Skip to main content

Abstract

The concept of impulse and momentum derives directly from Newton’s law of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yeh, Hsan, and Abram, Joel I, Joel I., “Principles of Mechanics of Solids and Fluids,” Vol. I, New York, McGraw-Hill Book Co., 1960.

    Google Scholar 

  2. Synge, Johm L., and Griffith, Byron A, Byron A., “Principles of Mechanics,” New York, McGraw-Hill Book Co., Third Edition, 1959.

    Google Scholar 

  3. Goldstein, Herbert, “Classical Mechanics,” Reading, Mass., Addison-Wesley, 1950.

    Google Scholar 

  4. Feynman, Richard T, Richard T., “Lectures on Physics,” New York, Addison-Wesley Pub.Co., 1963.

    Google Scholar 

  5. Simon, Keith R., “Mechanics,” 3rd. Ed., New York, Addison-wesley Pub.Co., 1971.

    Google Scholar 

  6. Bewley, L. V., “Flux Linkages and Electromagnetic Induction,” New York, Dover Publications, 1964.

    Google Scholar 

  7. Fano, R. M., Chu, L. J., and Adler, R. B. “Electromagnetic Fields, Energy, and Forces,” New York, John Wiley and Sons, 1960.

    Google Scholar 

  8. Holt, C. A. A., “Introduction to Electromagnetic Fields and Waves, New York, John Wiley and Sons, 1963.

    Google Scholar 

  9. Moon, P., and Spencer, D. E., “Foundations of Electrodynamics,” New York, Van Nostrand Reinhold, 1960.

    Google Scholar 

  10. Scott, W. T., “The Physics of Electricity and Magnetism,” New York, John Wiley and Sons, 1959.

    Google Scholar 

  11. Plonsey, R., and Collins, R. E. E., “Principles and Applications of Electromagnetic Fields,” New York, McGraw-Hill Book Co., 1961.

    Google Scholar 

  12. Welsby, V. G. G., “The Theory and Design of Inductance Coils,” London, MacDonald and Co., 2nd Edition, 1960.

    Google Scholar 

  13. Simpson, P. G., “Induction Heating, New York, McGraw-Hill Book Co., 1960.

    Google Scholar 

  14. Tudbury, C. A. “Basics of Induction Heating,” Vol. 1, 132 pp. and Vol. 2, 133 pp., New York, John Rider, 1960.

    Google Scholar 

  15. Vaughan, J. T., and Williamson, J. W., “Design of Induction Heating Coils for Cylindrical Nonmagnetic Load,”AIEE Transactions 64, 587–592 (1945).

    Google Scholar 

  16. Vaughan, J. T., and Williamson, J. W., “Design of Induction Heating Coils for Cylindrical Magnetic Loads,”AIEE Transactions 66, 887–892 (1947).

    Google Scholar 

  17. Baker, R. M., “Design and Calculation of Induction Heating Coils,” AIEE Transactions 76, Part II, Apl. and Industry. 31–40 (1957).

    Google Scholar 

  18. Heat Treating, Cleaning, and Finishing,“ in ”Metals Handbook,“ 8th Ed., Vol. 2, p. 173, Metals Park, Ohio, American Society of Metals, 1962.

    Google Scholar 

  19. Cochin, Ira, “Analysis and Design of Dynamic Systems,” New York, Harper and Row, 1980.

    Google Scholar 

  20. Cochin, Ira, “Analysis and Synthesis of INS in Universal Terms,” Ph.D. thesis Cooper Union, New York, 1969.

    Google Scholar 

  21. Bachman, K. L., “Ring Laser Gyro Navigator,” Navigation 25(2), 142–152 (Summer 1977).

    Google Scholar 

  22. Daniel, H. L., and Hulsiander, D. B., “Standard INS Program Status,” Navigation,27(1), 65–71, (Spring 1980).

    Google Scholar 

  23. Harrison, J. V., “Reliability and Accuracy Prediction for a Redundant Strapdown Navigator,” Guidance and Control, 4 (5), 523–529 (Sept. 1981).

    Article  Google Scholar 

  24. Jamieson, J. A., McFee, R. H., Plass, G. N., Grube, R. H., and Richards, R. G., “Infrared Physics and Engineering,” New York, McGraw-Hill Book Co., 1963.

    Google Scholar 

  25. Smith, R. A., Jones, T. E., and Chasmar, R. P. P., “The Detection and Measurement of Infrared Radiation,” Fair Lawn, N.J., Oxford University Press, 1957.

    Google Scholar 

  26. Herzberg, G, G., “Infrared and Raman Spectra of Poly-atomic Molecules,” New York, Van Nostrand Reinhold, 1945.

    Google Scholar 

  27. Szymanski, H. A., and Alperts, N. A., “IR: Theory and Practice of Infrared Spectroscopy,” Plenum Press, 1964.

    Google Scholar 

  28. Kruse, P. W., McGlauchlin, L. D., and McQuistan, R. B., “Elements of Infrared Technology,” New York, John Wiley and Sons, 1962.

    Google Scholar 

  29. Hudson, R. D., Jr., “Infrared System Engineering,” New York, John Wiley and Sons, 1969.

    Google Scholar 

  30. Wolfe, W. L., and Zissis, G. J. (Eds.), “The Infrared Handbook,” Ann Arbor, MI, Environmental Research Institute of Michigan, 1978.

    Google Scholar 

  31. Keyes, R. J. (Ed.), “Optical and Infrared Detectors,” Second Edition, Heidelberg, Springer-Verlag, 1980.

    Google Scholar 

  32. Martin, A. E. E., “Infrared Interferometric Spectrometers,” Amsterdam, Elsevier Scientific Publishing Co., 1980.

    Google Scholar 

  33. Born, M., and Wolf, E, E., “Principles of Optics,” 5th Ed., Chs. 7 and 10, New York, Pergamon Press, 1975.

    Google Scholar 

  34. Cook, A. H. H., “Interference of Electromagnetic Waves,” Oxford, Clarendon Press, 1971.

    Google Scholar 

  35. Jenkins, F. A., and White, H. A., “Fundamentals of Optics,” Chs. 12, 13, 14, and 16, New York, McGraw-Hill, 1976.

    Google Scholar 

  36. Klein, M. V. V., “Optics,” Chs. 5 and 6, New York, John Wiley and Sons, Inc., 1970.

    Google Scholar 

  37. Steel, W. H. H., “Interferometry,” London, Cambridge Univ. Press, 1967.

    Google Scholar 

  38. Strong, J., “Concepts of Classical Optics,” Chs. 8, 11, 12, and App. A, B, and F, San Francisco, W. H. Freeman and Co., 1958.

    Google Scholar 

  39. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B. B., “Molecular Theory of Gases and Liquids,” New York, John Wiley and Sons, 1954.

    Google Scholar 

  40. Hirschfelder, J. O., Ed., “Intermolecular Forces,” Adv. Chem. Phys., 12 (1967). “Intermolecular Forces,” Disc. Faraday Soc., 40 (1965).

    Google Scholar 

  41. Margenau, H., and Kestner, N. R., “Theory of Intermolecular Forces,” Oxford, Pergamon Press, 1971. Schlier, C., in Eyring, H., Ed., Ann. Rev. Phys. Chem., 20, 191–218 (1969).

    Google Scholar 

  42. “Annals of the IGY,” New York, Pergamon Press, 1959.

    Google Scholar 

  43. “Annals of the IQSY,” Cambridge, Massachusetts, M.I.T. Press, 1969.

    Google Scholar 

  44. Pomerantz, Martin A., “The IQSY and Solar-Terrestrial Research,” Proc. Nat. Acad. Sci. 58, 2136 (1967).

    Article  Google Scholar 

  45. Solar-Terrestrial Research for the 1980’s,“ Washington, D.C., National Academy Press, 1981.

    Google Scholar 

  46. The International Magnetospheric Study: Report of a Working Conference on Magnetospheric Theory,“ Washington, D.C., National Academy of Sciences, 1979.

    Google Scholar 

  47. Handbook for Middle Atmosphere Program, Scientific Committee on Solar-Terrestrial Physics (SCOSTEP), C. F. Sechrist, Jr., Ed., Urbana, IL 1981.

    Google Scholar 

  48. Condon, E. U., and Odishaw, H., “Handbook of Physics,” second edition, New York, McGraw-Hill Book Co., 1967.

    Google Scholar 

  49. Spitzer, L., “Physics of Fully Ionized Gases,” Interscience Tracts on Physics and Astronomy, New York, Interscience Publishers, 1956.

    Google Scholar 

  50. Loeb, L. B., “Basic Processes of Gaseous Electronics,” Berkeley, University of California Press, 1955.

    Google Scholar 

  51. McDaniel, E. W., “Collision Phenomena in Ionized Gases,” New York, John Wiley and Sons, 1964.

    Google Scholar 

  52. Hasted, J. B., “Physics of Atomic Collisions,” Washington D.C., Butterworth, 1964.

    Google Scholar 

  53. Al’pert, Ya. L., “Radio Propagation and the Iosphere,” 2nd Ed., Plenum, New York, 1973.

    Google Scholar 

  54. Banks, P. M., and Kockarts, G., “Aeronomy,” Academic Press, New York, 1973.

    Google Scholar 

  55. Bauer, S. J. J., “Physics of Planetary Ionospheres,” Springer-Verlag, Berlin and New York, 1973.

    Google Scholar 

  56. Nicolet, M., and Aikin, A. C., “The Formation of the D Region of the Ionosphere,” J. Geophys. Res. 65, 1469 (1960).

    Article  Google Scholar 

  57. Nisbet, J., “On the Construction and Use of a Simple Ionospheric Model,” Radio Science 6, 437 (1971).

    Article  Google Scholar 

  58. Burkhard, D. G., and Shealy, D. L., Appl. Opt. 20, 897 (1981).

    Article  Google Scholar 

  59. Born, M., and Wolf, E., “Principles of Optics,” p. 131, Elmsford, New York, Pergamon, 1975.

    Google Scholar 

  60. Dienes, G. J., and Vineyard, G. H., “Radiation Effects in Solids,” New York, Interscience Publishers 1957.

    Google Scholar 

  61. Billington, D. S. (Ed.), “Radiation Damage in Solids,” New York, Academic Press, 1962.

    Google Scholar 

  62. Peterson, N. L., and Harkness, S. D. (Eds.), “Radiation Damage in Metals,” Metals Park, OH, American Society for Metals, 1976.

    Google Scholar 

  63. J. Gittus, “Irradiation Effects in Crystalline Solids,” London, Applied Science Publishers, 1978.

    Google Scholar 

  64. Peterson, N. L., and Siegel, R. W. (Eds.), “Properties of Atomic Defects in Metals,” New York, North Holland Publishing, 1978.

    Google Scholar 

  65. Brush, S. G., “Kinetic Theory,” Vol. 2, “Irreversible processes,” New York, Pergamon Press, 1966. ( Includes reprints and translations of papers by Maxwell, Boltzmann, Thomson, Poincaré, and Zermelo. )

    Google Scholar 

  66. Brush, S. G. G., “The Development of the Kinetic Theory of Gases. VIII. Randomness and Irreversibility,” Archive for History of Exact Sciences 12, 1 (1974), reprinted in “The Kind of Motion We Call Heat: A History of the Kinetic Theory of Gases in the 19th Century,” Amsterdam, North-Holland, 1976, Chapter 14.

    Google Scholar 

  67. Brush, S. G., “Irreversibility and Indeterminism: Fourier to Heisenberg,” Journal of the History of Ideas 37, 603 (1976), reprinted in “Statistical Physics and the Atomic Theory of Matter from Boyle and Newton to Landau and Onsager,” Princeton, N.J., Princeton Univ. Press, 1983, Chapter 2.

    Google Scholar 

  68. Eddington, A. S., “The Nature of the Physical World,” London, Cambridge Univ. Press, 1928, Chapter IV.

    Google Scholar 

  69. Fraser, J. T., Haber, F. C. and Müller, G. H. (Eds.), “The Study of Time,” New York, Springer-Verlag, 1972.

    Google Scholar 

  70. Gal-Or, B., “The Crisis about the Origin of Irreversibility and Time Anisotropy,” Science 176, 11 (1972).

    Article  Google Scholar 

  71. Hinds, E. A., “Parity and Time-Reversal in Atoms,” American Scientist 69, 430 (1981).

    Google Scholar 

  72. Kubrin, D., “Newton and the Cyclical Cosmos: Providence and the Mechanical Philosophy,” Journal of the History of Ideas 28, 325 (1967).

    Article  Google Scholar 

  73. Layzer, D. “The Arrow of Time,” Scientific American 233 (6), 56 (December 1975).

    Google Scholar 

  74. Misra, B., and Prigogine, I., “Time, Probability, and Dynamics,” in “Long-Time Prediction in Dynamics” (C. W. Horton et al., Eds.), New York, Wiley, 1982.

    Google Scholar 

  75. Park, David, “The Image of Eternity: Roots of Time in the Physical World,” Amherst, Mass., Univ. Massachusetts Press, 1980.

    Google Scholar 

  76. Prigogine, I. Nicolis, G., and Babloyantz, A., “Thermodynamics of Evolution,” Physics Today 25(11), 23 (Nov. 1972), 25 (12), 38 (Dec. 1972).

    Google Scholar 

  77. Prigogine, I., “Time, Structure, and Fluctuations,” Science 201, 777 (1978).

    Article  Google Scholar 

  78. Reichenbach, H, H., “The Direction of Time,” Berkeley, Univ. California Press, 1956.

    Google Scholar 

  79. Heisenberg, W., Z. Physik 77, 1–11 (1932).

    Article  Google Scholar 

  80. Wigner, E., Phys. Rev. 51, 106–119 (1937).

    Article  Google Scholar 

  81. Anderson, J. D., Wong, C., and McClure, J. W., Phys. Rev. 126, 2170–2173 (1962).

    Article  Google Scholar 

  82. Adair, R. K., Phys. Rev. 87, 1041–1043 (1952).

    Article  Google Scholar 

Nuclear and Radiochemistry

  • Barbier, Marcel, “Induced Radioactivity,” Amsterdam, North-Holland Publishing Company, 1969.

    Google Scholar 

  • Friedlander, G., Kennedy, J. W., Macias, E. S., and Miller, J. M. M., “Nuclear and Radiochemistry,” Third Edition, New York, John Wiley and Sons, Inc., 1981.

    Google Scholar 

  • Kocher, D. C. C., “Radioactive Decay Data Tables,” Technical Information Center, Department of Energy Report, DOE/TIC-11026 (1981).

    Google Scholar 

  • Lederer, C. M., and Shirley, V. S. M., and Shirley, V. S., “Table of Isotopes,” Seventh Edition, New York, John Wiley and Sons, Inc., 1978.

    Google Scholar 

  • Oak Ridge National Laboratory Research Materials Catalog, Oak Ridge, Tennessee, in press.

    Google Scholar 

  • Seaborg, G. T., “Transuranium Elements: Products of Modern Alchemy,” Stroudsburg, Dowden, Hutchinson, and Ross, 1978.

    Google Scholar 

  • Subcommittee on Nuclear and Radiochemistry, Committees on Chemical Sciences, Assembly of Mathematical and Physical Sciences, National Research Council, “A Review of the Accomplishments and Promise of U.S. Transplutonium Research 19401980,” Washington, D.C., National Academy of Sciences, 1982.

    Google Scholar 

Mass Spectrometry

  • Roboz, J., “Introduction to Mass Spectrometry: Instrumentation and Techniques,” New York, Interscience Publishers, 1968.

    Google Scholar 

Atomic Weights

  • International Union of Pure and Applied Chemistry, Inorganic Division, Commission on Atomic Weights and Abundances, Pure and Applied Chemistry 52, 2349–2384 (1980).

    Google Scholar 

Stable Isotopes

  • Subcommittee on Nuclear and Radiochemistry, Committee on Chemical Sciences, Assembly of Mathematical and Physical Sciences, National Research Council, “Separated Isotopes: Vital Tools for Science and Medicine,” Washington, D.C., National Academy Press, 1982.

    Google Scholar 

  • Davis, W. C. et al., “Chemical Recovery and Refinement Procedures in the Electromagnetic Separation of Isotopes,” Oak Ridge National Laboratory Report, ORNL-4583, August 1970.

    Google Scholar 

  • Underwood, J. N., Love, L. O., Prater, W. K., and Scheitlin, F. M., “Calutron Experiments with Milligram Quantities of Charge Material,” Nucl. Instrum. Methods 57, 17–21 (1967).

    Article  Google Scholar 

  • Villani, S, S., “Isotope Separation,” New York, American Nuclear Society, 1976.

    Google Scholar 

Reactor Production of Radioisotopes

  • Aebersold, P. C., and Rupp, A. F., “Production of Short-lived Radioisotopes,” in “Production and Use of Short-lived Radioisotopes from Reactors,” Vol. 1, pp. 31–47, Vienna, International Atomic Energy Agency, 1962.

    Google Scholar 

  • Binford, F. T., Cole, T. E., and Cramer, E. N., “The High Flux Isotope Reactor,” Oak Ridge National Laboratory Report, ORNL-3572 (Rev. 2 ), May 1968.

    Google Scholar 

  • Brookhaven National Laboratory, “Manual of Isotope Production Processes in Use at Brookhaven National Laboratory,” BNL-864, August 1964.

    Google Scholar 

  • Crandall, J. L. L., “The Savannah River High Flux Demonstration,” Savannah River Laboratory Report, DP-999, June 1965.

    Google Scholar 

  • Knoll, Peter, “The Technology of Isotope Production,” Part I., “Irradiation Technology,” (Zentralinstitut für Kernphysik Dresden) ZfK-RCH-1, December 1961 (in German); for English translation see Pinajian, J. J., Oak Ridge National Laboratory Report ORNL-tr-2400, November 1970.

    Google Scholar 

  • Oak Ridge National Laboratory, “ORNL Radioisotope Procedures Manual,” ORNL-3633, June 1964.

    Google Scholar 

  • Pinajian, J. J., “Oak Ridge Research Reactor for Isotope Production,” Isotop. Radiat. TechnoL 1 13036 (Winter 1963–64).

    Google Scholar 

  • Rupp, A. F., and Binford, F. T., “Production of Radioisotopes,” in “Nuclear Engineering Handbook” (H. Etherington, Ed.), Section 14, pp. 26–37, New York, McGraw-Hill Book Co., 1958.

    Google Scholar 

Accelerator Production of Radioisotopes

  • Lange, J., and Münzel, H, H., “Estimation of Unknown Excitation Functions for (a, xn), (a, pxn), (d, xn), (d, pxn), and (p, xn) Reactions,” Karlsruhe Nuclear Research Center Report, KFK-767, May 1968 (in German); for English translation see Pinajian, J. J., and Kern, L. H., Oak Ridge National Laboratory Report ORNL-tr-3020, October 1970.

    Google Scholar 

  • Laughlin, J. S., Tilbury, R. S., and Dahl, J. R., “The Cyclotron: Source of Short-lived Radionuclides and Positron Emitters for Medicine” in “Progress in Atomic Medicine, Volume 3: Recent Advances in Nuclear Medicine” ( J. H. Lawrence, Ed.), New York, Grune and Stratton, 1971.

    Google Scholar 

  • Pinajian, J. J. J., “ORNL 86-Inch Cyclotron,” in “Radioactive Pharmaceuticals,” (G. A. Andrews, R. M. Kniseley, and H. N. Wagner, Eds.), Chapter 9, pp. 143–54, U. S. Atomic Energy Commission, 1966.

    Google Scholar 

  • Rosen, L., Schillaci, M. E., Dropesky, B. J., and O’Brien, H. A. A., “Use of LAMPF for Isotope Production: Briefing to the AEC Division of Isotopes Development, December 15, 1970,” Los Alamos Scientific Laboratory Report, LA-4587-MS, February 1972.

    Google Scholar 

  • Stang, L. G., Jr., Hillman, M., and Lebowitz, E, E., “The Production of Radioisotopes by Spallation,” Brookhaven National Laboratory Report, BNL-50195, August 1969.

    Google Scholar 

Radiopharmaceuticals and Nuclear Medicine

  • Schneider, P. B., and Treves, S, S., “Nuclear Medicine in Clinical Practice,” Amsterdam, Elsevier, North Holland Biomedical Press, 1978.

    Google Scholar 

  • Spencer, R. P., “Radiopharmaceuticals: Structure, Activity, and Relationships,” New York, Grune and Stratton, 1981.

    Google Scholar 

  • Wagner, H. N. N., “Principles of Nuclear Medicine,” Philadelphia, W. B. Saunders Co., 1969.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yeh, H. et al. (1990). I. In: Besançon, R.M. (eds) The Encyclopedia of Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6902-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6902-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-00522-1

  • Online ISBN: 978-1-4615-6902-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics