Skip to main content

Chromosome, DNA and Plant Evolution

  • Chapter

Abstract

The past ten years have seen a remarkable rejuvenation in chromosome cytology. Cytologists are justified in distinguishing between the Old Karyology, which was concerned chiefly with chromosomes as taxonomic markers and with chromosome changes that influence genetic systems through their effects on linkage and recombination, and the New Karyology, which has a much broader base. Chromosomes are now recognized to be not only the carriers of genes in a linear sequence, but simultaneously they are highly complex organelles that contain many diverse mechanisms for controlling cellular proliferation, cell enlargement, and the differential action of genes during development. Some of these mechanisms are based upon the diverse nature of DNA with respect to both structure and function, while others, perhaps the majority of them, reside in the diverse proteins that are complexed with DNA to form the chromatin of chromosomes. These include both the histones, which are associated with the condensation of chromatin and nonspecific repression of DNA transcription (Arbuzova et al., 1968), and a much larger and more diverse assemblage of acidic proteins that perform a variety of functions, including specific activation of transcription (Cameron and Jeter, 1974; Stein et al., 1975ab). Consequently, a new concept that is highly relevant to evolutionists as well as to biologists in general is that of the nucleotype (Bennett, 1972, 1974). This includes not only the genic DNA, but in addition the entire battery of control systems that are built into the nucleus of eukaryote cells. The objective of the present paper is to review current knowledge of the nucleotype in plants, to point out its significance for understanding plant evolution, and to suggest the most promising lines of research for increasing our understanding of the role of the nucleotype in evolution.

The material upon which this review is based was presented at Symposia of the XII International Botanical Congress, Leningrad, July, 1975.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allfrey, V. G., 1974, DNA-binding proteins and transcriptional control in prokaryotic and eucaryotic systems, in Acidic Proteins of the Nucleus (I. Cameron, and J. R. Jeter, eds.), pp. 1–27, Academic Press, New York.

    Google Scholar 

  • Anderson, E., 1949, Introgressive Hybridization, Wiley and Sons, New York.

    Google Scholar 

  • Arbuzova, G. S., Gryaznava, I. M., Morozova, T. M., and Salganik, R. I., 1968, Investigation of diffuse and compact chromatin in the rat liver during hormonal induction, Molecular Biology (Russian Transl.) 2: 249–253.

    Google Scholar 

  • Avanzi, S., Cionini, P.G., and D’Amato, F., 1970, Cytochemical and autoradiographic analyses on the embryo suspensor cells of Phaseolus coccineus, Caryologia 23: 605–638.

    CAS  Google Scholar 

  • Avanzi, S., Maggini, F., and Innocenti, A. M., 1973, Amplification of ribosomal cistrons during the maturation of metaxylem in the root of A Ilium cepa, Protoplasma 16: 197–210.

    Google Scholar 

  • Avdulov, N. P., 1931, Karyo-systematische Untersuchungen der Familie Gramineen, Bull. Appl. Bot. Genet. Pl. Breed. Suppt. 44: 1–428.

    Google Scholar 

  • Ayonoadu, U. W. U., 1974, Nuclear DNA variation in Phaseolus, Chromosoma 48: 41–50.

    CAS  Google Scholar 

  • Ayonoadu, U. W., and Rees, H., 1968, The regulation of mitosis by B-chromosomes in rye, Exp. Cell Res. 52: 284–290.

    PubMed  CAS  Google Scholar 

  • Babcock, E. B., 1947, The Genus Crepis, I and II, Univ. of Calif. Publ. Bot. Vols. 21 and 22. 1030 pp.

    Google Scholar 

  • Baumberger, H., 1970, Chromosomenzahlbestimmungen und Karyotypanalysen bei den Gattungen Anemone, Hepatica und Pulsatilla, Ber. Schw. Bot. Ges. 80: 17–95.

    Google Scholar 

  • Bennett, M. D., 1972, Nuclear DNA content and minimum generation time in herbaceous plants, Proc. R. Soc. Lond. B, 181: 109–135.

    PubMed  CAS  Google Scholar 

  • Bennett, M. D., 1974, Nuclear characters in plants, Brookhaven Symp. Biol., Basic Mechanisms in Plant Morphogenesis 23: 344–366.

    Google Scholar 

  • Bonner, J., Dahmus, M. E., Fambrough, D., Huang, R. C., Marushige, K., and Tuan, D. Y. H., 1968, The biology of isolated chromatin, Science 159: 47–56.

    CAS  Google Scholar 

  • Borun, T. W., 1975, Histones, differentiation and the cell cycle, in Cell Cycle and Cell differentiation. (Reinert, J. and Holtzer, H., eds.), pp. 249–290, Springer, New York.

    Google Scholar 

  • Botchan, M., Kram, R., Schmid, C. W., and Hearst, J. E., 1971, Isolation and chromosomal localization of highly repeated DNA sequences in Drosophila melanogaster, Proc. Nat. Acad. Sci. U.S.A. 68: 1125–1129.

    CAS  Google Scholar 

  • Bram, S., Butler-Browne, G., Baudy, P. and Ibel, K., 1975. Quaternary structure of chromatin, Proc. Nat. Acad. Sci. U.S.A. 72: 1043–1045.

    CAS  Google Scholar 

  • Bridges, C. B., 1935, Salivary chromosome maps, J. Hered. 26: 60–64.

    Google Scholar 

  • Britten, R. J., and Davidson, E. H., 1969, Gene regulation for higher cells: a theory, Science 165: 349–357.

    PubMed  CAS  Google Scholar 

  • Britten, R. J., and Kohne, D. E., 1968, Repeated sequences in DNA, Science 161: 529–540. Brown, S. W., 1966, Heterochromatin, Science 151: 417–425.

    Google Scholar 

  • Burger, E. C., and Scheuermann, W., 1974, Giemsa-Banden und heterochromatische Regionen bei Metaphasechromosomen von Vicia faba, Cytobiologie 9: 23–35.

    Google Scholar 

  • Cameron, I. L., and Jeter, J. R. (eds.), 1974, Acidic Proteins of the Nucleus, Academic Press, New York.

    Google Scholar 

  • Caspersson, T., and Zech, L., eds., 1972, Chromosome Identification-Technique and Applications in Biology and Medicine, Nobel Symposia, Medicine and Natural Sciences, Academic Press, New York.

    Google Scholar 

  • Caspersson, T., Farber, S., Foley, G. E., Kudynowski, J., Modest, E. J., Simonsson, E., Wagh, U., and Zech, L., 1968, Chemical differentiation along metaphase chromosomes, Exptl. Cell Res. 49: 219–222.

    PubMed  CAS  Google Scholar 

  • Chooi, W. Y., 1971, Comparison of the DNA of six Vicia species by the method of DNA-DNA hybridization, Genetics 68: 213–230.

    PubMed  CAS  Google Scholar 

  • Cionini, P. G., 1973, Differential binding of 3H-actinomycin D as compared to other banding patterns in Vicia faba metaphase chromosomes, Caryologia 26: 541–547.

    CAS  Google Scholar 

  • Comings, D. E., 1973, Biochemical mechanisms of chromosome banding and color banding with acridine orange, Nobel Symposium 23: 293–299.

    Google Scholar 

  • Comings, D. E., Avelino, E., Okada, T. A., and Wyandt, H. E., 1973, The mechanism of C-and G-banding of chromosomes, Exp. Cell Res. 77: 469–493.

    PubMed  CAS  Google Scholar 

  • Cook, P. R., 1974, On the inheritance of differentiated traits, Biol. Rev. 49: 51–84. Cullis, C. A., 1973, DNA differences between flax genotrophs, Nature 243: 515–516.

    Google Scholar 

  • Cullis, C. A., and Schweizer, D., 1974, Repetitious DNA in some Anemone species, Chromosoma 44: 417–421.

    CAS  Google Scholar 

  • Davidson, E. H., and Britten, R. J., 1973, Organization, transcription and regulation in the animal genome, Q. Rev. Biol. 48: 565–613.

    PubMed  CAS  Google Scholar 

  • Davidson, E. H., Galau, G. A., Angerer, R. C., and Britten, R. J., 1975, Comparative aspects of DNA organization in Metazoa, Chromosoma 51: 253–259.

    PubMed  CAS  Google Scholar 

  • Delaunay, L., 1926, Phylogenetische Chromosomenverkürzung, Z. Zellf Mikr. Anat. 4: 338–364.

    Google Scholar 

  • Delay, C., 1947, Recherches sur la structure des noyaux quiescents chez les phanérogames, Rev. Cyt. et Cytophs. Veg. 9: 169–222;

    Google Scholar 

  • Delay, C., 1947, Recherches sur la structure des noyaux quiescents chez les phanérogames, Rev. Cyt. et Cytophs. Veg. 10: 103–229.

    Google Scholar 

  • Demarly, Y., 1963, Genétique des tétraploids et amélioration des plantes, Ann. Amélior. Plant. 13: 307–400.

    Google Scholar 

  • Dhir, N. K., and Miksche, J. P., 1974, Intraspecific variation of nuclear DNA content in Pinus resinosa, Ait., Can. J. Genet. Cytol. 16: 77–83.

    Google Scholar 

  • Douvas, A. S., Harrington, C. A., and Bonner, J., 1975, Major nonhistone proteins of rat liver chromatin: preliminary identification of myosin, actin, tubulin and tropomyosin, Proc. Nat. Acad. Sci. U.S.A. 72: 3902–3906.

    CAS  Google Scholar 

  • Dowrick, G. J., and El-Bayoumi, A. S., 1969, Nucleic acid content and chromosome morphology in Chrysanthemum, Genet. Res. 13: 241–250.

    CAS  Google Scholar 

  • Durrant, A., 1962, The environmental induction of heritable change in Linum, Heredity 17: 2761.

    Google Scholar 

  • Durrant, A., 1971, Induction and growth of flax genotrophs, Heredity 27: 277–298.

    Google Scholar 

  • Edwards, G. A., Endrizzi, J. E., and Stein, R., 1974, Genome DNA content and chromosome organization in Gossypium, Chromosoma 47: 309–326.

    Google Scholar 

  • Elgin, S. R., Froehner, S. C., Smart, J. E., and Bonner, J., 1971, The biological chemistry of chromosomal proteins, Advan. Mol. Cell. Biol. 1: 2–57.

    Google Scholar 

  • Emsweller, S. L., and Ruttle, M. L., 1941, Induced polyploidy in floriculture, Biological Symposia 4: 114–130.

    Google Scholar 

  • Evans, G. M., 1968, Nuclear changes in flax, Heredity 23: 25–38.

    Google Scholar 

  • Evans, G. M., Rees, H., Snell, C. L., and Sun, S., 1972, The relationship between nuclear DNA amount and the duration of the mitotic cycle, Chromosomes Today 3: 24–31.

    CAS  Google Scholar 

  • Filion, W. G., 1974, Differential Giemsa staining in plants. I. Banding patterns in three cultivars of Tulipa, Chromosoma (Berl.) 49: 51–60.

    Google Scholar 

  • Flavell, R. B., Bennett, M. D., and Smith, D. B., 1974, Genome size and the proportion of repeated nucleotide sequence DNA in plants, Biochem. Genet. 12: 257–269.

    PubMed  CAS  Google Scholar 

  • Fukuda, I., and Channell, R. B., 1975, Distribution and evolutionary significance of chromosome variation in Trillium ovatum, Evolution 29: 257–266.

    Google Scholar 

  • Gall, J. G., Cohen, E. G., and Polan, M. L., 1971, Repetitive sequences in Drosophila, Chromosoma 33: 319–344.

    PubMed  CAS  Google Scholar 

  • Gall, J. G., Cohen, E. H., and Atherton, D. D., 1973, The satellite DNA’s of Drosophila virilis, Cold Spr. Harbor Symp. Quant. Biol. 38: 417–421.

    Google Scholar 

  • Georgiev, G. P., 1972, The structure of transcriptional units in eukaryotic cells, Curr. Top. Devel. Biol. 7: 1–59.

    CAS  Google Scholar 

  • Gill, B. S., and Kimber, G., 1974, The Giemsa C-banded karotype of rye, Proc. Nat. Acad. Sci. U.S.A. 71: 1247–1249.

    CAS  Google Scholar 

  • Gilmour, R. S., 1974, The role of acidic proteins in gene regulation, in Acidic Proteins of the Nucleus, (Cameron, I. L., and Jeter, J. R. eds.), pp. 297–317, Academic Press, New York.

