Skip to main content

Milk Coagulation and Protein Denaturation

  • Chapter
Fundamentals of Dairy Chemistry

Abstract

Research reports on milk stability have been published frequently since about 1919. Early studies were prompted by the need to ensure sufficient heat stability for evaporated milk to withstand heat sterilization (Sommer and Hart 1919, 1922). Between 1919 and 1960, most attention was directed to the influence of milk salts on heat stability (Miller and Sommer 1940; Pyne 1958; Pyne and McHenry 1955). It was not until the early 1960s that the importance of heating time and pH on coagulation of milk was appreciated (Rose 1961 A,B). More recent work has been concerned with factors which affect the stability of milk proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alias, C., Kiger, N. and Jolies, P. 1967. Action of heat on cow K-casein. Heat caseino-glycopeptide. J. Dairy Sci. 50, 1738–1743.

    Article  Google Scholar 

  • Argyle, P. J., Jones, N., Chandan, R. C. and Gordon, J. F. 1976. Aggregation of whey proteins during storage of acidified milk. J. Dairy Res. 43, 45–51.

    Article  CAS  Google Scholar 

  • Baer, A., Orz, M. and Blanc, B. 1976. Serological studies on heat-induced interactions of α-lactalbumin and milk proteins. J. Dairy Res. 43, 419–432.

    Article  CAS  Google Scholar 

  • Bernai, V. and Jelen, P. 1984. Effect of calcium binding on thermal denaturation of bovine α-lactalbumin. J. Dairy Sci. 67, 2452–2454.

    Article  Google Scholar 

  • Bloomfield, V. A. 1979. Association of proteins. J. Dairy Res. 46, 241–252.

    Article  CAS  Google Scholar 

  • Brandts, J. F. 1969. Conformational transitions of proteins in water and in aqueous mixtures. In: Structure and Stability of Biological Macromolecules. S. N. Timascheff and G.D. Fasman (Editors). Marcel Dekker, New York, pp. 213–290.

    Google Scholar 

  • Brown, R. J. 1984. Casein micelle structure. Symposium at the 79th American Dairy Science Association Meeting. College Station, Texas, June 24–27.

    Google Scholar 

  • Carpenter, R. N. and Brown, R. J. 1985. Separation of casein micelles from milk for rapid determination of casein content. J. Dairy Sci. 68, 307–311.

    Article  CAS  Google Scholar 

  • Chen, R. F. 1967. Removal of fatty acids from serum albumin by charcoal treatment. J. Biol. Chem. 242, 173–181.

    CAS  Google Scholar 

  • Creamer, L. K., Berry, G. P. and Matheson, A. R. 1978. The effect of pH on protein aggregation in heated skim milk. N.Z. J. Dairy Sci. Technol. 13, 9–15.

    CAS  Google Scholar 

  • Creamer, L. K. and Matheson, A. R. 1980. Effect of heat treatment on the proteins of pasteurized skim milk. N.Z. J. Dairy Sci. Technol. 15, 37–49.

    CAS  Google Scholar 

  • Dalgleish, D. G. 1982. The enzymatic coagulation of milk. In: Developments in Dairy Chemistry, Vol 1: Proteins. P.F. Fox (Editor). Applied Science Publishers, London, pp. 157–183.

    Google Scholar 

  • Darling, D. F. 1980. Heat stability of milk. J. Dairy Res. 47, 199–210.

    Article  Google Scholar 

  • de Rham, O. and Chanton, S. 1984. Role of ionic environment in insolubilization of whey protein during heat treatment of whey products. J. Dairy Sci. 67, 939–949.

    Article  Google Scholar 

  • de Wit, J. N. 1981. Structure and functional behavior of whey proteins. Neth. Milk Dairy J. 35, 47–64.

    Google Scholar 

  • de Wit, J. N. and Klarenbeek, G. 1981. A differential scanning calorimetric study of the thermal behavior of bovine β-lactoglobulin at temperatures up to 160° C.J. Dairy Res. 48, 293–302.

    Article  Google Scholar 

  • de Wit, J. N. and Klarenbeek, G. 1984. Effects of various heat treatments on structure and solubility of whey proteins. J. Dairy Sci. 67, 2701–2710.

    Article  Google Scholar 

  • Doi, H., Ibuki, F. and Kanamori, M. 1979. Interactions of K-casein components with α s1 and α s2-caseins. Agri. Biol. Chem. 43, 1301–1308.

    Article  CAS  Google Scholar 

  • Douglas, F. W., Greenberg, R., Farrell, H. M. and Edmonson, L. F. 1981. Effects of ultra-high-temperature pasteurization on milk proteins. J. Agri. Food Chem. 29, 11–15.

    Article  CAS  Google Scholar 

  • Dunnill, P. and Green, D. W. 1966. Sulphydryl groups and the N⇄R conformational change in β-lactoglobulin. J. Mol. Biol. 15, 147–151.

    Article  CAS  Google Scholar 

  • Dziuba, J. 1979. The share of functional casein groups in the formation of a complex with β-lactoglobulin. Acta Alimentaria Polonica 5, 97–115.

    CAS  Google Scholar 

  • Dzurec, D. J. and Zall, R. R. 1985. Effect of heating, cooling, and storing milk on casein and whey proteins. J. Dairy Sci. 68. 273–280.

    Article  CAS  Google Scholar 

  • Edmundson, L. F. and Tarassuk, N. P. 1956A. Studies on the colloidal proteins of skim-milk: I. The effect of heat and certain salts on the centrifugal sedimentation of milk proteins. J. Dairy Sci. 39, 36–45.

    Article  Google Scholar 

  • Edmundson, L. F. and Tarassuk, N. P. 1956B. Studies on the colloidal proteins of skim-milk: II. The effect of heat and disodium phosphate on the composition of the casein complex. J. Dairy Set 39, 123–128.

    Article  Google Scholar 

  • Edsal, J. T. and Wyman, J. 1958. Biophysical Chemistry, Vol. 1: Thermodynamics, Electrostatics, and the Biological Significance of the Properties of Matter. Academic Press, New York.

    Google Scholar 

  • Elfagm, A. A. and Wheelock, J. V. 1977. Effect of heat on α-lactalbumin and β-lactoglobulin in bovine milk. J. Dairy Res. 44, 367–371.

    Article  CAS  Google Scholar 

  • Elfagm, A. A. and Wheelock, J. V. 1978A. Interaction of bovine α-lactalbumin and β-lactoglobulin during heating. J. Dairy Sci. 61, 28–32.

    Article  CAS  Google Scholar 

  • Elfagm, A. A. and Wheelock, J. V. 1978A. Heat interaction between a-lactalbumin, ß-lactoglobulin and casein in bovine milk. J. Dairy Res. 61, 159–163.

    Article  CAS  Google Scholar 

  • Evenhuis, N. and de Vries, T. R. 1956. The condition of calcium phosphate in milk III. Neth. Milk Dairy J. 10, 101–113.

    CAS  Google Scholar 

  • Farah, Z. 1979. Changes in proteins in UHT unheated milk. Milchwissenschaft 34, 484–487.

    CAS  Google Scholar 

  • Feagan, J. T., Bailey, L. F., Hehir, A. F., McLean, D. M. and Ellis, N. J. S. 1972. Coagulation of milk proteins. I. Effect of genetic variants of milk proteins on rennet coagulation and heat stability of normal milk. Aust. J. Dairy Technol. 27, 129–134.

    CAS  Google Scholar 

  • Flory, P. J. 1969. Statistical Mechanics of Chain Molecules. John Wiley & Sons, New York.

    Google Scholar 

  • Fox, K. K., Harper, M. K., Holsinger, V. H. and Pallansch, M. J. 1967. Effects of high heat treatment on stability of calcium casein aggregates in milk. J. Dairy Sci. 50, 443–450.

    Article  CAS  Google Scholar 

  • Fox, P. F. 1981A. Heat-induced changes in milk preceding coagulation. J. Dairy Sci. 64, 2127–2137.

    Article  CAS  Google Scholar 

  • Fox, P. F. 1981B. Heat stability of milk: Significance of heat-induced acid formation in coagulation. Irish J. Food Sci. Technol. 5, 1–11.

    CAS  Google Scholar 

  • Fox, P. F. 1982. Heat-induced coagulation of milk. In: Developments in Dairy Chemistry, Vol. 1: Proteins. P.F. Fox (Editor). Applied Science Publishers, London, pp. 189–223.

    Google Scholar 

  • Fox, P. F. and Hearn, C. M. 1978A. Heat stability of milk: Influence of dilution and dialysis against water. J. Dairy Res. 45, 149–157.

    Article  CAS  Google Scholar 

  • Fox, P. F. and Hearn, C. M. 1978B. Heat stability of milk: Influence of denaturable proteins and detergents on pH sensitivity. J. Dairy Res. 45, 159–172.

    Article  CAS  Google Scholar 

  • Fox, P. F. and Hearn, C. M. 1978C. Heat stability of milk: Influence of κ-casein hydrolysis. J. Dairy Res. 45, 173–181.

    Article  CAS  Google Scholar 

  • Fox, P. F. and Hoynes, M. C. T. 1975. Heat stability of milk: Influence of colloidal calcium phosphate and β-lactoglobulin, J. Dairy Res. 42, 427–435.

    Article  CAS  Google Scholar 

  • Fox, P. F. and Morrissey, P. A. 1977. The heat stability of milk. J. Dairy Res. 44, 627–646.

    Article  CAS  Google Scholar 

  • Franks, F. and Eagland, D. 1975. The role of solvent interactions in protein conformation. CRC Crit. Rev. Biochem. 3, 165–219.

    Article  CAS  Google Scholar 

  • Gumpen, S., Hegg, P. O. and Martens, M. 1979. Thermal stability of fatty acid-serum albumin complexes studied by differential scanning calorimetry. Biochim. Biophys. Acta 574, 189–196.

    CAS  Google Scholar 

  • Gurd, F. R. N. and Rothgeb, T. M. 1979. Motions in proteins. In: Advances in Protein Chemistry, Vol. 33. C.B. Anfinsen, J. T. Edsall, and F.M. Richards (Editors). Academic Press, New York, pp. 74–165.

    Google Scholar 

  • Hartman, G. H. and Swanson, A. M. 1965. Changes in mixtures of whey protein and κ-casein due to heat treatments. J. Dairy Sci. 48, 1161–1167.

    Article  CAS  Google Scholar 

  • Harwalker, V. R. 1978. Application of differential scanning calorimetry to the study of thermal denaturation of β-lactoglobulin in solution. J. Dairy Sci. 61 (suppl. 1), 107. Harwalker, V. R. 1979. Comparison of physico-chemical properties of different thermally denatured whey proteins. Milchwissenschaft 34, 419–422.

    Google Scholar 

  • Harwalker, V. R. 1980A. Measurement of thermal denaturation of β-lactoglobulin at pH 2.5. J. Dairy Sci. 63, 1043–1051.

    Article  Google Scholar 

  • Harwalker, V. R. 1980B. Kinetics of thermal denaturation of β-lactoglobulin at pH 2.5. J. Dairy Sci. 63, 1052–1057.

    Article  Google Scholar 

  • Haurowitz, F. 1963. Albumins, globulins and other soluble proteins. In:The Chemistry and Function of Proteins. F. Haurowitz (Editor). Academic Press, New York, pp. 1–455.

    Google Scholar 

  • Heth, A. A. and Swaisgood, H. E. 1982. Examination of casein micelle structure by a method for reversible covalent immobilization. J. Dairy Sci. 65, 2047–2054.

    Article  CAS  Google Scholar 

  • Hilgeman, M. and Jenness, R. 1951. Observations on the effect of heat treatment upon the dissolved calcium and phosphorus in skimmilk. J. Dairy Sci. 34, 483–484.

    Google Scholar 

  • Hillier, R. M. and Lyster, R. L. J. 1979. Whey protein denaturation in heated milk and cheese whey. J. Dairy Res. 46, 95–102.

    Article  CAS  Google Scholar 

  • Hillier, R. M., Lyster, R. L. J. and Cheeseman, G. C. 1979. Thermal denaturation of α-lactalbumin and β-lactoglobulin in cheese whey: Effect of total solids concentration and pH. J. Dairy Res. 46, 103–111.

    Article  CAS  Google Scholar 

  • Hillier, R. M., Lyster, R. L. J. and Cheeseman, G. C. 1980. Gelation of reconstituted whey powders by heat. J. Sci. Food Agr. 31, 1152–1157.

    Article  CAS  Google Scholar 

  • Hindle, E. J. and Wheelock, J. V. 1970. The release of peptides and glycopeptides by action of heat on cows’ milk. J. Dairy Res. 37, 397–405.

    Article  CAS  Google Scholar 

  • Holt, C., Muir, D. D. and Sweetsur, A. W. M. 1978. Seasonal changes in the heat stability of milk from creamery silos in south-west Scotland. J. Dairy Res. 45, 183–190.

    Article  CAS  Google Scholar 

  • Howat, G. R. and Wright, N. C. 1934. The heat coagulation of caseinogen: I. The role of phosphorus cleavage. Biochem. J. 28, 1336–1345.

    CAS  Google Scholar 

  • Hunziker, H. G. and Tarassuk, N. P. 1965. Chromatographic evidence for heat-induced interaction of α-lactalbumin and β-lactoglobulin. J. Dairy Sci. 48, 733–734.

    Article  CAS  Google Scholar 

  • Hutton, J. T. and Patton, S. 1952. The origin of sulfhydryl groups in milk proteins and their contributions to “cooked” flavor. J. Dairy Sci. 35, 699–705.

    Article  CAS  Google Scholar 

  • Hyslop, D. B. and Fox, P. F. 1981. Heat stability of milk: Interrelationship between assay temperature, pH and agitation. J. Dairy Sci. 48, 123–129.

    CAS  Google Scholar 

  • Kannan, A. and Jenness, R. 1961. Relation of milk serum proteins and milk salts to the effects of heat treatment on rennet clotting. J. Dairy Sci. 44, 808–822.

    Article  CAS  Google Scholar 

  • Karplus, M. and McCammon, J. A. 1983. Dynamics of proteins: Elements and function. In:Annual Review of Biochemistry, Vol. 52. E.S. Snell, P.D.

    Google Scholar 

  • Boyer, A., Meister and C.C. Richardson (Editors). Annual Reviews, Palo Alto, Calif., pp. 263–300.

    Google Scholar 

  • Kauzmann, W. and Simpson, R. B. 1953. The kinetics of protein denaturation. III. The optical rotations of serum albumin, β-lactoglobulin and pepsin in urea solutions. J. Am. Chem. Soc. 75, 5154–5157.

    Article  CAS  Google Scholar 

  • Kim, P. S. and Baldwin, R. L. 1982. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. In: Annual Review of Biochemistry, Vol. 51. E.S. Snell, P. D. Boyer, A. Meister and C.C. Richardson (Editors). Annual Reviews, Palo Alto, Calif., pp. 459–489.

    Google Scholar 

  • Kinsella, J. E. 1984. Milk proteins: Physicochemical and functional properties. CRC Crit. Rev. Food Sci. Nutr. 21, 197–262.

    CAS  Google Scholar 

  • Kronman, M. J., Andreotti, R. E. and Vitols, R. 1964. Inter- and intramolecular interactions of a-lactalbumin. II. Aggregation reactions at acid pH. Biochemistry 3, 1152–1160.

    Article  CAS  Google Scholar 

  • Kronman, M. J., Blum, R. and Holmes, L. G. 1966. Inter- and intramolecular interactions of a-lactalbumin. VI. Optical rotation dispersion properties. Biochemistry 5, 1970–1978.

    Article  CAS  Google Scholar 

  • Kruk, A. 1979. Relationship between casein hydration degree and thermal stability of milk. Acta Alimentaria Polonica 5, 147–156.

    CAS  Google Scholar 

  • Kudo, S. 1980A. Influence of lactose and urea on the heat stability of artificial milk systems. N.Z. J. Dairy Sci. Technol. 15, 197–200.

    CAS  Google Scholar 

  • Kudo, S. 1980B. The influence of α S2-casein on the heat stability of artificial milks. N.Z. J. Dairy Sci. Technol. 15, 245–254.

    CAS  Google Scholar 

  • Kudo, S. 1980C. The heat stability of milk: Formation of soluble proteins and protein-depleted micelles at elevated temperatures. N.Z. J. Dairy Sci. Technol. 15, 255–263.

    CAS  Google Scholar 

  • Lapanje, S. 1978. Physiochemical Aspects of Protein Denaturation, John Wiley & Sons, New York.

    Google Scholar 

  • Larson, B. L. and Rolleri, G. D. 1955. Heat denaturation of the specific serum proteins in milk. J. Dairy Sci. 38, 351–360.

    Article  CAS  Google Scholar 

  • Lin, V. J. C. and Koenig, J. L. 1976. Raman studies of bovine serum albumin. Biopolymers 15, 203–218.

    Article  CAS  Google Scholar 

  • Lonergan, D. A. 1978. Use of electrodialysis and ultrafiltration procedures to improve protein stability of frozen concentrated milk. Ph.D. dissertation, University of Wisconsin, Madison.

    Google Scholar 

  • Lorient, D. 1979. Covalent bonds formed in proteins during milk sterilization: Studies on caseins and casein peptides. J. Dairy Res. 46, 393–396.

    Article  CAS  Google Scholar 

  • Lyster, R. L. J. 1970. The denaturation of a-lactalbumin and β-lactoglobulin in heated milk. J. Dairy Res. 37, 233–243.

    Article  CAS  Google Scholar 

  • Lyster, R. L. J. 1979. Milk and dairy products. In: Effects of Heating on Food Stuffs. R.J. Priestly (Editor). Applied Science Publishers, London, pp. 353–372.

    Google Scholar 

  • Macritchie, F. 1973. Effects of temperature on dissolution and precipitation of proteins and polyamino acids. J. Colloid Interface Sci. 45, 235–241.

    Article  CAS  Google Scholar 

  • Mangino, M. E. 1984. Physicochemical aspects of whey protein functionality. J. Dairy Sci. 67, 2711–2722.

    Article  CAS  Google Scholar 

  • Mattick, E. C. V. and Hallett, H. S. 1929. The effect of heat on milk. J. Agr. Sci. 19, 452–462.

    Article  CAS  Google Scholar 

  • McKenzie, H. A. 1971. Whey proteins and minor proteins: β-Lactoglobulins. In: Milk Proteins: Chemistry and Molecular Biology, Vol. 2. H.A. McKenzie (Editor). Academic Press, New York, pp. 257–330.

    Google Scholar 

  • McMahon, D. J. and Brown, R. J. 1984A. Composition, structure and integrity of casein micelles: A review. J. Dairy Sci. 67, 499–512.

    Article  CAS  Google Scholar 

  • McMahon, D. J. and Brown, R. J. 1984B. Enzymic coagulation of casein micelles: A review. J. Dairy Sci. 67, 919–929.

    Article  CAS  Google Scholar 

  • Miller, P. G. and Sommer, H. H. 1940. The coagulation temperature of milk as affected by pH, salts, evaporation and previous heat treatment. J. Dairy Sci. 23, 405–421.

    Article  CAS  Google Scholar 

  • Morgan, J. N. and Mangino, M. E. 1979. The effect of ultra high temperature processing on the proteins of whole milk. J. Dairy Sci. 62, (suppl. 1), 229.

    Google Scholar 

  • Morr, C. V. 1965. Effect of heat upon electrophoresis and ultracentrifugal sedimentation properties of skimmilk protein fractions. J. Dairy Sci. 48, 8–13.

    Article  CAS  Google Scholar 

  • Morr, C. V., Van Winkle, Q. and Gould, I. A. 1962. Application of polarization of fluorescence technique to protein studies. III. The interaction of κ-casein and β-lacto-globulin. J. Dairy Sci. 45, 823–826.

    Article  CAS  Google Scholar 

  • Morrissey, P. A. 1969. The rennet hysteresis of heated milk. J. Dairy Res. 36, 333–341.

    Article  CAS  Google Scholar 

  • Muir, D. D., Abbot, J. and Sweetsur, A. W. M. 1978. Changes in the heat stability of milk protein during the manufacture of dried skim-milk. J. Food Technol. 13, 45–53.

    Article  CAS  Google Scholar 

  • Muir, D. D. and Sweetsur, A. W. M. 1978. The effect of concentration on the heat stability of skim-milk. J. Dairy Res. 45, 37–45.

    Article  CAS  Google Scholar 

  • Mulder, H. and Walstra, P. 1974. Creaming and separation. In: The Milkfat Globule. Commonwealth Agriculture Bureau, Bucks., England, pp. 168–173.

    Google Scholar 

  • Newstead, D. F. and Baucke, A. G. 1983. Heat stability of recombined evaporated milk and reconstituted concentrated skim milk: Effects of temperature and time of preheating. N.Z. J. Dairy Sci. Technol. 18, 1–11.

    Google Scholar 

  • Pace, C. N. 1975. The stability of globular proteins. CRC Crit. Rev. Biochem. 3, 1–43.

    Article  CAS  Google Scholar 

  • Parker, T. G., Home, D. S. and Dalgleish, D. G. 1979. Theory for the heat-induced coagulation of a type A milk. J. Dairy Res. 46, 377–380.

    Article  CAS  Google Scholar 

  • Parry, R. M., Jr. 1974. Milk coagulation and protein denaturation. In: Fundamentals of Dairy Chemistry, 2nd ed. B. H. Webb, A. H. Johnson and J. A. Alford (Editors). AVI Publishing Co., Westport, Conn., pp. 603–655.

    Google Scholar 

  • Payens, T. A. J. 1978. On different modes of casein clotting; the kinetics of enzymatic and non-enzymatic coagulation compared. Neth. Milk Dairy J. 32, 170–183.

    CAS  Google Scholar 

  • Payens, T. A. J. and Vreeman, H. J. 1982. Casein micelles and micelles of κ- and β-casein. In: Solution Behavior of Surfactants, Vol. 1. K. L. Mital and E. J. Fendler (Editors). Plenum Press, New York, pp. 543–571.

    Chapter  Google Scholar 

  • Pearce, R. J. 1980. Heat-stable components in the Aschaffenburg and Drewry total albumin fraction from bovine milk. N.Z. J. Dairy Sci. Technol. 15, 13–22.

    CAS  Google Scholar 

  • Pyne, G. T. 1958. The heat coagulation of milk: II. Variations in sensitivity of casein to calcium ions. J. Dairy Res. 25, 467–474.

    Article  CAS  Google Scholar 

  • Pyne, G. T. 1962. Some aspects of the physical chemistry of the salts of milk. J. Dairy Res. 29, 101–130.

    Article  CAS  Google Scholar 

  • Pyne, G. T. and McHenry, K. A. 1955. The heat coagulation of milk. J. Dairy Res. 22, 60–68.

    Article  CAS  Google Scholar 

  • Rose, D. 1961 A. Variations in the heat stability and composition of milk from individual cows during lactation. J. Dairy Sci. 44, 430–441.

    Article  CAS  Google Scholar 

  • Rose, D. 1962B. Factors affecting the pH-sensitivity of the heat stability of milk from individual cows. J. Dairy Sci. 44, 1405–1413.

    Article  Google Scholar 

  • Rose, D. 1963. Heat stability of bovine milk: A review. Dairy Sci. Abstr. 25, 45–52.

    Google Scholar 

  • Rose, D. 1965. Protein stability problems. J. Dairy Sci. 48, 139–146.

    Article  CAS  Google Scholar 

  • Rose, D. and Tessier, H. 1959. Composition of ultrafiltrates from milk heated at 80 to 230°F in relation to heat stability. J. Dairy Sci. 42, 969–980.

    Article  CAS  Google Scholar 

  • Rowland, S. J. 1933. The heat denaturation of albumin and globulin in milk. J. Dairy Res. 5, 46–53.

    Article  CAS  Google Scholar 

  • Ruegg, M., Moor, U. and Blanc, B. 1977. A calorimetric study of the thermal denatura-tion of whey proteins in simulated milk ultrafiltrate. J. Dairy Res. 44, 509–520.

    Article  Google Scholar 

  • Sawyer, W. H. 1969. Complex between β-lactoglobulin and κ-caseins: A review. J. Dairy Sci. 52, 1347–1355.

    Article  CAS  Google Scholar 

  • Schmidt, D. G. 1980. Colloidal aspects of casein. Neth. Milk Dairy J. 34, 42–64.

    CAS  Google Scholar 

  • Schmidt, R. H., Illingworth, B. L., Deng, J. C. and Cornell, J. A. 1979. Multiple regression and response surface analysis of the effects of calcium chloride and crysteine on heat-induced whey protein gelation. J. Agr. Food Chem. 27, 529–532.

    Article  CAS  Google Scholar 

  • Schmutz, M. and Puhan, Z. 1981. Chemischphysikalische veranderungen wahrend der tiefkuhllagerung von milch. Dtsch. Molkerei Z. 17, 552–564.

    Google Scholar 

  • Shahani, K. M. 1974. Recent advances in the chemistry and physics of milk products for standardisation of processing and manufacturing techniques. XIX Int. Dairy Congr. 2, 306–322.

    Google Scholar 

  • Shalabi, S. I. and Wheelock, J. V. 1976. The role of α-lactalbumin in the primary phase of chymosin action on heated casein micelles. J. Dairy Res. 43, 331–335.

    Article  CAS  Google Scholar 

  • Shalabi, S. I. and Wheelock, J. V. 1977. Effect of sulphydryl blocking agents on the primary phase of chymosin action on heated casein micelles and heated milk. J. Dairy Res. 44, 351–355.

    Article  CAS  Google Scholar 

  • Shimada, K. and Matsushita, S. 1981. Efforts of salts and denaturants on thermocoagulation of proteins. J. Agr. Food Chem. 29, 15–20.

    Article  CAS  Google Scholar 

  • Smits, P. and Brouwershaven, J. 1980. Heat-induced association of β-lactoglobulin and casein micelles. J. Dairy Res. 47, 313–325.

    Article  CAS  Google Scholar 

  • Sommer, H. H. and Hart, E. B. 1919. The heat coagulation of milk. J. Biol. Chem. 40, 137–151.

    CAS  Google Scholar 

  • Sommer, H. H. and Hart, E. B. 1922. The heat coagulation of milk. J. Dairy Sci. 6, 525–543.

    Article  Google Scholar 

  • Sullivan, R. A., Hollis, R. A. and Stanton, E. K. 1957. Sedimentation of milk proteins from heated milk. J. Dairy Sci. 40, 330–833.

    Article  Google Scholar 

  • Swaisgood, H. E. 1982. Chemistry of milk proteins. In: Developments in Dairy Chemistry, Vol. 1: Proteins. P. F. Fox (Editor). Applied Science Publishers, London, pp. 1–52.

    Google Scholar 

  • Sweetsur, A. W. M. and Muir, D. D. 1980A. The use of permitted additives and heat-treatment to optimize the heat-stability of skim milk and concentrated skim milk. J. Soc. Dairy Technol. 33, 101–105.

    CAS  Google Scholar 

  • Sweetsur, A. W. M. and Muir, D. D. 1980B. Effect of concentration by ultrafiltration on the heat stability of skim-milk. J. Dairy Res. 47, 27–335.

    Article  Google Scholar 

  • Sweetsur, A. W. M. and Muir, D. D. 1980B. Effect of concentration by ultrafiltration on the heat stability of skim-milk. J. Dairy Res. 47, 327–335.

    Article  Google Scholar 

  • Sweetsur, A. W. M. and White, J. C. D. 1974. Studies on the heat stability of milk protein. I. Interconversion of type A and type B milk heat-stability curves. J. Dairy Res. 41, 349–358.

    Article  CAS  Google Scholar 

  • Sweetsur, A. W. M. and White, J. C. D. 1975. Studies on the heat stability of milk protein. III. Effect of heat-indicated acidity on milk. J. Dairy Res. 42, 73–88.

    Article  CAS  Google Scholar 

  • Tanford, C. 1961. Physical Chemistry of Macromolecules. John Wiley and Sons, New York.

    Google Scholar 

  • Tanford, C. 1968. Protein denaturation. In: Advances in Protein Chemistry, Vol. 23. C. B. Anfinsen, M. L. Anson, J. T. Edsall and F.M. Richards (Editors). Academic Press, New York, pp. 122–275.

    Google Scholar 

  • Tanford, C. 1970. Protein denaturation. In: Advances in Protein Chemistry, Vol. 24. C. B. Anfinsen, J. T. Edsall and F. M. Richards (Editors). Academic Press, New York, pp. 1–93.

    Chapter  Google Scholar 

  • Tanford, C. 1980. The Hydrophobic Effect, 2nd ed. John Wiley and Sons, New York.

    Google Scholar 

  • Terada, H., Watanabe, K. and Kametani, F. 1980. Possible role of denatured albumin in formation of “heat-resistant” serum albumin. Bull. Chem. Soc. Japan 53, 3138–3142.

    Article  CAS  Google Scholar 

  • Tessier, H. and Rose, D. 1964. Influence of κ-casein and β-lactoglobulin on the heat stability of skimmilk. J. Diary Sci. 47, 1047–1051.

    Article  CAS  Google Scholar 

  • Tumerman, L. and Webb, B. H. 1965. Coagulation of milk and protein denaturation. In:Fundamentals of Dairy Chemistry. B.H. Webb and A.H. Johnson (Editors). AVI Publishing Co., Westport, Conn., pp. 506–582.

    Google Scholar 

  • Walstra, P. and Jenness, R. 1984. Dairy Chemistry and Physics. John Wiley and Sons, New York.

    Google Scholar 

  • Watanabe, K. and Klostermeyer, H. 1976. Heat-induced changes in sulphydryl and disulphide levels of β-lactoglobulin A and the formation of polymers. J. Dairy Res. 43, 411, 418.

    Article  CAS  Google Scholar 

  • Whitney, R. M. 1977. Food Emulsions. H. Graham (Editor). AVI Publishing Co., Westport, Conn.

    Google Scholar 

  • Zittle, C. A., Thompson, M. P., Custer, J. H. and Cerbulis, H. 1962. κ-Casein-β-lactoglobulin interaction in solution when heated. J. Dairy Sci. 45, 807–810.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Van Nostrand Reinhold Company Inc.

About this chapter

Cite this chapter

Brown, R.J. (1988). Milk Coagulation and Protein Denaturation. In: Wong, N.P., Jenness, R., Keeney, M., Marth, E.H. (eds) Fundamentals of Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7050-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7050-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-20489-1

  • Online ISBN: 978-1-4615-7050-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics