Skip to main content

Seasonal Polyphenism

  • Chapter
Evolutionary Biology

Abstract

Much of the effort of contemporary population biology—both theoretical and experimental—is directed toward elucidating the relationship between environmental heterogeneity and genetic variability. Specifically, are high levels of heterozygosity adaptive in “stable” or “unstable” environments? The advent of electrophoresis as a technique for the assessment of levels of polymorphism in populations has not provided the anticipated solution to this problem. King and Wilson (1975), demonstrating the extremely small “genetic distance” between man and the chimpanzee using electrophoretic and other biochemical approaches, contrast their data with the substantial anatomical and behavioral differences between these two species, and conclude that “macromolecules and anatomical or behavioral features... can evolve at independent rates... a relatively small number of genetic changes in systems controlling the expression of genes may account for the major organismal differences between humans and chimpanzees.” In retrospect, such findings as King and Wilson’s should not have been surprising. They were foreshadowed by the discovery in the last century that “major organismal differences” could exist between adult organisms with identical genotypes—the phenotypic differences being alternative expressions of the same genetic complement, depending on the environment during development. The early studies in the “physiological genetics” of macroorganisms by Goldschmidt, Kühn, and others sought to determine the genetic control of developmental pathways by characterizing the time relations of phenocopies which mimicked known products of gene action. Subsequently, physiological genetics became largely the province of the microbiologist, and the success of the Oxford school of ecological genetics tended to focus general attention on the phenomenon of genetic polymorphism in higher organisms.

The heavens themselves, the planets, and this center, observe degree, priority, and place, insisture, course, proportion, season, form, office, and custom, in all line of order.

—Shakespeare, Troilus and Cressida, I,iii,85 (1601–03)

Forms are known in which different generations (alternate spring-autumn or wet-dry seasons) exhibit different patterns which sometimes... may be so different that they can hardly be conceived of as simple quantitative shifts within a pattern; they actually show a different plan of pattern. External conditions acting upon the same genotype may then produce extraordinary changes...

—R. Goldschmidt, Physiological Genetics (1938)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkisson, P. L., 1964, Action of the photoperiod in controlling insect diapause, Am. Nat. 98: 357–374.

    Google Scholar 

  • Ae., S. A., 1957, Effects of photoperiod on Colias eurytheme, Lepid. News 11: 207–214.

    Google Scholar 

  • Albrecht, F., and Cassier, P., 1965, Influence de la photopériode et de la température sur les élévages de Locusta migratoria migratorioides, phase grégaire, Compt. rend. Acad. Sci. 260: 6449–6451.

    Google Scholar 

  • Andersen, N., 1973, Seasonal polymorphism and developmental changes in organs of flight and reproduction in bivoltine pond-skaters (Hemiptera, Gerridae), Entomol. Scand. 4: 120.

    Google Scholar 

  • Angersbach, D. and Kayser, H., 1971, Wavelength dependence of light-controlled pupal pigmentation, Naturwiss. 58: 571–572.

    CAS  Google Scholar 

  • Baerwald, R. J. and Bush, G. M., 1967, Selection of a nondiapausing race of apple maggot, J. Econ. Entomol. 60: 682–684.

    Google Scholar 

  • Baker, R. R., 1970, Bird predation as a selective pressure on the immature stages of the cabbage butterflies, Pieris rapae and P. brassicae. J. Zool. 162: 43–59.

    Google Scholar 

  • Barker, R. J., Mayer, A., and Cohen, C. F., 1963, Photoperiod effects in Pieris rapae, Ann. Entomol. Soc. Am. 56: 292–294.

    Google Scholar 

  • Barry, B. D. and Adkisson, P. L., 1966, Certain aspects of the genetic factors involved in the control of the larval diapause of the pink bollworm. Ann. Entomol. Soc. Am. 59: 122–125.

    Google Scholar 

  • Bateman, K. G., 1959, Genetic assimilation of four venation phenocopies, J. Genet. 56: 443–474.

    Google Scholar 

  • Beck, S. D., 1968, Insect Photoperiodism, Academic Press, New York.

    Google Scholar 

  • Biedermann, W., 1912, Farbe und Zeichnung der Insekten, Handb. Vergl. Physiol. 3: 1657–1994.

    Google Scholar 

  • Boesiger, E., 1969, Homéostase du développement et homéostase génétique, Ann. Biol. 8: 581–614.

    Google Scholar 

  • Bonnemaison, L., 1951, Contribution à l’étude des facteurs provoquant l’apparition des formes ailées et sexuées des Aphidinae, Ann. Epiphyties 3: 1–380.

    Google Scholar 

  • Bradshaw, A. D., 1965, Evolutionary significance of phenotypic plasticity in plants, Adv. Genet. 13: 115–155.

    Google Scholar 

  • Bradshaw, W. E., 1972, Photoperiodic control in the initiation of diapause by Chaoborus americanus (Diptera: Culicidae), Ann. Entomol. Soc. Am. 65: 755–756.

    Google Scholar 

  • Bradshaw, W. E., 1973, Homeostasis and polymorphism in vernal development of Chaoborus americanus, Ecology 54: 1247–1259.

    Google Scholar 

  • Braun, W., 1939, Contributions to the study of development of the wing-pattern in lepidoptera, Biol. Bull. 76: 226–240.

    Google Scholar 

  • Brecher, L., 1938, Der Weg Färbanpassung bei Schmetterlingspuppen vom Rezeptor bis zum Effektor. Die Puppenfärbung des Kohlweisslings Pieris brassicae L., und Puppenfärbungen der Vanessiden (Vanessa io L. und V. urticae L.), Biol. Zentralb. 14: 212–237.

    Google Scholar 

  • Brinkhurst, R. O., 1959, Alary polymorphism in the Gerroidea (Hemiptera-Heteroptera), J. Anim. Ecol. 28: 211–230.

    Google Scholar 

  • Britten, R. J., and Davidson, E. H., 1969, Gene regulation for higher cells: a theory, Science 165: 349–357.

    PubMed  CAS  Google Scholar 

  • Britten, R. J., and Davidson, E. H., 1971, Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q. Rev. Biol. 46: 111–133.

    PubMed  CAS  Google Scholar 

  • Brooks, J. L., 1957, The systematics of North American Daphnia, Mem. Conn. Acad. Arts Sci. 13: 1–180.

    Google Scholar 

  • Brooks, J. L., 1966, Cyclomorphosis, turbulence, and overwintering in Daphnia, Verh. int. Ver. Limnol. 16: 1653–1659.

    Google Scholar 

  • Buchner, H., Mulzer, F., and Rauh, R., 1957, Untersuchungen Ober die Variabilität der Rädertiere, Biol. Zertralb. 76: 289–315.

    Google Scholar 

  • Burns, J. M., 1964, Evolution in skipper butterflies of the genus Erynnis, Univ. Calif. Publ. in Entomol. 37:1–214.

    Google Scholar 

  • Carde, R. T., Shapiro, A. M., and Clench, H. K., 1970, Sibling species in the eurydice group of Lethe (Lepidoptera: Satyridae), Psyche 77: 70–103.

    Google Scholar 

  • Chaffe, R. R., 1966, On experimental selection for super-hibernating and non-hibernating lines of Syrian hamsters, J. Theoret. Biol. 12: 151–154.

    Google Scholar 

  • Clark, A. H., 1932, Butterflies of the District of Columbia and vicinity, U.S. Natl. Mus. Bull. 157. 327 pp.

    Google Scholar 

  • Clarke, C. A., and Sheppard P. M., 1972, Genetic and environmental factors influencing pupal colour in the swallowtail butterflies Battus philenor (L.) and Papilio polytes L., J. Entomol. (A) 46: 123–133.

    Google Scholar 

  • Clausen, J., Keck, D. D., and Hiesey, W. M., 1940, Experimental studies on the nature of species. I. The effect of varied environments on western North American plants, Carnegie Inst. Wash. Publ. 520.

    Google Scholar 

  • Clausen, J., Keck, D. D., and Hiesey, W. M., 1948, Experimental studies on the nature of species. III. Environmental responses of climatic races of Achillea. Carnegie Inst. Wash. Publ. 581.

    Google Scholar 

  • Danilevskii, A. S., 1948, Photoperiodic reactions of insects in conditions of artificial illumination, Compt. Rend. Acad. Sci. U.R.S.S. (N.S.) 60 (3): 481.

    Google Scholar 

  • Danilevskii, A. S., 1965, Photoperiodism and Seasonal Development of Insects, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Davidson, E. H., and Britten, R. J., 1973, Organization, transcription, and regulation in the animal genome, Q. Rev. Biol. 48: 565–613.

    PubMed  CAS  Google Scholar 

  • Davis, G. A. N., Frazer, J. F. D., and Tynan, A. M., 1958, Population numbers in a colony of Lysandra bellargus during 1958, Proc. R. Entomol. Soc. Lond. (A.) 33: 31–36.

    Google Scholar 

  • Dethier, V. G., 1954, Evolution of feeding preferences in phytophagous insects, Evolution 8: 33–54.

    Google Scholar 

  • Dimock, T., 1968, An extreme experimental aberration of Vanessa cardui. J. Lepid. Soc. 22: 146.

    Google Scholar 

  • Dixey, F. A., 1894, Mr. Merrifield’s experiments in temperature variation as bearing on theories of heredity, Trans. Entomol. Soc. Lond. 1894: 439–446.

    Google Scholar 

  • Dixon, A. F. G., 1972, Control and significance of the seasonal development of colour forms in the sycamore aphid, Drepanosiphum Platanoides, J. Anim. Ecol. 41: 689–697.

    Google Scholar 

  • Dobzhansky, Th., 1970, Genetics of the Evolutionary Process, Columbia Univ. Press, New York.

    Google Scholar 

  • Dobzhansky, Th., Anderson, W. W., and Pavlovsky, O. 1966, Genetics of natural populations. XXXVIII. Continuity and change in populations of Drosophila pseudoobscura in western United States, Evolution 20: 418–427.

    Google Scholar 

  • Dodson, S. I., 1974, Adaptive change in plankton morphology in response to size-selective predation: a new hypothesis of cyclomorphosis, Limnol. Oceanogr. 19: 721–729.

    Google Scholar 

  • Dorfmeister, G., 1864, Uber die Einwirkung verschiedener während der Entwicklungsperioden angewendeter Wärmegrade auf die Färbung und Zeichnung der Schmetterlinge, Mitt. naturw. Verein, Steiermark: 99–108.

    Google Scholar 

  • Dotterwich, O., 1928, Beitrage zur Nervenphysiologie der Insekten. I. Das Schwirren der Schmetterlinge vor dem Fluge, Zool. Jahrb. abt. allg. Zool. Physiol. der Tiere 44: 399–425.

    Google Scholar 

  • Dufour, L., 1844, Anatomie générale des Diptères, Ann. Sci. Nat. 1: 244–264.

    Google Scholar 

  • Dutt, N., 1969, Phases in the jute semilooper, Anomis sabulifera Guen. Sci. Cult. 35: 485–487.

    Google Scholar 

  • Edwards, W. H., 1877a, History of Phyciodes tharos, a polymorphic butterfly, Can. Entomol. 9:1–10, 51–58.

    Google Scholar 

  • Edwards, W. H., 18776, An account of some farther (sic) experiments upon the effect of cold in changing the form of certain butterflies, Can. Entomol. 9: 203–206.

    Google Scholar 

  • Edwards, W. H., 1880, Experiments upon the effect of cold applied to chrysalids of butterflies, Psyche 3:3–6, 15–19, 75–76.

    Google Scholar 

  • Edwards, W. H., 1883, On the polymorphism of Lycaena pseudargiolus Bois. Papilio 3: 85–97.

    Google Scholar 

  • Edwards, W. H., 1885, Miscellaneous notes on butterflies: Lycaena pseudargiolus Bois, Can. Entomol. 17: 110–111.

    Google Scholar 

  • Egloff, D. A., 1968, The relative growth and seasonal variation of several cyclomorphic structures of Daphnia catawba Coke in natural populations, Arch. Hydrobiol. 65: 325–359.

    Google Scholar 

  • Ehrlich, P. R., and Raven, P. H., 1964, Butterflies and plants: a study in coevolution, Evolution 18: 586–608.

    Google Scholar 

  • Ehrlich, P. R., Holm, R. W., and Parnell, D. R., 1974, The Process of Evolution, McGraw-Hill, New York.

    Google Scholar 

  • Ekblom, T., 1949, Neue Untersuchungen über den Flügelpolymorphismus bei Gerris asper Fieb., Notulae Entomol. 29: 1–15.

    Google Scholar 

  • Endo, K., 1970, Relation between ovarian maturation and activity of the corpora allata in seasonal forms of the butterfly, Polygonia c-aureum L., Devel., Growth & Differ. 11: 297–304.

    CAS  Google Scholar 

  • Endo, K., 1972, Activation of the corpora allata in relation to ovarian maturation in the seasonal forms of the butterfly, Polygonia c-aureum L., Devel., Growth & Differ. 14: 263–274.

    Google Scholar 

  • Endo, K., 1973, Hormonal regulation of mating in the butterfly, Polygonia c-aureum L., Devel., Growth & Differ. 15: 1–10.

    Google Scholar 

  • Faure, J. C., 1943a, Phase variation in the army worm, Laphygma exempta (Walker), Sci. Bull. Dept. Agr. S. Africa 234: 1–17.

    Google Scholar 

  • Faure, J. C., 1943b, The phases of the lesser army-worm, Farming S. Afr. 18: 69–78.

    Google Scholar 

  • Fischer, E., 1895, Transmutation der Schmetterlinge infolge der Temperaturänderungen.

    Google Scholar 

  • Experimentelle Untersuchungen über die Phylogenese der Vanessen, Friedlander, Berlin.

    Google Scholar 

  • Ford, E. B., 1957, Butterflies. Ch. 11: Genetic Interactions, pp. 219–247, Collins, London.

    Google Scholar 

  • Ford, E. B., 1964, Ecological Genetics, Methuen, London.

    Google Scholar 

  • Ford, E. B., 1965, Genetic Polymorphism, Faber & Faber, London.

    Google Scholar 

  • Fraenkel, G., 1959, The raison d’être of secondary plant substances, Science 129: 1466–1470.

    PubMed  CAS  Google Scholar 

  • Frazzetta, T. W., 1975, Complex Adaptations in Evolving Populations, Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Fritz, F., 1935, Uber die Sinksgeschwindigkeit einiger Phytoplankton-organismen, Int. Rev. Gesamt. Hydrobiol. Hydrogr. 32: 424–431.

    Google Scholar 

  • Fukuda, S., and Endo, K., 1966, Hormonal control of the development of seasonal forms in the butterfly, Polygonia c-aureum L., Proc. Jpn. Acad. 42: 1082–1087.

    Google Scholar 

  • Fuzeau-Braesch, S., 1972, Pigments and color changes, Ann. Rev. Entomol. 17: 403–424.

    CAS  Google Scholar 

  • Gallagher, J. J., 1957, Cyclomorphosis in the rotifer Keratella cochlearis (Gosse), Trans. Am. Microscop. Soc. 76: 197–203.

    Google Scholar 

  • Geyspitz, K. F., 1965, Photoperiodic and temperature reactions affecting the seasonal development of the pine moths Dendrolimus pini L. and D. sibiricus Tschetw., Entomol. Rev. 44: 316–325.

    Google Scholar 

  • Giersberg, H., 1929, Die Färbung der Schmetterling, Z. Vergl. Physiol. 9: 523–552.

    Google Scholar 

  • Gilbert, J. J., 1966, Rotifer ecology and embryological induction, Science 151: 1234–1237.

    PubMed  CAS  Google Scholar 

  • Gilbert, J. J., 1968, Dietary control of sexuality in the rotifer Asplanchna brightwelli Gosse, Physiol. Zool. 41: 14–43.

    Google Scholar 

  • Gilbert, J. J., 1973a, The adaptive significance of polymorphism in the rotifer Asplanchna. Humps in males and females, Oecologia 13: 135–146.

    Google Scholar 

  • Gilbert, J. J., 1973b, Induction and ecological significance of gigantism in the rotifer Asplanchna sieboldi, Science 181: 63–66.

    PubMed  CAS  Google Scholar 

  • Gilbert, J. J., and Thompson, Jr., G. A., 1968, Alpha-tocopherol control of sexuality and polymorphism in the rotifer Asplanchna, Science 159: 734–736.

    PubMed  CAS  Google Scholar 

  • Glass, E. H., 1970, Changes in diapause response to photoperiod in laboratory strains of Oriental fruit moth, Ann. Entomol. Soc. Am. 63: 74–76.

    Google Scholar 

  • Goldschmidt, R., 1935, Gen und Ausseneigenschaft (Untersuchungen an Drosophila). I-II. Z. Vererbungsl. 69:38–69, 70–131.

    Google Scholar 

  • Goldschmidt, R., 1938, Physiological Genetics, McGraw-Hill, New York.

    Google Scholar 

  • Gould, L. T., 1892, Experiments in 1890 and 1891 on the colour relation between Lepidopterous larvae and their surroundings, Trans. Entomol. Soc. Lond. 1892: 215–246.

    Google Scholar 

  • Green, J., 1963, Seasonal polymorphism in Scapholeberis mucronata (O. F. Muller) (Crustacea: Cladocera), J. Anim. Ecol. 32: 425–539.

    Google Scholar 

  • Green, J., 1967, The distribution and variation of Daphnia lumholtzii (Crustacea: Cladocera) in relation to fish predation in Lake Albert, East Africa, J. Zool. 151: 181–197.

    Google Scholar 

  • Guthrie, D. M., 1959, Polymorphism in the surface water bugs (Hemiptera-Heteroptera: Gerroidea). J. Anim. Ecol. 28: 141–152.

    Google Scholar 

  • Hadorn, E., 1961, Developmental Genetics and Lethal Factors, Methuen, London.

    Google Scholar 

  • Haggett, G. M., 1964, Researches in colour variation of the moth Leucania vitellina Hubner. Proc. S. Lond. Entomol. Nat. Hist. Soc. 1963 (II): 78–92.

    Google Scholar 

  • Haldane, J. B. S., and Jayakar, S. D., 1963, Polymorphism due to selection of varying direction, J. Genet. 58: 237–242.

    Google Scholar 

  • Hampé, A., 1959, Contribution à l’étude du développement et de la regulation des deficiencies et des excédents dans la patte de l’embryon de poulet, Arch. Anat. Microscop. Morph. Exp. 48: 347–378.

    Google Scholar 

  • Harper, G. W., and Waller, W. E., 1950, Notes on breeding the first generation of Polygonia c-album, Entomologist 83: 145–148.

    Google Scholar 

  • Harvey, G. T., 1957, The occurrence and nature of diapause-free development in the spruce budworm, Choristoneura fumiferana, Can. J. Zool. 25: 549–572.

    Google Scholar 

  • Hazelwood, D. H., 1966, Illumination and turbulence effects of relative growth in Daphnia, L i m n ol. Oceanogr. 11: 212–216.

    Google Scholar 

  • Hidaka, T., and Aida, S., 1963, Day length as the main factor of seasonal form determination in Polygonia c-aureum (Lepidoptera, Nymphalidae). Dobutsugaku Zasshi (Zoo!. Mag.) 72: 77–83.

    Google Scholar 

  • Hidaka, T., and Takahashi, H., 1967, Temperature conditions and maternal effect as modifying factors in the photoperiodic control of the seasonal form in Polygonia c-aureum (Lepidopt., Nymphalidae), Annot. Zool. Jpn. 40: 200–204.

    Google Scholar 

  • Hille Ris Lambers, D., 1966, Polymorphism in Aphididae, Ann. Rev. Entomol. 11: 47–78.

    Google Scholar 

  • Hintze-Podufal, C., 1970, Farbanpassung von Sphingidenraupen, Naturwissenschaften 57: 460–461.

    Google Scholar 

  • H¢egh-Guldberg, O., 1974a, Natural pattern variation and the effect of cold treatment in the genus Aricia R. L. (Lepidoptera; Lycaenidae), Proc. Trans. Brit. Entomol. Soc. 7: 37–44.

    Google Scholar 

  • Hoegh-Guldberg, O., 1974b, Polymorphism in Ariciae (Lep., Rhopalocera) in the field and laboratory, Natura Jutlandica 17: 99–120.

    Google Scholar 

  • Hoffmann, R. J., 1973, Environmental control of seasonal variation in the butterfly Colias eurytheme. I. Adaptive aspects of a photoperiodic response, Evolution 27: 387–397.

    Google Scholar 

  • Hoffmann, R. J., 1974, Environmental control of seasonal variation in the butterfly Colias eurytheme: effects of photoperiod and temperature on pteridine pigmentation, J. Ins. Physiol. 20: 1913–1924.

    CAS  Google Scholar 

  • Hovanitz, W., 1944, The ecological significance of the color phases of Colias chrysotheme in North America, Ecology 25: 45–60.

    Google Scholar 

  • Hutchinson, G. E., 1967, A Treatise on Limnology, vol. 2. John Wiley, New York.

    Google Scholar 

  • Isaka, R., 1952, Inhibitory effect of xanthopterin upon the formation of melanin in vitro, Nature 169: 74.

    PubMed  CAS  Google Scholar 

  • Ishizaki, H., and Kato, M., 1956, Environmental factors affecting the formation of orange pupa in Papilio xuthus, Mem. Coll. Sci. Kyoto Univ. (B) 23: 11–18.

    Google Scholar 

  • Iwao, S., 1968, Some effects of grouping in Lepidopterous insects, Colloq. Intl. Centre Nat. Rech. Sci. 173: 185–210.

    Google Scholar 

  • Jacobs, J., 1961, Cyclomorphosis in Daphnia galatea mendotae Birge, a case of environmentally controlled allometry, Arch. Hydrobiol. 58: 7–71.

    Google Scholar 

  • Jacobs, J., 1967, Untersuchungen zur Funktion und Evolution der Zyklomorphose bei Daphnia, mit besonderer Berucksichtigung der Selektion durch Fische, Arch. Hydrobiol. 62: 467–541.

    Google Scholar 

  • Jarvis, F. V. L., 1974, The biological relationship between two subspecies of Aricia artaxerxes (F.) and temperature experiments on an Fz generation and on A. artaxerxes ssp. salmacis, Natura Jutlandica 17: 121–129.

    Google Scholar 

  • Kammer, A. E., and Bracchi, J., 1973, Role of the wings in the absorption of radiant energy by a butterfly, Danaus plexippus, Compar. Biochem. Physiol. 45: 1057–1063.

    Google Scholar 

  • Kennedy, J. S., and Stroyan, H. L. G., 1959, Biology of aphids, Ann. Rev. Entomol. 4: 139–160.

    Google Scholar 

  • Kettlewell, H. B. D., 1944, Temperature effects on the pupae of Panaxia dominula, Proc. S. Lond. Entomol. Nat. Hist. Soc. 1943 /44: 79–81.

    Google Scholar 

  • Kettlewell, H. B. D., 1963, The genetical and environmental factors which affect colour and pattern in Lepidoptera, with special reference to migratory species, Entomologist 96: 127–130.

    Google Scholar 

  • Kiechle, H., and Buchner, H., 1966, Untersuchungen über die Variabilität der Rädertiere: V. Dimorphismus und Bisexualität bei Asplanchna, Rev. Suisse Zool. 73: 283–299.

    Google Scholar 

  • Kimura, M., 1955, Stochastic processes and distribution of gene frequencies under natural selection, Cold Spring Harb. Symp. Quant. Biol. 20: 33–53.

    PubMed  CAS  Google Scholar 

  • King, M. C., and Wilson, A. C., 1975, Evolution at two levels in humans and chimpanzees, Science 188: 107–116.

    PubMed  CAS  Google Scholar 

  • Klots, A. B., 1951, A Field Guide to the Butterflies, Houghton Mifflin, Boston.

    Google Scholar 

  • Köhler, W., and Feldotto, W., 1935, Experimentelle Untersuchungen über die Modifikabilität der Flügelzeichnung, ihre System und Elemente in dem sensiblen Perioden von Vanessa urticae L., nebst einigen Beobachtungen an Vanessa io L., Arch. Julius Klaus Stift. Verebforsch. 10: 313–453.

    Google Scholar 

  • Kolyer, J. M., 1969, Effects of environmental factors on the markings of Pieris rapae (Pieridae), J. Lepid. Soc. 23: 77–94.

    Google Scholar 

  • Kolyer, J. M., 1972, Vital staining as evidence for wing circulation in the cabbage butterfly, Pieris rapae, J. Res. Lepid. 11: 161–173.

    Google Scholar 

  • Kurten, B., 1963, Return of a lost structure in the evolution of the Felid dentition, Comment. Biol. (Soc. Sci. Fennica) 26: 1–12.

    Google Scholar 

  • Lamb, R. J., and Pointing, P. J., 1972, Sexual morph determination in the aphid Acyrthosiphon pisum, J. Ins. Physiol. 18: 2029–2042.

    Google Scholar 

  • Lees, A. D., 1955, The Physiology of Diapause in Arthropods, Cambridge University Press, Cambridge.

    Google Scholar 

  • Lees, A. D., 1960, The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae Buckton. II. The operation of the “interval timer” in young clones, J. Ins. Physiol. 4: 154–175.

    Google Scholar 

  • Lees, A. D., 1961, Clonal polymorphism in aphids, Symp. R. Entomol. Soc. Lond. 1: 68–79.

    Google Scholar 

  • Lees, A. D., 1963, The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae Buckton. III. Further properties of the maternal switching mechanism in apterous aphids, J. Ins. Physiol. 9: 153–164.

    Google Scholar 

  • Lees, A. D., 1966, The control of polymorphism in aphids, Adv. Insect Physiol. 3: 207–277.

    CAS  Google Scholar 

  • Lees, E., and Archer, D. M., 1974, Ecology of Pieris napi (L) (Lepidoptera: Pieridae) in Britain, Entomol. Gaz. 25: 231–237.

    Google Scholar 

  • Leigh, T. F., and Smith, R. F., 1959, Flight activity of Colias philodice eurytheme in relation to its physical environment, Hi!gardia 28: 569–624.

    Google Scholar 

  • Lenz, F., 1917, Alternative Modifikationen bei Schmetterlingen, Z. indukt. Abstamm.-u. Vereb. Lehre 18: 93–103.

    Google Scholar 

  • Levins, R., 1963, Theory of fitness in a heterogeneous environment. II. Developmental flexibility and niche selection, Am. Nat. 97: 75–90.

    Google Scholar 

  • Levins, R., 1968, Evolution in Changing Environments, Princeton University Press, Princeton.

    Google Scholar 

  • Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia Univ. Press, New York.

    Google Scholar 

  • Long, D. B., 1953, Effects of population density on larvae of Lepidoptera, Trans. R. Entomol. Soc. Lond. 104: 543–585.

    Google Scholar 

  • Lüdicke, M., and Plesse, D., 1970, Die Darstellung des Pigmentwechsels in den Flügeln der saisondimorphen Formen von Araschnia levana-prorsa L. (Nymphalidae) nach oraler Applikation von 35s-Natriumsulfat im Raupenstadium, Z. Naturforsch. 25: 399–406.

    Google Scholar 

  • Masaki, S., and N., Oyama, 1963, Photoperiodic control of growth and wing-form in Nemobius yezoensis Shiraki, Kontyu 31: 16–26.

    Google Scholar 

  • Mather, B., 1967, Variation in Junonia coenia in Mississippi, J. Lepid. Soc. 21: 59–70.

    Google Scholar 

  • Matthée, J. J., 1947, Phase variation in the lawn caterpillar (Spodoptera abyssiniae Guen.) J. Entomol. Soc. S. Afr. 10: 16–23.

    Google Scholar 

  • Mayr, E., 1961, Cause and effect in biology, Science 134: 1501–1506.

    PubMed  CAS  Google Scholar 

  • Mayr, E., 1963, Animal Species and Evolution, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • McCoy, J. R., Lloyd, E. R., and Bartlett, A. D., 1968, Diapause in crosses of a laboratory and a wild strain of boll weevils, J. Econ. Entomol. 61: 163–166.

    Google Scholar 

  • McFarlane, J. E., 1974, Factors affecting growth and wing polymorphism in Gryllodes sigillatus (Walk.): dietary protein level and a possible effect of photoperiod, Can. J. Zool. 42: 767–771.

    Google Scholar 

  • McLeod, L., 1968, Controlled environment experiments with Precis octavia Cram. (Nymphalidae), J. Res. Lepid. 7: 1–18.

    Google Scholar 

  • McPherson, J. E., 1974, Photoperiod effects in a southern Illinois population of the Euschistus tristigmus complex (Hemiptera: Pentatomidae). Ann. Entomol. Soc. Am. 67: 943–952.

    Google Scholar 

  • McPherson, J. E., 1975, Life history of Euschistus tristigmus tristigmus (Hemiptera: Pentatomidae) with information on adult seasonal dimorphism, Ann. Entomol. Soc. Am. 68: 333–334.

    Google Scholar 

  • McPherson, J. E., and Vangeison, K. W., 1975, Effects of photoperiod on a population of Euschistus tristigmus (Say) (Hemiptera: Pentatomidae) from Gainesville, Fla., Ann. Entomol. Soc. Am. 68: 205–206.

    Google Scholar 

  • Mell, R., 1931, Die Trockenzeitform als Hemmungserscheinung (Diagora nigrivena Leech) als Trockenzeitform von Hestina assimilis (L.), Biol. Zentralbi. 51: 187–194.

    Google Scholar 

  • Merrifield, F., 1894, Temperature experiments in 1893 on several species of Vanessa and other Lepidoptera, Trans. Entomol. Soc. London 1894: 425–438.

    Google Scholar 

  • Merrifield, F., 1911, Experimental entomology: factors in seasonal dimorphism, I. Congr. Int. Entomol., Brussels. pp. 433–448.

    Google Scholar 

  • Merrifield, F., and Poulton, E. B., 1899, The colour-relation between the pupae of Papilio machaon, Pieris napi and many other species, and the surroundings of the larvae preparing to pupate, etc., Trans. Entomol. Soc. Lond. 1899: 369–433.

    Google Scholar 

  • Mittler, T. E., 1973, Aphid polymorphism as affected by diet, in Perspectives in Aphid Biology, (A. D. Lowe, ed.), Entomol. Soc. N.Z., Bull. 2. pp. 65–75.

    Google Scholar 

  • Mittler, T. E., and Sutherland, O. R. W., 1969, Dietary influences on aphid polymorphism, Entomol. Exp. et Appl., 12: 703–713.

    Google Scholar 

  • Morris, R. F., and Fulton, W. C., 1970, Heritability of diapause intensity in Hyphantria cunea and correlated fitness responses, Can. Entomol. 102: 927–938.

    Google Scholar 

  • Müller, H. J., 1954, Der Saisondimorphismus bei Zikaden der Gattung Euscelis Brulle, Beitr. Entomol. 4: 1–56.

    Google Scholar 

  • Müller, H. J., 1955, Die Saisonformenbildung von Araschnia levana, ein photoperiodisch gesteuter Diapause Effekt, Naturwiss. 42: 134–135.

    Google Scholar 

  • Müller, H. J., 1956, Die Wirkung verschiedener diurnaler Licht-Dunkel-Relationen auf die Saisonformenbildung von Araschnia levana. Naturwiss. 43: 503–504.

    Google Scholar 

  • Müller, H. J., 1957, Die Wirkung exogener Faktoren auf die zyklische Formenbildung der Insekten, insbesondere der Gattung Eusceus, Zool. Jahrb. 85: 317–430.

    Google Scholar 

  • Müller, H. J., 1960, Die Bedeutung der Photoperiode im Lebensablauf der Insekten, Z. Angew. Entomol. 47: 7–24.

    Google Scholar 

  • Müller, H. J., 1961, Erster Nachweis einer Eidiapause bei den Jassiden Euscelis plebejus Fall. und. lineolatus Brulle, Z. Angew. Entomol. 48: 233–241.

    Google Scholar 

  • Müller, H. J., 1965, Zur weiteren Analyse der Okomorphosen von Euscelis plebejus Fall. I. Die Wirkung der Naturlichen Photoperioden, insbesondere der kontinuierlichen Anderung der Tageslänge, Zool. Beitr. 11: 151–182.

    Google Scholar 

  • Müller, H. J., and Reinhardt, R., 1969, Die Bedeutung von Temperatur und Tageslänge fur die Entwicklung der Saisonformen von Araschnia levana L. (Lep. Nymphalidae), Entomol. Berichte 1969: 93–100.

    Google Scholar 

  • Nilsson-Ehle, H., 1914, Vilka erfarenheter hava hittills vunnits rörande möjligheten av växters acklimatisering, Landtbruks-Konikl. Akad. Handl. Tidskr. 53: 537–572.

    Google Scholar 

  • Nolte, D. J., 1974, The gregarization of locusts, Biol. Rev. 49: 1–14.

    Google Scholar 

  • Oldroyd, S. M., 1971, Biochemical investigations of various forms of some Papilio species, Entomologist 104: 111–123.

    Google Scholar 

  • Oliver, C. G., 1970, The environmental regulation of seasonal dimorphism in Pieris napi oleracea (Pieridae), J. Lepid. Soc. 24: 77–81.

    Google Scholar 

  • Owen, D. F., 1971, Pupal colour in Papilio demodocus (Papilionidae) in relation to the season of the year, J. Lepid. Soc. 25: 271–274.

    Google Scholar 

  • Papillon, M., 1965, Influence de la photopériode et de la température sur les élévages de Schistocerca gregaria, phase grégaire, Compt. rend. Acad. Sci. 260: 6446–6448.

    Google Scholar 

  • Parshley, H. M., 1920, Ethological remarks on some New England water-striders (Hemiptera), Bull. Brooklyn Entomol. Soc. 15: 67–70.

    Google Scholar 

  • Parsons, P. A., McKenzie, J. A., 1972, The ecological genetics of Drosophila, in Evol. Biol. Vol. 5, ( T. Dobzhansky, M. Hecht, W. Steere, eds.) pp 87–132, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Pease, R. W., 1962, Factors causing seasonal forms in Ascia monuste (Lepid.), Science 137: 987–988.

    PubMed  Google Scholar 

  • Poisson, R., 1924, Contributions à l’étude des hémiptères aquatiques, Bull. Biol. France Beig. 58: 49–305.

    Google Scholar 

  • Poulton, E. B., 1887, An inquiry into the cause and extent of a special colour-relation between certain exposed Lepidopterous pupae and the surfaces which immediately surround them, Phil. Trans. R. Soc. Lond. Ser. B, 178: 311–441.

    Google Scholar 

  • Poulton, E. B., 1890, The Colours of Animals, D. Appleton, New York.

    Google Scholar 

  • Poulton, E. B., 1892, Further experiments upon the colour-relations between certain lepidopterous larvae, pupae, cocoons and imagines and their surroundings, Trans. Entomol. Soc. Lond. 1892: 293–487.

    Google Scholar 

  • Poulton, E. B., 1902, Mr. G. A. K. Marshall’s proof of seasonal changes in South African butterflies of the genus Precis, Trans. Entomol. Soc. Lond. 1902: 414–460.

    Google Scholar 

  • Reinhardt, R., 1969, Ober den Einfluss der Temperatur auf den Saisondimorphismus von Araschnia levano L. (Lepidopt. Nymphalidae) nach photoperiodischer Diapause-Induktion, Zool. Jb. Physiol. 75: 41–75.

    Google Scholar 

  • Reinhardt, R., 1970, Die Rolle der Photoperiode bei der Insektenwanderung, Atalanta 3: 1–4.

    Google Scholar 

  • Reinhardt, R., 1971, Modifizierung der photoperiodisch bedingten Saisonformen von Araschnia levana L. durch Temperaturveränderungen. Limnologica 8:538. (abstract.)

    Google Scholar 

  • Remington, C. L., 1958, Genetics of populations of Lepidoptera, Proc. X Int. Congr. Entomol. 2: 787–806.

    Google Scholar 

  • Remington, R. D., and Schork, M. A., 1970, Statistics with Applications to the Biological and Health Sciences, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Rendel, J. M., 1968, The control of developmental processes, in Evolution and Environment, (E. T. Drake, ed.), pp. 341–349, Yale Univ. Press, New Haven.

    Google Scholar 

  • Robertson, R., 1971, Lepidoptera Genetics, Pergamon Press, Oxford.

    Google Scholar 

  • Root, R. B., and Tahvanainen, J. O., 1969, Role of winter cress, Barbarea vulgaris, as a temporal host in the seasonal development of the Crucifer fauna, Ann. Entomol. Soc. Am. 62: 852–855.

    Google Scholar 

  • Rowell, C. H. F., 1970, Environmental control of coloration in an Acridid, Gastrimargus africanus (Saussure), Anti-Locust Bulletin 48: 1–48.

    Google Scholar 

  • Rowell, C. H. F., 1971, The variable coloration of the Acridoid grasshoppers. Adv. Ins. Physiol. 8: 145–198.

    Google Scholar 

  • Sakai, T., and Masaki, S., 1965, Photoperiod as a factor causing seasonal forms in Lycaena phlaeas daimio Seitz (Lepidoptera: Lycaenidae). Kontyú 33: 275–283.

    Google Scholar 

  • Salt, G., 1938, Further notes on Trichogramma semblidis, J. Exp. Zool. 30: 511–522.

    Google Scholar 

  • Salt, G., 1952, Trimorphism in the Ichneumonid parasite, Gelis. Quart. J. Micr. Sci. 93: 453474.

    Google Scholar 

  • Schmalhausen, I. I., 1949, Factors of Evolution. Blakiston, Philadelphia.

    Google Scholar 

  • Schmidt, G. H., ed. 1974. Sozialpolymorphismus bei Insekten, Wissenschaftliche Verlagsgesellschaft, Stuttgart.

    Google Scholar 

  • Schneider, G., 1971, Ober den Einfluss verschiedener Umweltfaktoren auf den Färbungs Polyphänismus der Raupen des tropisch-Amerikanischen Schwarmers Erinnyis ello L., Oecologia 11: 351–370.

    Google Scholar 

  • Scott, J. A., 1976, A model of polymorphism with several seasons and several habitats, and its application to the mosquito Aëdes aegypti, J. Theoret. Biol.,in press.

    Google Scholar 

  • Scudder, S. H., 1876, The relationship of the early spring blues, Can. Entomol. 8: 61–66.

    Google Scholar 

  • Scudder, S. H., 1889, The butterflies of the Eastern United States and Canada, 3 vols. Author Cambridge, Mass.

    Google Scholar 

  • Sengtin, A., 1944, Experimente zur sexuell-mechanischen Isolation, Rev. Fac. Sci. Istanbul (B) 9: 239–253.

    Google Scholar 

  • Shapiro, A. M., 1968, Photoperiodic induction of vernal phenotype in Pieris protodice Boisduval & LeConte (Lepidoptera: Pieridae), Wasmann J. Biol. 26: 137–149.

    Google Scholar 

  • Shapiro, A. M., 1970, The role of sexual behavior in density-related dispersal of Pierid butterflies, Am. Nat. 104: 367–372.

    Google Scholar 

  • Shapiro, A. M., 1971, Occurrence of a latent polyphenism in Pieris virginiensis (Lepidoptera:: Pieridae), Entomol. News 82: 13–16.

    Google Scholar 

  • Shapiro, A. M., 1973a, Photoperiodic control of seasonal polyphenism in Pieris occidentalis Reakirt (Lepidoptera:Pieridae), Wasmann J. Biol. 31: 291–299.

    Google Scholar 

  • Shapiro, A. M., 19736, Recurrent aberration in Cynthia annabella: a review with four new records (Lepidoptera: Nymphalidae), Pan-Pac. Entomol. 49: 289–293.

    Google Scholar 

  • Shapiro, A. M., 1974a, A salt-marsh population of Lycaena helloides (Lepidoptera: Lycaenidae) feeding on Potentilla (Rosaceae), Entomol. News 85: 40–44.

    Google Scholar 

  • Shapiro, A. M., 1974b, Partitioning of resources among lupine-feeding Lepidoptera, Am. Midl. Nat. 91: 243–248.

    Google Scholar 

  • Shapiro, A. M., 1974c, Butterflies and skippers of New York State, Search 4: 1–60.

    Google Scholar 

  • Shapiro, A. M., 1975a, Ecotypic variation in montane butterflies, Wasmann J. Biol. 32: 267–280.

    Google Scholar 

  • Shapiro, A. M., 1975b, Photoperiodic control of development and phenotype in a subarctic population of Pieris occidentalis (Lepidoptera:Pieridae), Can. Entomol. 107: 775–779.

    Google Scholar 

  • Shapiro, A. M., 1975c, Developmental and phenotypic responses to photoperiod in uni-and bivoltine Pieris napi (Lepidoptera:Pieridae) in California. Trans. R. Entomol. Soc. London 127: 65–71.

    Google Scholar 

  • Shapiro, A. M., 1975d, Genetics, environment, and subspecies differences: the case of Polites sabuleti (Lepidoptera: Hesperüdae), Great Basic Nat. 35: 33–38.

    Google Scholar 

  • Shapiro, A. M., 1975e, Natural and laboratory occurrence of “elymi” phenotypes in Cynthia cardui (Lepidoptera: Nymphalidae), J. Res. Lepid. 13: 57–62.

    Google Scholar 

  • Shapiro, M., 1975f, Papilio “gothica” and the phenotypic plasticity of P. zelicaon, J. Lepid. Soc. 29: 79–84.

    Google Scholar 

  • Shapiro, A. M., 1975g, Ecological and behavioral aspects of coexistence in six Crucifer-feeding Pierid butterflies in the central Sierra Nevada, Am. Midl. Nat. 93: 424–433.

    Google Scholar 

  • Shapiro, A. M., 1976a, Why do California tortoiseshells migrate? J. Res. Lepid.,in press.

    Google Scholar 

  • Shapiro, A. M., 1976b, The genetics of subspecific phenotype differences in Pieris occidentalis Reakirt and of variation in P. o. nelsoni W. H. Edwards (Lepidoptera: Pieridae), J. Res. Lepid.,in press.

    Google Scholar 

  • Shapiro, A. M., 1976c, Photoperiodic responses of phenologically aberrant populations of Pierid butterflies (Lepidoptera), Great Basin Nat. 35: 310–316.

    Google Scholar 

  • Shapiro, A. M., 1976d, Observations on the transition between coastal and inland ecotypes of Pieris napi in California, MS in preparation.

    Google Scholar 

  • Shapiro, A. M., and Shapiro, A. R., 1973, The ecological associations of the butterflies of Staten Island (Richmond County, New York), J. Res. Lepid. 12: 65–128.

    Google Scholar 

  • Shepard, J. Fl., 1966, A study of the hilltopping behavior of Pieris occidentalis Reakirt (Lepidoptera: Pieridae). Pan-Pac. Entomol. 42:287–294.

    Google Scholar 

  • Sheppard, P. M., 1958, Natural Selection and Heredity, Hutchinson, London.

    Google Scholar 

  • Sherman, P. W., and Watt, W. B., 1973, The thermal ecology of some Colias butterfly larvae, J. Comp. Physiol. 83: 25–40.

    Google Scholar 

  • Shields, O., 1967, Hilltopping, J. Res. Lepid. 6: 69–178.

    Google Scholar 

  • Standfuss, M., 1896, Handbuch der paltiarktischen Gross-schmetterlinge für Forscher und Sammler,G. Fischer Jena.

    Google Scholar 

  • Standfuss, M., 1898, Experimentelle zoologische Studien mit Lepidoptera, Deutsch. Schweiz. Naturf. Ges. 36: 1–81.

    Google Scholar 

  • Standfuss, M., 1900–01, Synopsis of experiments in hybridization and temperature made with Lepidoptera up to the end of 1898, Entomologist 33:161–167, 283–292, 340–348; 34: 1113, 75–84.

    Google Scholar 

  • Stern, V. M., and Smith, R. F., 1960, Factors affecting egg production and oviposition in populations of Colias philodice eurytheme, Hilgardia 29: 411–454.

    Google Scholar 

  • Süffert, F., 1924, Bestimmungsfaktoren des Zeichnungsmuster beim Saison-dimorphismus von Araschnia levana-prorsa, Biol. Zentralb. 44: 173–188.

    Google Scholar 

  • Takata, N. 1961, Successive rearing of the cabbage butterfly larva with certain host plants and its effect on the ovipositional preference of the adult, Jpn. J. Ecol. 11: 143–154.

    Google Scholar 

  • Tauber, M. C., Tauber, C. A., and Denys, C. J., 1970, Adult diapause in Chrysopa carnea: photoperiodic control of duration and colour, J. Ins. Physiol. 16: 949–955.

    Google Scholar 

  • Thoday, J. M., 1953, Components of fitness, Symp. Soc. Exptl. Biol. 7: 96–113.

    Google Scholar 

  • Thorsteinson, A. J., 1960, Host selection in phytophagous insects, Ann. Rev. Entomol. 5: 193–218.

    Google Scholar 

  • Timofeef-Ressovsky, N. W., 1940, Zur Analyse des Polymorphismus bei Adalia bipunctata, Biol. Zentralb. 60: 130–137.

    Google Scholar 

  • Turesson, G., 1922, The genotypical response of the plant species to the habitat, Hereditas 3: 211–350.

    Google Scholar 

  • Turesson, G., 1925, The plant species in relation to habitat and climate, Hereditas 6: 147–236.

    Google Scholar 

  • Tuskes, P. M., and Atkins, M. D., 1973, Effect of temperature on occurrence of color phases in the alfalfa caterpillar (Lepidoptera: Pieridae), Environ. Entomol. 2: 619–622.

    Google Scholar 

  • Vepsäläinen, K., 1974a, The determination and adaptive significance of alary dimorphism and diapause in Gerris Fabr. species (Heteroptera), (Abstract.) Univ. Helsinki Sect. Math. Nat. Sci. 4 pp.

    Google Scholar 

  • Vepsäläinen, K., 1974b, Determination of wing length and diapause in water-striders (Gerris Fabr., Heteroptera), Hereditas 77: 163–176.

    PubMed  Google Scholar 

  • Vepsäläinen, K., 1974c, The wing lengths, reproductive stages and habitats of Hungarian Gerris Fabr. species (Heteroptera, Gerridae), Ann. Acad. Sci. Fenn. Ser. A, IV, 202: 1–18.

    Google Scholar 

  • Vepsäläinen, K., 1974d, The wing lengths and reproductive stages of Finnish Gerris Fabr. species (Heteroptera, Gerridae), Acta Zool. Fennica 141: 1–73.

    Google Scholar 

  • Verrier, M. L., 1956, La Biologie des Éphémères. Paris.

    Google Scholar 

  • Waddington, C. H., 1953, Genetic assimilation of an acquired character, Evolution 7: 118–126.

    Google Scholar 

  • Waddington, C. H., 1957, The Strategy of the Genes, Allen & Unwin, London.

    Google Scholar 

  • Waddington, C. H., 1961, Genetic assimilation, Adv. Genet. 10: 257–294.

    PubMed  CAS  Google Scholar 

  • Waddington, C. H., 1975, Mindless Societies, New York Review of Books 22 (13): 30–32.

    Google Scholar 

  • Wasserthal, L. T., 1975, The role of butterfly wings in regulation of body temperature, J. Ins. Physiol. 21: 1921–1930.

    Google Scholar 

  • Watt, W. B., 1967, Pteridine biosynthesis in the butterfly Colias eurytheme, J. Biol. Chem. 242: 565–572.

    PubMed  CAS  Google Scholar 

  • Watt, W. B., 1968, Adaptive significance of pigment polymorphisms in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation, Evolution 2: 437–458.

    Google Scholar 

  • Watt, W. B., 1969, Adaptive significance of pigment polymorphisms in Colias butterflies. Il.

    Google Scholar 

  • Thermoregulation and photoperiodically controlled melanin variation in Colias eurytheme, Proc. Nat. Acad. Sci. (U.S.A.) 63:767–774.

    Google Scholar 

  • Weismann, A., 1875,Studien zur Descendenztheorie. I. Uber den Saison-dimorphismus der Schmetterlinge, Leipzig.

    Google Scholar 

  • Weismann, A., 1896, New experiments on the seasonal dimorphism of Lepidoptera, Entomologist 29:29–39, 74–80, 103–113, 153–157, 173–185, 203–209, 240–253.

    Google Scholar 

  • West, D. A., Snellings, W. M., and Herbek, T. A., 1972, Pupal color dimorphism and its environmental control in Papilio polyxenes asterius Stoll (Lepidoptera: Papilionidae), J. N.Y. Entomol. Soc. 80: 205–211.

    Google Scholar 

  • Wiklund, C., 1975, Pupal colour polymorphism in Papilio machaon L. and the survival in the field of cryptic vs. non-cryptic pupae, Trans. R. Entomol. Soc. Lond. 127: 73–84.

    Google Scholar 

  • Williams, G. C., 1975, Sex and Evolution,Princeton Univ. Press, Princeton.

    Google Scholar 

  • Wilson, F., 1938, Some experiments on the influence of environment upon the forms of Aphis chloris Koch, Trans. R. Entomol. Soc. Lond. 87: 165–180.

    Google Scholar 

  • Zaret, T. M., 1969, Predation-balanced polymorphism or Ceriodaphnia cornuta Sars, Limnol. Oceanogr. 14:301–303.

    Google Scholar 

  • Zaret, T. M., 1972a, Predator-prey interaction in a tropical lacustrine ecosystem, Ecology 53: 48–57.

    Google Scholar 

  • Zaret, T. M., 1972b, Predators, invisible prey, and the nature of polymorphism in the Cladocera (class Crustacea), Limnol. Oceanogr. 17: 171–184.

    Google Scholar 

  • Zaret, T. M., and Kerfoot, W. C., 1975, Fish predation on Bosmina longirostris: body-size selection versus visibility selection, Ecology 56: 232–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Shapiro, A.M. (1976). Seasonal Polyphenism. In: Hecht, M.K., Steere, W.C., Wallace, B. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6950-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6950-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6952-7

  • Online ISBN: 978-1-4615-6950-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics