Advertisement

Hormonal Control of Insect Migratory Behavior

  • M. A. Rankin
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Most insect migrants seem to share in common certain behavioral, physiological, and ecological characteristics (Dingle, 1972). Behaviorally, migrants are generally extremely responsive to stimuli which induce flight and less responsive or unresponsive to stimuli associated with reproduction and feeding (Kennedy, 1961). In many species migration occurs in response to short photoperiods and is an alternative to immediate reproduction. Often associated with and induced by conditions which produce diapause, it offers an escape from unfavorable conditions in space as diapause provides an escape in time. Migrants, like diapausing insects, are often found to have hypertrophied fat bodies and immature ovaries (Johnson, 1969). Since migration is associated with a distinct set of physiological characteristics similar to those which accompany adult diapause, the possibility of an hormonal component to its control was often suggested by earlier workers. In his work on insect migration, Johnson (1969) put forth a model in which adult migration was triggered when ecdysone was absent and the juvenile hormone (JH) titer was low. The rise in JH titer then caused both the cessation of migratory behavior and the onset of oogenesis.

Keywords

Flight Muscle Flight Activity Flight Performance Flight Behavior Monarch Butterfly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajami, A.M., Riddiford, L.M.: Comparative metabolism of the cecropia juvenile hormone. J. Insect Physiol. 19, 635–349 (1973).CrossRefGoogle Scholar
  2. Barker, J.F., Herman, W.S.: Effect of photoperiod and temperature on reproduction of the monarch butterfly, Danaus plexippus. J. Insect Physiol. 22, 1565–1568 (1976).PubMedCrossRefGoogle Scholar
  3. Beenakkers, A.M.T.: The influence of corpus allatum and corpus cardiacum on lipid metabolism in Locusta migratoria. Gen. Comp. Endocr. 13, Abstract 12 (1969).Google Scholar
  4. Borden, J.H., Slater, C.E.: Induction of flight muscle degeneration by synthetic juvenile hormone in Ips confusus (Coleoptera: Scolytidae). Z. Vergl. Physiol. 61, 366–368 (1968).CrossRefGoogle Scholar
  5. Brower, L.: Monarch migration. Natural History, 86, 40–53 (1977).Google Scholar
  6. Brower, L.: Evidence for interspecific competition in natural populations of the monarch and queen butterflies, Danaus plexippus and D. gilippus berenice in south central Florida. Ecology 43, 549–552 (1962).CrossRefGoogle Scholar
  7. Brower, L.: Studies on the migration of the monarch butterfly I. Breeding populations of Danaus plexippus and D. gilippus berenice in south central Florida. Ecology 42, 76–83 (1961).CrossRefGoogle Scholar
  8. Caldwell, R.L.: A comparison of dispersal strategies in two species of milkweed bugs, Oncopeltus fasciatus and Lygaeus kalmii. Ph.D. thesis, University of Iowa (1969.)Google Scholar
  9. Caldwell, R.L.: A comparison of the migratory strategies of two milkweed bugs. In: Experimental Analysis of Insect Behaviour. Barton Browne, L. (ed.). Berlin-Heidelberg- New York: Springer 1974.Google Scholar
  10. Caldwell, R.L., Rankin, M.A.: Effects of a juvenile hormone mimic on flight in the milkweed bug, Oncopeltus fasciatus. Gen. Comp. Endocrinol. 19, 601–605 (1972).PubMedCrossRefGoogle Scholar
  11. Caldwell, R.L., Rankin, M.A.: Separation of migratory from feeding and reproductive behavior in Oncopeltus fasciatus. J. Comp. Physiol. 88, 313–324 (1974).CrossRefGoogle Scholar
  12. Carlisle, D.B., Ellis, P.E.: La persistance des glands ventrales cephaliques chez les Criquets solitaires. C.r. Acad. Sci. Paris 249, 1059–1060 (1959).Google Scholar
  13. Carlisle, D.B., Ellis, P.E.: Prothoracic gland and gregarious behaviour in locusts. Nature 200, 603–604 (1963).CrossRefGoogle Scholar
  14. Cassier, P.: Action des implantations de corps allates sur la reactivite phototropique de Locusta migratoria migratorioides (R. et F.), phase gregaria. C.R. Hebd. Seanc. Acad. Sci., Paris 257, 4048–4049 (1963).Google Scholar
  15. Cassier, P.: Etude et interpretation des effets a long terme, des implantations abdominales de corps allates, sur la reactivite phototropique de Locusta migratoria migratorioides (R. et F.), phase gregaire. C.R. Hebd. Seanc. Acad. Sci., Paris 258, 723–725 (1964).Google Scholar
  16. Chudakova, I.V., O.M. Bocharova-Messner: Endocrine regulation of the condition ofthe wing musculature in the imago of the house cricket (Acheta domestica L.). Akad. Nauk S.S.S.R. Doklady Biol. Sci. 179, 157–159 (1968).Google Scholar
  17. Davis, N.T.: Hormonal control of flight muscle histolysis in Dysdercus fulvoniger. Ann. Ent. Soc. 68, 710–714 (1975).Google Scholar
  18. Dahm, K.H., Bhaskaran, G., Peter, M.G., Shink, P.D., Seshan, K.R., Roller, H.: On the identity of the juvenile hormones in insects. In: The Juvenile Hormones. L.I. Gilbert, (ed.). New York: Plenum Press 1976, pp. 19–47.Google Scholar
  19. Dingle, H.: The relation between age and flight activity in the milkweed bug, Oncopeltus. J. Exp. Biol. 42, 269–283 (1965).Google Scholar
  20. Dingle, H.: Some factors affecting flight activity in individual milkweed bugs (Oncopeltus). J. Exp. Biol. 44, 335–343.Google Scholar
  21. Dingle, H.: Life history and population consequences of density photoperiod and temperature in a migrant insect, the milkweed bug, Oncopeltus. Amer. Natur. 102, 149–163 (1968).CrossRefGoogle Scholar
  22. Dingle, H.: Migration strategies of insects. Science N.Y. 175, 1327–1335 (1972).CrossRefGoogle Scholar
  23. Dingle, H.: Diapause in a migrant insect, the milkweed bug, Oncopeltus fasciatus (Dallas) (Hemiptera; Lygaeidae). Oecologia 17, 1–10 (1974).CrossRefGoogle Scholar
  24. Dingle, H., Arora, G.K.: Experimental studies of migration in bugs of the genus Dysdercus. Oecologia 12, 119–140 (1973).CrossRefGoogle Scholar
  25. Edwards, F.J.: Endocrine control of flight muscle histolysis in Dysdercus intermedin. J. Insect Physiol. 16, 2027–2031 (1970).PubMedCrossRefGoogle Scholar
  26. Fain, M.J., Riddiford, L.M.: Juvenile hormone titers in the hemolymph during late larval development of the tobacco hornworm, Manduca sexta (L.). Biol. Bull. 149, 506–521 (1975).PubMedCrossRefGoogle Scholar
  27. Ferkovich, S.M., Silhacek, D.L., Rutter, R.R.: Juvenile hormone binding proteins in the haemolymph of the indian meal moth. Insect Biochem. 5, 141–150 (1975).CrossRefGoogle Scholar
  28. Goldsworthy, G.J., Coupland, A.J., Mordue, W.: The effects of corpora cardiaca on tethered flight in the locust. J. Comp. Physiol. 82, 339–346 (1973).CrossRefGoogle Scholar
  29. Goldsworthy, G.J., Johnson, R.A., Mordue, W.: In vivo studies on the release of hormones from the corpora cardiaca of locusts. J. Comp. Physiol. 79, 85–96 (1972).CrossRefGoogle Scholar
  30. Gordon, B.R., Gordon H.T.: Sperm storage and depletion in the spermatheca of Oncopeltus fasciatus. Ent. Exp. & Appl. 14, 425–433 (1971).CrossRefGoogle Scholar
  31. Haskell, P.T., Moorhouse, J.E.: A blood-borne factor influencing the activity of the central nervous system of the desert locust. Nature 197, 56–58 (1963).CrossRefGoogle Scholar
  32. Herman, W.S.: The endocrine basis of reproductive inactivity in monarch butterflies overwintering in central California. J. Insect Physiol. 19, 1883–1887 (1973).CrossRefGoogle Scholar
  33. Johansson, A.S.: Relation of nutrition to endocrine-reproductive functions in the milkweed bug, Oncopeltus fasciatus (Dallas). Nytt Mag. Zool. 7, 1–132 (1958).Google Scholar
  34. Johnson, C.G.: Migration and Dispersal of Insects by Flight. London: Methuen, 1969.Google Scholar
  35. Johnson, R.A., Hill, L.: Quantitative studies on the activity of the corpora allata in adult male Locusta and Schistocerca. J. Insect Physiol. 19, 2459–2467 (1973).CrossRefGoogle Scholar
  36. Judy, K.J., Schooley, D.A., Hall, M.A., Bergot, B.J., Siddal, J.B.: Chemical structure and absolute configuration of a juvenile hormone from grasshopper corpora allata in vitro. Life Sci. 13, 1511–1516 (1973).PubMedCrossRefGoogle Scholar
  37. Kennedy, J.S.: Phase transformation in locust biology. Biol. Rev. 31, 349–370 (1956).CrossRefGoogle Scholar
  38. Kramer, K.J., Dunn, P.E., Peterson, R.C., Hidelisa, L.S., Sanburg, L.L., Law, J.H.: Purification and characterization of the carrier protein for juvenile hormone from the hemolymph of the tobacco hornworm Manduca sexta Johannson (Lepidop-tera: Sphingidae). J. Biol. Chem. 251, 4979–4985 (1976).PubMedGoogle Scholar
  39. Lebrun, D.: Corps allates et instinct genesique de Calotermes flavicolis Fabr. Le declenchement de l’activite sexuaelle des jeunes imagos ailees de Calotermes flavicollis Fabr necessite la presence dans l’organisme d’un taux eleve d’hormone juvenile. C.R. Hebd. Sci., Paris 269, 632–634 (19 69).Google Scholar
  40. Lee, S.S., Goldsworthy, G.J.: Allatectomy and flight performance in male Locusta migratoria. J. Comp. Physiol. 100, 351–359 (1975).Google Scholar
  41. Lee, S.S., Goldsworthy, G.J.: The effect of allatectomy and ovariectomy on flight performance in female Locusta migratoria migratorioides (R. & F.) Acrida 5, 169–180 (1976).Google Scholar
  42. Mayer, R.J., Candy, D.J.: Control of haemolymph lipid concentration during locust flight. An adipokinetic hormone from the corpora cardiaca. J. Insect Physiol. 15, 598–611 (1969).CrossRefGoogle Scholar
  43. Michel, R.: Influence des corpora cardiaca sur la tendance au vol soutenu de criquet pelerin Schistocerca gregaria (Forsk.). J. Insect Physiol. 18, 1811–1827 (1972a).CrossRefGoogle Scholar
  44. Michel, R.: Etude experimentale de l’influence des glandes prothoraciques sur l’activite de vol du Criquet Pelerin Schistocerca gregaria. Gen. Comp. Endocrin. 19, 96–101 (1972b).CrossRefGoogle Scholar
  45. Michel, R.: Variations de la tendance au vol soutenu du criquet pelerin Schistocercagregaria apres implantations de corpora cardiaca. J. Insect Physiol. 19, 1317–1325 (1973).CrossRefGoogle Scholar
  46. Michel, R., Bernard, A.: Influence de la pars intercerebralis sur l’induction au vol soutenu chez le criquet pèlerin Schistocerca gregaria. Acrida 2, 139–149 (1973).Google Scholar
  47. Mordue, W., Goldsworthy, G.J.: The physiological effects of corpus cardiacum extracts in locusts. Gen and Comp. Endocrin. 12, 360–369 (1969).Google Scholar
  48. Muller, P.J., Masner, P., Trautmann, K.H.: The isolation and identification of juvenile hormone from cockroach corpora allata in vitro. Life Sci. 15, 915–921 (1974).PubMedCrossRefGoogle Scholar
  49. Odhiambo, T.R.: The metabolic effects of the corpus allatum hormone in the male desert locust. J. Exp. Biol. 45, 51–63 (1966).PubMedGoogle Scholar
  50. Urquhart, F.A.: The Monarch Butterfly. Toronto: Univ. Toronto Press 1960, 361pp. Urquhart, F.A., Urquhart, N.R.: A study of the peninsular Florida population of the monarch butterfly (Danaus p. plexippusj Danaidae), J. Lepid. Soc. 30, 73–87 (1976).Google Scholar
  51. Rankin, M.A.: An experimental analysis of the physiological control of flight and reproduction in Oncopeltus fasciatus (Heteroptera: Lygaeidae). Ph.D. Thesis, University of Iowa (1972).Google Scholar
  52. Rankin, M.A.: The hormonal control of flight in the milkweed bug, Oncopeltus fasciatus. In: Experimental Analysis of Insect Behavior. Barton Browne, L. (ed.) Berlin-Heidelberg-New York: Springer 1974.Google Scholar
  53. Rankin, M.A., Gandy, W., Jordan, R. Juvenile hormone specific esterase activity in Oncopeltus: A mechanism of ovarian regulation of flight behavior. (Ms. in preparation.)Google Scholar
  54. Rankin, M., Riddiford, L.M.: The hormonal control of migratory flight in Oncopeltus fasciatus; The effects of the corpus cardiacum, corpus allatum and starvation on migration and reproduction. Gen. and Comp. Endocrin. (in press).Google Scholar
  55. Rankin, M., Riddiford, L.M.: The significance of hemolymph juvenile hormone titer changes in the timing of migration and reproduction in adult Oncopeltus fasciatus. (J. Insect Physiol, in press) (1977b).Google Scholar
  56. Rankin, D., Riddiford, L.M.: The influence of artificial selection on hemolymph juvenile hormone titers and the timing of reproduction and flight in adult Oncopeltus fasciatus. (Ms. in preparation) (1977c).Google Scholar
  57. Robinson, N.L., Goldsworthy, G.J.: The effects of locust adipokinetic hormone on flight muscle metabolism in vivo and in vitro. J. Comp. Physiol. 89, 369–377 (1974).CrossRefGoogle Scholar
  58. Sandburg, L.L., Kramer, K.J., Kexdy, F.J, Law, J.H.: Juvenile hormone-specific esterases in the haemolymph of the tobacco hornworm, Manduca sexta. J. Insect Physiol. 21, 873–887 (1975).CrossRefGoogle Scholar
  59. Stengel, M.: Migratory behaviour of the female of the common cockchafer Melolontha melolontha L. and its neuroendocrine regulation. In: Experimental Analysis of Insect Behaviour. Barton Browne, L. (ed.). Berlin-Heidelberg-New York: Springer 1974.Google Scholar
  60. Stengel, M., Schubert, G.: Role des Corpora allata dans le comportement migrateur de la femelle de Melolontha melolontha L. (Coleoptere Scarabidae). C.R. Hebd. Seanc. Sci., Paris (D) 270, 181–184 (1970).Google Scholar
  61. Stengel, M., Schubert, G.: Influence des Corpora allata de la femelle pondeuse de Melolontha melolontha L. (Coleoptere Scarabidae) sur l’ovogenese de la femelle prealimentaire. C. R. Hebd. Seanc. Acad. Sci., Paris (D) 274, 426–428 (1972a).Google Scholar
  62. Stengel, M., Schubert, G.: Influence des Corpora allata de la femelle pondeuse de Melolontha melolontha L. (Coleoptere Scarabidae) sur le comportement migrateur du maie. C.R. Hebd. Seanc. Acad. Sci., Paris (D) 274, 568–570 (1972b).Google Scholar
  63. Stengel, M., Schubert, G.: Influence de la Pars intercerebralis et des Corpora cardiace de la femelle pondeuse sur l’ovogenese de la femelle prealimentaire de Melolontha melolontha L. (Coleoptere Scarabidae). C.R. Hebd. Seanc. Acad. Sci., Paris (D) 275, 1653–1654 (1972c).Google Scholar
  64. Stengel, M., Schubert, G.: Role de la Pars intercerebralis et des Corpora cardiaca de la femelle pondeuse de Melolontha melolontha L. (Coleoptere Scarabidae) dans le comportement migratoire de la femelle prealimentaire. C.R. Hebd. Seanc. Acad. Sci., Paris (D) 275, 2161–2162 (1972d).Google Scholar
  65. Strong, L.: The effect of enforced locomotor activity on lipid content in allatec-tomized males of Locusta migratoria migratorioid.es. J. Exp. Biol. 48, 625–630 (1968a).Google Scholar
  66. Strong, L.: Locomotor activity, sexual behavior, and the corpus allatum hormone in males of Locusta migratoria migratorioid.es. J. Insect Physiol. 14, 1685–1692 (1968b).CrossRefGoogle Scholar
  67. Trautmann, K.H., Suchy, M., Masner, P., Wipf, H.K., Schuler, A.: Isolation and identification of juvenile hormones by means of a radioactive isotope dilution method: Evidence for JH III in eight species from four orders. In: The Juvenile Hormones. Gilbert, L.I. (ed.). New York: Plenum Press 1976, pp. 118–130.Google Scholar
  68. Truman, J.W., Riddiford, L.M., Safranek, L.: Hormonal control of cuticle coloration in the tobacco hornworm, Manduca Sexta: Basis of an ultrasensitive bioassay for juvenile hormone. J. Insect Physiol. 19, 195–205 (1973).CrossRefGoogle Scholar
  69. Wajc, E.: The effect of the corpora allata on flight activity of Locusta migratoria migratorioides (R. & F.). Ph.D. Thesis, University of London (1973).Google Scholar
  70. Wajc, E., Pener, M.P.: The effect of the corpora allata on the flight activity of the male African migratory locust, Locusta migratoria migratorioides (R. & F.) Gen. Comp. Endocr. 17, 327–333 (1971).PubMedCrossRefGoogle Scholar
  71. Weirich, G., Wren, J.: The substrate specificity of juvenile hormone esterase from Manduca sexta hemolymph. Life Sci. 13, 213–226 (1973).PubMedCrossRefGoogle Scholar
  72. Weirich, G., Wren, J.: Juvenile hormone esterase in insect development. A comparative study. Physiol. Zool. 49, 341–350 (1976).Google Scholar
  73. Weirich, G., Wren, J., Siddall, J.B.: Development stages of the juvenile hormone esterase activity in hemolymph of the tobacco hornworm, Manduca sexta. Insect Biochem. 3, 397–407 (1973).CrossRefGoogle Scholar
  74. Weis-Fogh, T.: Fat combustion and metabolic rate of flying locusts (Schistocerca gregaria F.). Phil. Trans. B 237, 1–36 (1952).CrossRefGoogle Scholar
  75. Whitmore, D., Gilbert, L.I., Ittycheriah, P.I.: The origin of hemolymph carbo-xylesterases ‘induced’ by the insect juvenile hormone. Mol. Cell. Endocrin. 1, 37–54 (1974).CrossRefGoogle Scholar
  76. Wigglesworth, V.B.: Insect Hormones, San Francisco: W.H. Freeman, 1970.Google Scholar
  77. Wilde, J. de; Boer, J.A. de: Physiology of diapause in the adult Colorado potato beetle. II. Diapause as a case of pseudoallatectomy. J. Insect Physiol. 6, 152–161 (1961).CrossRefGoogle Scholar
  78. Wilde, J. de; Boer, J.A. de: Humoral and nervous pathways in photoperiodic induction of diapause in Leptinotarsa decemlineata. J. Insect Physiol. 15, 661–675 (1969).CrossRefGoogle Scholar
  79. Wilde, J. de, Staal, G., Kort, C. de, DeLoof, A., Baard, G.: Juvenile hormone titer in the hemolymph as a function of photoperiodic treatment in the adult Colorado beetle (Leptinotarsa decemlineata Say). Proc. K. Ned. Akad. Wet. (C) 71, 321–326 (1968).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • M. A. Rankin

There are no affiliations available

Personalised recommendations