAS  Google Scholar 

  • Thomm, M., G. Frey, B.J. Bolton, F. Laue, C. Kessler, and K.O. Stetter. 1988a. Mvnl: a restriction enzyme in the archaebacterium Methanococcus vannielii. FEMS Microbiol. Lett. 52:229–234.

    CAS  Google Scholar 

  • Thomm, M., A.J. Lindner G.R. Hartmann, and K.O. Stetter. 1988b. Affinity labelling of the active center of DNA-dependent RNA polymerases within the archaebacterial kingdom. Syst. Appl. Microbiol. 10:101–105.

    Article  CAS  Google Scholar 

  • Thomm, M., J. Madon, and K.O. Stetter. 1986. DNA-dependent RNA polymerases of the three orders of methanogens. Biol. Chem. Hoppe-Seyler 367:473–481.

    Article  PubMed  CAS  Google Scholar 

  • Thomm, M. and K.O. Stetter. 1985. Transcription in methanogens: evidence for specific in vitro transcription of the purified DNA-dependent RNA polymerase of Methanococcus thermolithotrophkus. Eur. J. Biochem. 149:345–351.

    Article  PubMed  CAS  Google Scholar 

  • Thomm, M. and G. Wich. 1988. An archaebacterial consensus promoter sequence for stable RNA genes with homology to the eukaryotic TATA box. Nucleic Acids Res. 16:151–163.

    Article  PubMed  CAS  Google Scholar 

  • Thomm, M., G. Wich, J.W. Brown, G. Frey, B.A. Sherf, and G.S. Beckler. 1989. An archaebacterial promoter sequence assigned by RNA polymerase binding experiments. Can. J. Microbiol. 35:30–35.

    Article  PubMed  CAS  Google Scholar 

  • van der Meijden, P., B.W. teBrommelstroet, C.M. Poirot, C van der Drift, and G.D. Vogels. 1984. Purification and properties of methanol: 5-hydroxybenzimidazolylcobamide methyltrans-ferase from Methanosarcina barken. J. Bacteriol. 160:629–635.

    PubMed  Google Scholar 

  • van der Meijden, P., H.J. Heythuysen, A. Pouwels, F. Houwen, C van der Drift, and G.D. Vogels. 1983a. Methyltransferases involved in methanol conversion by Methanosarcina barkeri. Arch. Microbiol. 134:238–242.

    Article  PubMed  Google Scholar 

  • van der Meijden, P., L.P.J.M. Jansen, C van der Drift, and G.D. Vogels. 1983b. Involvement of corrinoids in the methylation of coenzyme M (2-mercaptoethanesulfonic acid) by methanol and enzymes from Methanosarcina barkeri. FEMS Microbiol. Lett. 19:247–251.

    Article  Google Scholar 

  • Vogels, G.D. and C.M. Visser. 1983. Interconnection of methanogenic and acetogenic pathways. FEMS Microbiol. Lett. 20:291–297.

    Article  Google Scholar 

  • Voordouw, G. and S. Brenner. 1985. Nucleotide sequence of the gene encoding the hydrogenase from Desulforibrio vulgaris (Hildenborough). Eur. J. Biochem. 148:515–520.

    Article  PubMed  CAS  Google Scholar 

  • Wackett, L.P., E.A. Hartwieg, J.A. King, W.H. Orme-Johnson, and C.T. Walsh. 1987. Electron microscopy of nickel-containing methanogenic enzymes: methyl reductase and F420-reducing hydrogenase. J. Bacteriol. 169:718–727.

    PubMed  CAS  Google Scholar 

  • Weil, C.F., G.S. Beckler, and J.N. Reeve. 1987. Structure and organization of the hisA gene of the thermophilic archaebacterium Methanococcus thermolithotrophicus.J. Bacteriol. 169:4857–4860.

    PubMed  CAS  Google Scholar 

  • Weil, C.F., B.A. Sherf, and J.N. Reeve. 1989. A comparison of the methyl reductase genes and gene products. Can. J. Microbiol. 35:101–108.

    Article  PubMed  CAS  Google Scholar 

  • Weil, C.F., D.S. Cram, B.A. Sherf, and J.N. Reeve. 1988. Structure and comparative analysis of the genes encoding component C of methyl coenzyme M reductase in the extremely thermophilic archaebacterium Methanothertnus fervidus.J. Bacteriol. 170:4718–4726.

    PubMed  CAS  Google Scholar 

  • Weiland, F., G. Paul, and M. Sumper. 1985. Halobacterial flagellins are sulfated glycoproteins. J. Biol. Chem. 260:15180–15185.