    Google Scholar 

  • Godin, D. E., and Stack, S. M., 1975, Heterochromatic connectives between the chromosomes of Secale cereale, Can. J. Genet. Cytol. 17: 269–273.

    Google Scholar 

  • Goepfert, D., 1974, Karyotypes and DNA content in species of Ranunculus L. and related genera, Bot. Not. 127: 464–469.

    CAS  Google Scholar 

  • Goepfert, D., 1975, Chromosome length values in digenomic buttercups (Ranunculaceae) and the relation to DNA content, Chromosoma 49: 383–390.

    Google Scholar 

  • Gottesfeld, J. M., Bonner, J., Radda, G. K., and Walker, I. O., 1974, Biophysical studies on the mechanism of quinacrine staining of chromosomes, Biochemistry 13: 2937–2945.

    PubMed  CAS  Google Scholar 

  • Gottesfeld, J. M., Bonner, J., Radda, G. K., and Walker, I. O., 1974, Biophysical studies on the mechanism of quinacrine staining of chromosomes, Biochemistry 13: 2937–2945.

    PubMed  CAS  Google Scholar 

  • Gottesfeld, J. M., Murphy, R. F., and Bonner, J., 1975, Structure of transcriptionally active chromatin, Proc. Nat. Acad. Sci. U.S.A. 72: 4404–4408.

    CAS  Google Scholar 

  • Grau, J., 1964, Die Zytotaxonomie der Myosotis alpestris und der Myosotis sylvaticus-Gruppe in Europa, Oesterr. Bot. Z. 111: 561–617.

    Google Scholar 

  • Greilhuber, J., 1973, Differential staining of plant chromosomes after hydrochloric acid treatments (Hy bands), Oesterr. Bot. Z. 122: 333–351.

    Google Scholar 

  • Hadorn, E., 1965, Problems of determination and transdetermination, Brookhaven Symp. Biol. No. 18, Genetic Control of Differentiation, pp. 148–161.

    Google Scholar 

  • Hilwig, I., and Gropp, A., 1972, Staining of constitutive heterochromatin in mammalian chromosomes with a new fluorochrome, Exp. Cell. Res. 75: 122–126.

    PubMed  CAS  Google Scholar 

  • Holmquist, G., 1975, Hoechst 33258 fluorescent staining of Drosophila chromosomes, Chromosoma 49: 333–356.

    PubMed  CAS  Google Scholar 

  • Horn, J. D., and Walden, D. B., 1971, Fluorescent staining of euchromatin and heterochromatin in maize (Zea mays), Can. J. Genet. Cytol. 13: 811–815.

    Google Scholar 

  • Hoyer, B. H., McCarthy, B. J., and Bolton, E. T., 1964, Molecular approach in the systematics of higher organisms, Science 144: 959–967.

    CAS  Google Scholar 

  • Hsu, T. C., 1973, Longitudinal differentiation of chromosomes, Ann. Rev. Genet. 7: 153–176.

    PubMed  CAS  Google Scholar 

  • Hsu, T. C., Arrighi, F. E., and Saunders, G. F., 1972, Compositional heterogeneity of human heterochromatin, Proc. Nat. Acad. Sci. U.S.A. 69: 1464–1466.

    CAS  Google Scholar 

  • Ingle, J., Pearson, G. G., and Sinclair, J., 1973, Species distribution and properties of nuclear satellite DNA in higher plants, Nature New Biol. 242: 193–197.

    PubMed  CAS  Google Scholar 

  • Jelinek, W., and Darnell, J. E., 1972, Double stranded regions in heterogeneous nuclear RNA from cells, Proc. Nat. Acad. Sci. U.S.A. 69: 2537–2541.

    CAS  Google Scholar 

  • Jermy, A. C., Jones, K., and Colden, C., 1967, Cytomorphological variation in Selaginella, J. Linn. Soc. (Bot.) 60: 147–158.

    Google Scholar 

  • Jeter, J. R., and Cameron, I. L., 1974, Acidic nuclear proteins and the cell cycle, in Acidic Proteins of the Nucleus, ( Cameron, I. L., and Jeter, J. R., eds.) pp. 213–245, Academic Press, New York.

    Google Scholar 

  • Johnson, L. A. S., and Briggs, B. G., 1963, Evolution in the Proteaceae, Aust. J. Bot. 11: 2161.

    Google Scholar 

  • Jones, R. N., and Rees, H., 1968, Nuclear DNA variation in Allium, Heredity 23: 591–605.

    CAS  Google Scholar 

  • Kadouri, A., Atsmon, D., and Edelman, M., 1975, Satellite-rich DNA in cucumber: hormonal enhancement of synthesis and subcellular identification, Proc. Nat. Acad. Sci. U.S.A. 72: 2260–2264.

    CAS  Google Scholar 

  • Kedes, L. H., and Birnstiel, M. L., 1971, Reiteration and clustering of DNA sequences complementary to histone messenger RNA, Nature New Biol. 230: 165–169.

    PubMed  CAS  Google Scholar 

  • Kirianov, G. I., Polyakov, Iu. V., and Chentsov, Iu. S., 1974, Biokhimicheskii podkhod v probleme polinemnosti kromosom nekotorykh rastenii, Dokl. Akad. Nauk USSR 218: 485488. ( Biochemical approach to the problem of chromosome multistrandedness in plants. Russian. )

    Google Scholar 

  • Kleinsmith, L. J., 1974, Acidic nuclear phosphoproteins, in Acidic Proteins of the Nucleus, (Cameron I., and Jeter, J. R. eds.) pp. 103–135, Academic Press, New York.

    Google Scholar 

  • Kornberg, R., 1974, Chromatin structure: a repeating unit of histones and DNA, Science 184: 868–871.

    PubMed  CAS  Google Scholar 

  • Lacy, E., and Axel, R., 1975, Analysis of DNA of isolated chromatin subunits, Proc. Nat. Acad. Sci. U.S.A. 72: 3978–3982.

    CAS  Google Scholar 

  • La Cour, L. F., and Wells, B., 1974, Fine structure and staining behavior of heterochromatic segments in two plants, J. Cell Sci. 14: 505–521.

    PubMed  Google Scholar 

  • Laszlo, A., Brown, S. W., and Hearst, J. E., 1973, Characterization of rapidly renaturing DNA in the genome of Paeonia Brownii, Genetics 74, suppl: s150 (abstract).

    Google Scholar 

  • Latt, S. A., Brodie, S., and Munroe, S. H., 1974, Optical studies of complexes of quanacrine with DNA and chromatin: implications for the fluorescence of cytological chromosome preparations, Chromosoma 49: 17–40.

    PubMed  CAS  Google Scholar 

  • LeStourgeon, W. M., Totten, R., and Forer, A., 1974, The nuclear acidic proteins in cell proliferation and differentiation, in Acidic Proteins of the Nucleus, (Cameron, I., and Jeter, J. R. eds.) pp. 159–190, Academic Press, New York.

    Google Scholar 

  • Lima-de-Faria, A., Pero, R., Avanzi, S., Durante, M., Stable, U., d’Amato, F., and Granstrom, H., 1975, Relation between ribosomal RNA genes and the DNA satellites of Phaseolus coccineus, Hereditas 79: 5–20.

    PubMed  CAS  Google Scholar 

  • Louie, A. J., and Dixon, G. H., 1973, Kinetics of phosphorylation and dephosphorylation of testis histones and their possible role in determining chromosomal structure, Nature New Biol. 243: 164–168.

    PubMed  CAS  Google Scholar 

  • Löve, A., and Löve, D., 1958, Cytotaxonomy and classification of Lycopods, The Nucleus 1: 1–10.

    Google Scholar 

  • Mahr, E. P., and Fox, D. P., 1973, Multiplicity of ribosomal RNA genes in Vicia species having different DNA contents, Nature New Biol. 245: 170–172.

    Google Scholar 

  • Marks, G. E., 1956, Chromosome numbers in the genus Oxalis, New Phyt. 55: 120–129. Marks, G. E., 1957, The cytology of Oxalis dispar (Brown), Chromosoma 8: 650–670.

    Google Scholar 

  • Marks, G. E., and Schweizer, D., 1974, Giemsa banding: Karyotype differences in some species of Anemone and in Hepatica nobilis, Chromosoma 44: 405–416.

    Google Scholar 

  • Martin, P. G., 1966, Variation in the amounts of nucleic acids in the cells of different species of higher plants, Exp. Cell Res. 44: 84–94.

    PubMed  CAS  Google Scholar 

  • McCullagh, D., 1934, Chromosome morphology in Plantaginaceae I, Genetics 16: 1–44. McKay, R. D. G., 1973, The mechanism of G and C banding in mammalian metaphase chromosomes, Chromosoma 44: 1–14.

    Google Scholar 

  • Mehra, P. N., 1961, Cytological evolution of ferns with particular reference to Himalayan forms, Proc. 48th Indian Sci. Congr. II: 1–24.

    Google Scholar 

  • Miksche, J. P., and Hotta, Y., 1973, DNA base composition and repetitious DNA in several conifers, Chromosoma 41: 29–36.

    CAS  Google Scholar 

  • Moutschen, J., and Gilot-Delhalle, J., 1973, Constitutive centromeric heterochromatin in Nigella damascena, Nucleus (Calcutta) 16: 147–149.

    Google Scholar 

  • Munz, P., and Keck, D. D., 1959, A California Flora, pp. 6–35, University of California Press, Berkeley.

    Google Scholar 

  • Nagl, W., 1974, Mitotic cycle time in perennial and annual plants with various amounts of DNA and heterochromatin, Devel. Biol. 39: 342–346.

    CAS  Google Scholar 

  • Nagl, W., and Ehrendorfer, F., 1974, DNA content, heterochromatin, mitotic index and growth in perennial and annual Anthemideae, Plant. Syst. Evol. 123: 35–54.

    Google Scholar 

  • Natarajan, R. K. J., and Rees, H., 1974, Nuclear DNA, heterochromatin and phylogeny of Nicotiana amphidiploids, Chromosoma 47: 75–83.

    Google Scholar 

  • Ohno, S., 1970, Evolution by Gene Duplication, Springer, New York and Berlin.

    Google Scholar 

  • Olins, A. L., and Olins, D., 1974, Spheroid chromatin units (v bodies), Science 183: 330–332.

    PubMed  CAS  Google Scholar 

  • Pardue, M. L., and Gall, J. G., 1970, Chromosomal localization of mouse satellite DNA, Science 168: 1356–1358.

    PubMed  CAS  Google Scholar 

  • Patel, G. L., 1974, Isolation of the nuclear acidic proteins, their fractionation, and some general characteristics, in Acidic Proteins of the Nucleus (I. L. Cameron, and J. R. Jeter, eds.), pp. 29–57, Academic Press, New York.

    Google Scholar 

  • Peacock, W. J., Brutlag, D., Goldring, E., Appelo, R., Hinton, C. W., and Lindsley, D. L., 1973, The organization of highly repeated DNA sequences in Drosophila melanogaster chromosomes, Cold Spr. Harb. Symp. Quant. Biol. 38: 405–416.

    Google Scholar 

  • Price, H. J., 1976, Evolution of DNA content in higher plants, Bot. Rev. 42: 27–52.

    CAS  Google Scholar 

  • Price, H. J., and Bachmann, K., 1975, DNA content and evolution in the Microseridae, Amer. J. Bot. 62: 262–267.

    CAS  Google Scholar 

  • Rae, P. M. M., 1970, Chromosomal distribution of rapidly reannealing DNA in Drosophila melanogaster, Proc. Nat. Acad. Sci. U.S.A. 67: 1018–1025.

    CAS  Google Scholar 

  • Rahn, K., 1957, Chromosome numbers in Plantago, Bot. Tidsskr. 53: 369–378.

    Google Scholar 

  • Ramsay, H. P., 1963, Chromosome numbers in the Proteaceae, Aust. J. Bot. 11: 1–20.

    Google Scholar 

  • Ray, C., 1944, Cytological studies on the flax genus, Linum, Amer. J. Bot. 31: 241–248.

    Google Scholar 

  • Rees, H., and Hazarika, M. H., 1969, Chromosome evolution in Lathyrus, in Chromosomes Today, ( C. D. Darlington, and K. R. Lewis, eds.), Volume 2, pp. 158–165, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Rees, H., and Hutchinson, J., 1973, Nuclear DNA variation due to B chromosomes, Cold Spring Harbor Symp. Quant. Biol. 38: 175–182.

    Google Scholar 

  • Rees, H., and Jones, G. H., 1967, Chromosome evolution in Lolium, Heredity 22: 1–18.

    Google Scholar 

  • Rees, H., and Jones, R. N., 1972, The origin of the wide species variation in nuclear DNA content, Int. Rev. Cytol. 32: 53–92.

    PubMed  CAS  Google Scholar 

  • Rothfels, K., and Heimburger, M., 1968, Chromosome size and DNA values in sundews (Droseraceae), Chromosoma 25: 96–103.

    Google Scholar 

  • Rothfels, K., Sexsmith, E., Heimburger, M., and Krause, M. O., 1966, Chromosome size and DNA content in Ranunculaceae, Chromosoma 20: 54–74.

    Google Scholar 

  • Schmidly, D. J., and Schroeter, G. L., 1974, Karyotype variation in Peromysctts boylei (Rodentia: Cricetidae) from Mexico and corresponding taxonomic implications, Syst. Zool. 23: 333–342.

    Google Scholar 

  • Schwartz, A. G., and Taylor, J. H., 1974, Repeated sequences in the DNA of the eukaryotic genome, Chromosoma 49: 1–15.

    PubMed  CAS  Google Scholar 

  • Schweizer, D., 1973, Differential staining of plant chromosomes with Giemsa, Chromosoma 40: 307–320.

    Google Scholar 

  • Sivolap, Y. M., and Bonner, J., 1971, Association of chromosomal RNA with repetitive DNA, Proc. Nat. Acad. Sci. U.S.A. 68: 387–389.

    CAS  Google Scholar 

  • Sparrow, A. H., Price, H. J., and Underbrink, A. G., 1972, A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations, in Basic Mechanism in Plant Morphogenesis, Brookhaven Symp. Biol. 23: 451–494.

    PubMed  CAS  Google Scholar 

  • Spelsberg, T. C., 1974, The role of acidic proteins in binding steroid hormones, in Acidic Proteins of the Nucleus, (I. L. Cameron, and J. R. Jeter, eds.), pp. 247–206, Academic Press, New York.

    Google Scholar 

  • Stack, S. M., 1974, Differential Giemsa staining of kinetochores and nucleolus organizer heterochromatin in mitotic chromosomes of higher plants, Chromosoma 47: 361–378.

    Google Scholar 

  • Stack, S. M., and Clarke, C. R., 1973, Pericentromeric chromosome banding in higher plants, Canad. J. Genet. Cytol. 15: 367–369.

    Google Scholar 

  • Stack, S. M., Clarke, C. R., Cary, W. E., and Muffly, J. T., 1974, Different kinds of heterochromatin in higher plant chromosomes, J. Cell Sci. 14: 499–504.

    PubMed  CAS  Google Scholar 

  • Stebbins, G. L., 1949, The evolutionary significance of natural and artificial polyploids in the family Gramineae, Proc. 8th Int. Congr. Genet. Hereditas Suppl. 461–485.

    Google Scholar 

  • Stebbins, G. L., 1966, Chromosome variation and evolution, Science 152: 1463–1469.

    PubMed  CAS  Google Scholar 

  • Stebbins, G. L., 1971, Chromosomal evolution in higher plants, E. Arnold, London.

    Google Scholar 

  • Stein, G. S., Spelsberg, T. C., and Kleinsmith, L. J., 1974, Nonhistone proteins and generegulation, Science 183: 817–824.

    PubMed  CAS  Google Scholar 

  • Stein, G. S., Stein, J. S., and Kleinsmith, L. J., 1975a, Chromosomal proteins and gene regulation, Sci. Am. 232 (2): 46–57.

    PubMed  CAS  Google Scholar 

  • Stein, G. S., Stein, J. S., and Kleinsmith, L., (eds.) 1975b, Chromosomal Proteins and Their Role in the Regulation of Gene Expression, Academic Press, New York.

    Google Scholar 

  • Sueoka, N., 1961, Variation and heterogeneity of base composition of deoxyribosenucleic acids: a compilation of old and new data, J. Mol. Biol. 3: 31–40.

    CAS  Google Scholar 

  • Timmis, J. N., and Ingle, J., 1973, Environmentally induced changes in rRNA gene redundancy, Nature New Biol. 244: 235–236.

    PubMed  CAS  Google Scholar 

  • Timmis, J. N., and Ingle, J., 1974, The nature of the variable DNA associated with environmental induction in flax, Heredity 33: 339–346.

    Google Scholar 

  • Timmis, J. N., and Ingle, J., 1975, The status of ribosomal RNA genes during nuclear DNA reversion in flax, Biochem. Genet. 13: 629–634.

    PubMed  CAS  Google Scholar 

  • Tschermak-Woess, E., and Hasitschka, G., 1953, Veränderungen der Kernstruktur während der Endomitose, rhythmisches Kernwachs Kernwachstum und verschiedenes Heterochromatin bei Angiospermen, Chromosoma 5: 574–614.

    PubMed  CAS  Google Scholar 

  • Van’t Hof., J., 1965, Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants, Exp. Cell Res. 39: 48–58.

    Google Scholar 

  • Vosa, C. G., 1970, Heterochromatin recognition with fluorochromes, Chromosoma 30: 366–372.

    Google Scholar 

  • Vosa, C. G., 1973, The enhanced and reduced quinacrine fluorescence bands and their relation-ship to the Giemsa pattern in Allium flavum, Nobel Symposium 23: 156–158.

    Google Scholar 

  • Vosa, C. G., 1975, The determination of heterochromatic regions in plant chromosomes (abstract), Abstracts, XII Int. Bot. Congr. (Leningrad): 239.

    Google Scholar 

  • Vosa, C. G., 1975, The determination of heterochromatic regions in plant chromosomes (abstract), Abstracts, XII Int. Bot. Congr. (Leningrad): 239.

    Google Scholar 

  • Vosa, C. G., and Marchi, P., 1972, Quinacrine fluorescence, Giemsa staining and heterochromatin in plants, Nature New Biology 237: 191–192.

    PubMed  CAS  Google Scholar 

  • Walker, P. M. B., 1971, “Repetitive” DNA in higher organisms, Progress in Biophysics and Molecular Biology 23: 145–190.

    PubMed  CAS  Google Scholar 

  • Wallace, H., Sparkes, C. A., and Maden, M., 1972, Nuclear DNA content of three Crepis species, Heredity 29: 367–373.

    Google Scholar 

  • Weisblum, B., 1973, Fluorescent probes of chromosomal DNA structure: three classes of acridines, Cold Spring Harbor Symp. Quant. Biol. 38: 441–449.

    Google Scholar 

  • Weisblum, B., and De Haseth, P. L., 1972, Quinacrine, a chromosome stain specific for deoxyadenilate deoxythymidilate-rich regions in DNA, Proc. Nat. Acad. Sci. U.S.A. 69: 629–632.

    CAS  Google Scholar 

  • Weisblum, B., and Haeussler, E., 1974, Fluorometric properties of the dibenzimidazole derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA, Chromosoma 46: 255–260.

    PubMed  CAS  Google Scholar 

  • Wexelsen, H., 1965, Studies in tetraploid red clover. Fertility and seed yield, inbreeding and heterosis effects, Scient. Rep. Agric. Coll. Norway 44: 1–23.

    Google Scholar 

  • Wilhelm, J. A., Spelsberg, T. C., and Hnlica, L. S., 1971, Nuclear proteins in genetic restriction I. The histones, Sub-cell. Biochem. 1: 39–65.

    CAS  Google Scholar 

  • Wilson, A. C., Sarich, V. M., and Maxson, L. R., 1974, The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein and anatomical evolution, Proc. Nat. Acad. Sci. U.S.A. 71: 3028–3030.

    CAS  Google Scholar 

  • Yordansky, A. B., 1975, The complex study of Allium chromosomes. Oral contribution, XII International Botanical Congress, Leningrad.

    Google Scholar 

  • Yunis, J. J., and Sanchez, O., 1973, G-banding and chromosome structure, Chromosoma 44: 15–23.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Stebbins, G.L. (1976). Chromosome, DNA and Plant Evolution. In: Hecht, M.K., Steere, W.C., Wallace, B. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6950-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6950-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6952-7

  • Online ISBN: 978-1-4615-6950-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics