Skip to main content

Fracture Resistance of Metal-Infiltrated Porous Ceramics

  • Chapter
Fracture Mechanics of Ceramics

Abstract

The development of infiltrated porous ceramics as specialty structural materials is an area of technological promise in the engineering of materials. The attractive features of selected ceramics-e.g. hardness, oxidation resistance-can be exploited without the necessity of achieving full density in the solid. The direct production of complex geometries, through the cold-pressing and sintering of powders, or related techniques, is complemented by relatively facile machining. Within certain limits, the strength levels of the solids can approach that of the fully dense product when the porous elements are fully infiltrated by the proper infiltrant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.C. Carniglia, J. Am. Ceram. Soc., 55, 610 (1972).

    Article  CAS  Google Scholar 

  2. G.A. Clarke and R.A. Queeney, Int. J. Pow. Met., 8, 81 (1972).

    CAS  Google Scholar 

  3. J.N. Goodier, J. Appl. Mech., Trans. ASME, 55, 39 (1933).

    Google Scholar 

  4. M.A. Sadowsky and E. Sternberg, J. Appl. Mech., 17, 149 (1949).

    Google Scholar 

  5. R.H. Edwards, J. Appl. Mech., 19, 19 (1951).

    Google Scholar 

  6. C.E. Inglis, Trans. Inst. Naval Arch., 60, 219 (1913).

    Google Scholar 

  7. L.H. Donnell in Theodore von Karman Anniversary Volume, California Institute of Technology, Pasadena, Calif., 293–309 (1941).

    Google Scholar 

  8. D.P.H. Hasselman, J. Gebauer, and J.A. Manson, J. Am. Ceram. Soc, 55, 588 (1972).

    Article  CAS  Google Scholar 

  9. G.R. Irwin, J. Appl. Mech., 24, 361 (1957).

    Google Scholar 

  10. F.A. McClintock and G.R. Irwin, in Fracture Toughness Testing and Its Applications, ASTM Spec. Tech. Pub. No. 381, 84–113 (1964).

    Google Scholar 

  11. J.C. Conway and A.J. Shaler, Am. Ceram. Soc. Bull., 50, 656 (1971).

    CAS  Google Scholar 

  12. W.F. Brown Jr., and J.E. Srawley in Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM Spec. Tech. Pub. No. 410, 1–65 (1966).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Queeney, R.A., Turner, R.L. (1974). Fracture Resistance of Metal-Infiltrated Porous Ceramics. In: Bradt, R.C., Hasselman, D.P.H., Lange, F.F. (eds) Fracture Mechanics of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7014-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7014-1_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7016-5

  • Online ISBN: 978-1-4615-7014-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics