Advertisement

The Onsager-Machlup Lagrangian and the Optimal Control for Diffusion Processes

  • Kunio Yasue

Abstract

A basic role of the Onsager-Machlup Lagrangian as the cost functional for the stochastic control problem is clarified. It is found that any n-dimensional nonlinear diffusion process described by a class of stochastic differential equation of Itô type can be regarded as if it were controlled optimally by the Onsager-Machlup Lagrangian. It is shown that the deterministic path of the diffusion process in the small fluctuation (infinite volume) limit coincides with the most probable path. An outlook on the stochastic control theoretical formulation of the vacuum tunneling phenomena in non-Abelian gauge theory is also presented hoping that it will help us to understand the quantum vacuum structure in quantum chromodynamies profoundly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Feynman, Rev. Mod. Phys. 20, 368 (1948).MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Nelson, J. Math. Phys. 5, 332 (1964).zbMATHCrossRefGoogle Scholar
  3. 3.
    K. Itô, “Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,” 145 (1966).Google Scholar
  4. 4.
    T. Hida, “Causal Analysis in terms of White Noise,” talk given at the conference “Bielefeld Encounters in Physics and Mathematics II,” December, 1978.Google Scholar
  5. 5.
    L. Streit, in this volume.Google Scholar
  6. 6.
    H. Haken, “Synergetics,” Springer-Verlag, Berlin (.1977).CrossRefGoogle Scholar
  7. 7.
    R. Graham, in this volume.Google Scholar
  8. 8.
    C. P. Enz, Physica A89., 1 (1977).MathSciNetGoogle Scholar
  9. 9.
    T. Goto, Prog. Theor. Phys. 60, 1298 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    W. Horsthemke and A. Bach, Z. Physik B22, 189 (1975).Google Scholar
  11. 11.
    H. Dekker, in this volume.Google Scholar
  12. 12.
    F. Langouche, D. Roekaerts and E. Tirapegui, in this volume.Google Scholar
  13. 13.
    L. Garrido, in this volume.Google Scholar
  14. 14.
    K. Yasue, Phys. Rev. Lett. 40, 665 (1978).CrossRefGoogle Scholar
  15. 15.
    K. Yasue, Phys. Rev. D18, 532 (1978).MathSciNetGoogle Scholar
  16. 16.
    E. Nelson, Phys. Rev. 150, 1079 (1966).CrossRefGoogle Scholar
  17. 17.
    E. Nelson, “Dynamical Theories of Brownian Motion,” Princeton University Press, Princeton (1967).zbMATHGoogle Scholar
  18. 18.
    D. Dürr and A. Bach, Z. Physik B32, 413 (1979).Google Scholar
  19. 19.
    K. Yasue, J. Math. Phys. 20, l86l (1979).MathSciNetCrossRefGoogle Scholar
  20. 20.
    K. Yasue, J. Math. Phys. 19, 1671 (1978).MathSciNetCrossRefGoogle Scholar
  21. 21.
    K. Ito and S. Watanahe, “Introduction to Stochastic Differential Equations,” in: “Proceedings of the International Symposium on Stochastic Differential Equations,” K. Ito, ed., John Wiley & Sons, New York (1978).Google Scholar
  22. 22.
    R. Kubo, Lecture Notes in Physics 25, 274, Springer-Verlag, Berlin (1973).Google Scholar
  23. 23.
    A. M. Polyakov, Phys. Lett. 59B, 82 (1975).MathSciNetGoogle Scholar
  24. 24.
    G. Hooft, Phys. Rev. Lett. 37, 8 (1976).CrossRefGoogle Scholar
  25. 25.
    R. Jackiw, Rev. Mod. Phys. 49, 681 (1977).MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Coleman, Phys. Rev. D15, 2929 (1977).Google Scholar
  27. 27.
    G. Jona-Lasinio, “Stochastic Dynamics and the Semiclassical Limit of Quantum Mechanics,” talk given at the Bielefeld Encounters in Physics and Mathematics II, December, 1978.Google Scholar
  28. 28.
    E. Nelson, Bull. Amer. Math. Soc. 84, 121 (1978).MathSciNetCrossRefGoogle Scholar
  29. 29.
    E. Nelson, “Connection between Brownian Motion and Quantum Mechanics,” talk given at the Einstein Symposium in Berlin, March, 1979.Google Scholar
  30. 30.
    T. Hida, “Stationary Stochastic Processes,” Princeton University Press, Princeton (1970).zbMATHGoogle Scholar
  31. 31.
    T. Hida, “Analysis of Brownian Functionals,” Carleton University Press, Ottawa (1975).zbMATHGoogle Scholar
  32. 32.
    E. Etim, in this volume.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Kunio Yasue
    • 1
  1. 1.Département de Physique ThéoriqueUniversité de GenèveGenève 4Switzerland

Personalised recommendations