    Google Scholar 

  • White, R.H. 1989. Steps in the conversion of α-ketosuberate to 7-mercaptoheptanoic acid in methanogenic bacteria. Biochemistry 28:9417–9423.

    Article  PubMed  CAS  Google Scholar 

  • Wich, G., M. Jarsch, and A. Böck. 1984. Apparent Operon for a 5S ribosomal RNA gene and for tRNA genes in the archaebacterium Methanococ-cus vannielii. Mol. Gen. Genet. 196:146–151.

    Article  PubMed  CAS  Google Scholar 

  • Wich, G., W. Leinfelder, and A. Böck. 1987. Genes for stable RNA in the extreme thermophile Thermoproteus tenax: introns and transcription signals. EMBOJ. 6:523–528.

    CAS  Google Scholar 

  • Wich, G., L. Sibold, and A. Böck. 1986a. Genes for tRNA and their putative expression signals in Methanococcus. Syst. Appl. Microbiol. 7:18–25.

    Article  CAS  Google Scholar 

  • Wich, G., L. Sibold, and A. Böck. 1986b. Divergent evolution of 5S rRNA genes in Methanococcus. Z. Naturforschung. 2:373.

    Google Scholar 

  • Widdel, F. 1986. Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ. Microbiol. 51:1056–1062.

    PubMed  CAS  Google Scholar 

  • Widdel, F. and R.S. Wolfe. 1989. Expression of secondary alcohol dehydrogenase in methanogenic bacteria and purification of the F420-specific enzyme from Methanogenium thermophilum strain TCI. Arch. Microbiol. 152:322–328.

    Article  CAS  Google Scholar 

  • Widdel, F., P.E. Rouvière, and R.S. Wolfe. 1988. Classification of secondary alcohol-utilizing methanogens including a new thermophilic isolate. Arch. Microbiol. 150:477–481.

    Article  CAS  Google Scholar 

  • Woese, C.R. and G.E. Fox. 1977. Phylogenetic structure of the procaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74:5088–5090.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R., O. Kandier and M.L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains archaea, bacteria and eucarya. Proc. Natl Acad. Sci. USA 87:4576–4579.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R., L.J. Magrum and G.E. Fox. 1978. Archaebacteria. J. Mol. Evol. 11:245–252.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, R.S. 1985. Unusual coenzymes of methanogenesis. Trends Biochem. Sci. 10:396–399.

    Article  CAS  Google Scholar 

  • Wood, A.G., H. Redborg, D.R. Cue, W.B. Whitman, and J. Konisky. 1983. Complementation of argG and hisA mutations of Escherichia coli by DNA cloned from the archaebacterium Methanococcus voltae. J. Bacteriol. 156:19–26.

    PubMed  CAS  Google Scholar 

  • Xun L., R.A. Mah, and D.R. Boone. 1990. Isolation and characterization of disaggregatase from Methanosarcina mazei LYC. Appl Environ. Microbiol. 56:3693–3698.

    PubMed  CAS  Google Scholar 

  • Yamazaki, S. 1982. A selenium-containing hydrogenase from Methanococcus vannielii. J. Biol. Chem. 257:7926–7929.

    PubMed  CAS  Google Scholar 

  • Zhao, H., A.G. Wood, F. Widdel, and M.P. Bryant. 1988. An extremely thermophilic Methanococcus from a deep sea hydrothermal vent and its plasmid. Arch. Microbiol. 150:178–183.

    Article  CAS  Google Scholar 

  • Zillig, W., P. Palm, W.-D. Reiter, F. Gropp, G. Pühler, and H.-P. Klenk. 1988. Comparative evaluation of gene expression in archaebacteria. Eur. J. Biochem. 173:473–482.

    Article  PubMed  CAS  Google Scholar 

  • Zillig, W., H.-P. Klenk, P. Palm, G. Pühler, F. Gropp, R.A. Garrett, and H. Leffers. 1989. The phylogenetic relations of DNA-dependent RNA polymerases of archaebacteria, eukaryotes and eubacteria. Can. J. Microbiol. 35:73–80.

    Article  PubMed  CAS  Google Scholar 

  • Zydowsky, L.D., T.M. Zydowsky, E.S. Haas, J.W. Brown, J.N. Reeve, and H.G. Floss. 1987. Stereochemical coursed of methyl transfer from methanol to methyl coenzyme M in cell-free extracts of Methanosarcina barkeri. J. Am. Chem. Soc. 109:7922–7923.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Palmer, J.R., Reeve, J.N. (1993). Methanogen Genes and the Molecular Biology of Methane Biosynthesis. In: Sebald, M. (eds) Genetics and Molecular Biology of Anaerobic Bacteria. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7087-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7087-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7089-9

  • Online ISBN: 978-1-4615-7087-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics