Skip to main content

F

  • Chapter
  • 574 Accesses

Abstract

The term fallout generally has been used to refer to particulate matter that is thrown into the atmosphere by a nuclear process of short time duration. Primary examples are nuclear weapon debris and effluents from a nuclear reactor excursion. The name fallout is applied both to matter that is aloft and to matter that has been deposited on the surface of the earth. Depending on the conditions of formation, this material ranges in texture from an aerosol to granules of considerable size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunner, H., and Pretre, S. (Eds.), “Radiological Protection of the Public in a Nuclear Mass Disaster,” Proceedings of symposium at Interlaken, Switzerland, 26 May-1 June, 1968, Bern, Bundesamt für Zivilschutz, 1968.

    Google Scholar 

  2. Cook, C. S., “Initial and Residual Ionizing Radiations from Nuclear Weapons,” in Attix and Tochilin (Eds.), “Radiation Dosimetry,” Vol. III, New York, Academic Press, 1969, pp. 361–399.

    Google Scholar 

  3. Freiling, E. C. (Ed.), “Radionuclides in the Environment,” Washington, D.C., American Chemical Society, 1970.

    Google Scholar 

  4. Danielson, E. F., “Trajectories of the Mount St. Helens Eruption Plume,” Science, 211, 819–820 (1981).

    Google Scholar 

  5. StorebqS, P. B., “Prediction of Massive Wash-out of Nuclear Bomb Debris,” Health Physics 11, 1203–1211 (1965).

    Google Scholar 

  6. Babich, H., Davis, B. L., and Statzky, G. “Acid Precipitation: Causes and Consequences,” Environment 22 (4), 6–13 (1980).

    Google Scholar 

  7. Barr, E. S., “Men and Milestones in Optics V: Michael Faraday,”Appl. Optics 6, 631 (1967).

    Google Scholar 

  8. Palik, E. D., and Henvis, B. W., “A Bibliography of Magneto-Optics of Solids,” Appl. Optics 6, 603 (1967).

    Google Scholar 

  9. Palik, E. D., and Furdyna, J. K., “Infrared and Microwave Magnetoplasma Effects in Semiconductors,” Rep. Prog. Phys. 33, 1193 (1970).

    Google Scholar 

  10. Piller, H., “Faraday Rotation,” in Willardson and Beer (Eds.), “Semiconductors and Semimetals,” Vol. 8, Academic Press, New York, 1972, pp. 103–179.

    Google Scholar 

  11. Lax, B., “Resonance Spectroscopy of Solids and Plasmas,” J. Mag. and Mag. Materials 11, 1 (1979).

    Google Scholar 

  12. Manchester, R. N., and Taylor, J. H., “Pulsars,” W. H. Freeman and Co., San Francisco, 1977.

    Google Scholar 

  13. Shapiro, S. L., and Wasserman, I., “Massive Neutrinos, Helium Production, and the Primordial Magnetic Field,” Nature 289, 657 (1981).

    Google Scholar 

  14. Ratcliffe, J. A., “An Introduction to the Ionosphere and Magnetosphere,” Cambridge Univ. Press, Cambridge, U.K., 1972, pp. 196–198.

    Google Scholar 

  15. G. Steigman, “Observational Tests of Antimatter Cosmologies,” Ann. Rev. Astron. Astrophys. 14, 339 (1976).

    Google Scholar 

  16. O’Connell, R. F., and Wallace, G. L., “Null Faraday Rotation-A Clean Method for Determination of Relaxation Times and Effective Masses in MIS and Other Systems,” Solid State Commun. 38, 429 (1981).

    Google Scholar 

  17. Donovan, B., and Medcalf, T., “The Inclusion of Multiple Reflections in the Theory of the Faraday Effect in Semiconductors,” Brit. J. Appl. Phys. 15, 1139 (1964).

    Google Scholar 

  18. O’Connell, R. F., and Wallace, G. L., “Multiple Reflections in the Theory of the Faraday Effect,” Phys. Lett. 86A, 283 (1981).

    Google Scholar 

  19. O’Connell, R. F., and Wallace, G., “Ellipticity and Faraday Rotation due to a Two-Dimensional Electron Gas in a Metal-Oxide-Semiconductor (MOS) System,” Phys. Rev. B26, 2231 (1982).

    Google Scholar 

  20. Manakov, N. L., Ovsiannikov, V. D., and Kielich, S., “Nonlinear Variations in the Faraday Effect caused in Atomic Systems by a strong Magnetic Field,” Phys. Rev. A21, 1589 (1980).

    Google Scholar 

  21. van der Ziel, J. P., Pershan, P. S., and Malmstrem

    Google Scholar 

  22. L. D.,Phys. Rev. Lett. 15 190 (1965). Braginskii, V. B., and Khalili, F. Ya., “OpticoMagnetic Effects in Nondestructive Quantum Counting,” Soy. Phys.-JETP 51,859 (1980).

    Google Scholar 

  23. Luhmann, N. C., Jr., “Instrumentation and Techniques for Plasma Diagnostics: An Overview,” and Vernon, D., “Submillimeter Interferometry of High-Density Plasmas,” in Button (Ed.), “Infrared and Millimeter Waves,” Vol. 2, Academic Press, New York, 1979, pp. 1–135; Stamper, J. A., McLean, E. A., and Ripin, B. H., “Studies of Spontaneous Magnetic Fields in Laser-Produced Plasmas by Faraday Rotation,” Phys. Rev. Lett. 40, 1177 (1978).

    Google Scholar 

  24. Fowler, C. M., Caird, R. S., Garn, W. B., Erickson, D. J., and Freeman, B. L., “High Field Faraday Rotation of Some Zn(VI) Compounds,” Journal of Less-Common Metals 62, 397 (1978).

    Google Scholar 

  25. Argyres, P. N., “Theory of the Faraday and Kerr Effects in Ferromagnetics,” Phys. Rev. 97, 334 (1955).

    Google Scholar 

  26. Bennett, H. S., and Stern, E. A., “Faraday Effect in Solids,” Phys. Rev. 137, A448 (1965).

    Google Scholar 

  27. Tanner, B. H., “Magneto-Optical Experiments on Rare Earth Garnet Films,” Am. J. Phys. 48, 59 (1980).

    Google Scholar 

  28. Button, K. J., and Hartwick, T. S., “Microwave Devices,” in Rado and Suhl (Eds.), “Magnetism,” Vol. I, Academic Press, New York, 1963, pp. 621–666.

    Google Scholar 

  29. Wang, S., Shah, M., and Crow, J., “Studies of the Use of Gyrotropic and Anisotropic Materials for Mode Conversion in Thin Film Optical Wave Guide Application,” J. Appl. Phys. 43, 1861 (1972).

    Google Scholar 

  30. Bennett, S., “A History of Control Engineering 1800–1930,” Stevenage, U.K. and New York, Peter Peregrinus, 1979.

    Google Scholar 

  31. Nyquist, H., “Regeneration Theory,” Bell Syst. Tech. J. 11, 126–147 (1932).

    Google Scholar 

  32. D’Azzo, J. D., and Houpis, C. H., “Feedback Control Systems Analysis and Synthesis,” New York, McGraw-Hill

    Google Scholar 

  33. Di Stefano, J. J., Stubberud, A. R., and Williams, I. J., “Theory and Problems of Feedback and Control Systems,” Schaums Outline Series, New York, McGraw-Hill, 1967.

    Google Scholar 

  34. Zadeh, L. A., and Desoer, C. A., “Linear System Theory: A State Space Approach,” New York, McGraw-Hill, 1963.

    Google Scholar 

  35. Macfarlane, A. G. J. (Ed.), “Frequency Response Methods in Control Systems,” New York, I.E.E.E. Press, 1979.

    Google Scholar 

  36. Rosenbrock, H. H., “Computer Aided Control System Design,” New York, Academic Press, 1974.

    Google Scholar 

  37. Patel, R., and Munro, N., “Multivariable System Theory and Design,” Elmsford, N.Y., Pergamon, 1981.

    Google Scholar 

  38. Gibson, J. E., “Nonlinear Automatic Control,” New York, McGraw-Hill, 1963.

    Google Scholar 

  39. Atherton, D. P., “Nonlinear Control Engineering,” New York, Van Nostrand Reinhold, 1975.

    Google Scholar 

  40. Harris, C. J., and Billings, S. A., (Ed.), “Self-Timing and Adaptive Control,” Peter Peregrinus, Stevenage, U.K. and New York, 1881.

    Google Scholar 

  41. Kuo, B. C., “Digital Control Systems,” New York, Holt-Saunders, 1980.

    Google Scholar 

  42. Katz, P., “Digital Control using Microprocessors,” Englewood Cliffs, N.J., Prentice-Hall International, 1981.

    Google Scholar 

  43. Proceedings of the First International Conference on Robot Vision and Sensory Controls, April 1–3 1981, Stratford-upon-Avon, U.K.,“ I.F.S. Conferences, Kempston, Bedford, England, 1981.

    Google Scholar 

  44. Leighton, Robert B, Robert B., “Principles of Modern Physics,” New York, McGraw-Hill Book Co., 1959.

    Google Scholar 

  45. Harrison, W. A., Phys. Rev., 118, 1190 (1960).

    Google Scholar 

  46. Ziman, J. M., “Electrons in Metals; A Short Guide to the Fermi Surface,” London, Taylor and Francis, 1963.

    Google Scholar 

  47. Pippard, A. B., Phil. Trans. Roy. Soc. London Ser. A, 250, 323 (1957).

    Google Scholar 

  48. Shoenberg, D., in “Proceedings of the Ninth International Conference on Low Temperature Physics,” J. G. Daunt, D. O. Edwards, F. J. Milford, and M. Yaqub editors, New York, Plenum Press, 1965 (p. 665 ).

    Google Scholar 

  49. Kip, A. F., in “The Fermi Surface,” W. A. Harrison, and M. B. Webb editors, New York, John Wiley & Sons, 1960 (p. 146 ).

    Google Scholar 

  50. Pippard, A. B., “The Dynamics of Conduction Electrons,” New York, Gordon and Breach, 1965 (p. 90 ).

    Google Scholar 

  51. Tepley, N., Proc. LE.E.E., 53, 1586 (1965).

    Google Scholar 

  52. Stewart, A. T., in “Positron Annihilation,” A. T. Stewart and L. O. Roellig editors, New York, Academic Press, 1967 (p. 17 ).

    Google Scholar 

  53. Gantmakher, V. F., Zh. Eksperim, i Teor. Fiz.,43 345 (1962). (English Transl.: Soviet Physics JETP,16 247 (1962).)

    Google Scholar 

  54. Dooley, J. W., and Tepley, N., Phys. Rev., 187, 781 (1969).

    Google Scholar 

  55. 11. Henrich, V. E., Phys. Rev. Letters,26, 891 (1971).

    Google Scholar 

  56. Cracknell, A. P. and Wong, K. C., “The Fermi Surface,” Oxford, Clarendon Press, 1973.

    Google Scholar 

  57. Young, R. C., Rep. Prog. Phys. 40, 1123 (1977).

    Google Scholar 

  58. See, for example, Karim, D. P., Ketterson, J. B., and Crabtree, G. W., J. Low Temp. Phys. 30, 389 (1978) and Dye, D. H., Campbell, S. A., Ketterson, J. B., and Vuillemin, J. J., Phys. Rev. B23, 462 (1981).

    Google Scholar 

  59. Crabtree, G. W., Dye, D. H., Karim, D. P., and Ketterson, J. B., J. Magnetism and Magnetic Materials 11, 236 (1979).

    Google Scholar 

  60. Proceedings of the International Conference on Electron Lifetimes in Metals,“ (D. H. Lowndes and F. M. Meuller, Eds.), Phys. Cond. Matter 19, 1–423 (1975).

    Google Scholar 

  61. Crabtree, G. W., Dye, D. H., Karim, D. P. Koelling, D. D., and Ketterson, J. B., Phys Rev. Letters 42, 390 (1979).

    Google Scholar 

  62. Harrison, W. A., “Pseudopotentials in the Theory of Metals,” New York, W. A. Benjamin, 1966.

    Google Scholar 

  63. Koelling, D. D., Rep. Prog. Phys. 44,139 (1981).

    Google Scholar 

  64. Mackintosh, A. R., and Andersen, O. K., in “Electrons at the Fermi Surface,” (M. Springford, Ed.), Cambridge, U.K., Cambridge Univ. Press, 1980, p. 149.

    Google Scholar 

  65. Saito, Y., and Maezawa, K., in “Proceedings of Twelfth International Conference on Low Temperature Physics,” (E. Kamda, Ed.), Kyoto, Academic Press of Japan, 1971, p. 583.

    Google Scholar 

  66. Coleridge, P. T., in “Electrons at the Fermi Surface,” (M. Springford, Ed.), Cambridge, U.K., Cambridge Univ. Press, 1980, p 321.

    Google Scholar 

  67. Crabtree, G. W., Johanson, W. R., Campbell, S. A., Dye, D. H., Karim, D. P., and Ketterson, J. B., “Proceedings of the International Conference on Physics of Transition Metals,” (P. Rhodes, Ed.), Inst. Phys. Conf. Ser. 55,79 (1981).

    Google Scholar 

  68. Wilkins, J. W., in “Electrons at the Fermi Surface,” (M. Springford, Ed.), Cambridge, U.K., Cambridge Univ. Press, 1980, p. 46.

    Google Scholar 

  69. Standley, K. J. J., “Oxide Magnetic Materials,” Oxford, Clarendon Press, 1962.

    Google Scholar 

  70. Smit, J., and Wijn, H. P. J. J., “Ferrites,” New York, John Wiley & Sons, Inc., 1959.

    Google Scholar 

  71. Lax, B., and Button, K. J. J., “Microwave Ferrites and Ferrimagnetics,” New York, McGraw-Hill Book Co., Inc., 1962.

    Google Scholar 

  72. von Aulock, W. H. H., “Handbook of Microwave Ferrite Materials,” New York, Academic Press, 1965.

    Google Scholar 

  73. von Aulock, W. H., and Fay, C. E. E., “Linear Ferrite Devices for Microwave Applications,” New York, Academic Press, 1968.

    Google Scholar 

  74. Snelling, E. C. C., “Soft Ferrites,” London, Biffe Books, Ltd., 1969.

    Google Scholar 

  75. Helszajn, J, J., “Principles of Microwave Ferrite Engineering,” London, Wiley Interscience, 1969.

    Google Scholar 

  76. Bobeck, A. H., Bell Syst. Tech. J. 46, 1901 (October 1967).

    Google Scholar 

  77. O’Dell, T. H., “Magnetic Bubbles,” London, MacMillan, 1974.

    Google Scholar 

  78. Bobeck, A. H., and Della Torre, E., “Magnetic Bubbles,” Amsterdam, The Netherlands, North-Holland Publishing, 1975.

    Google Scholar 

  79. Chang, H., “Magnetic Bubble Technology,” New York, IEEE Press, 1975.

    Google Scholar 

  80. Bobeck, A. H., and Scovil, H. E. D., Scientific American, p. 78, June 1971.

    Google Scholar 

  81. Bobeck, A. H., Bonyhard, P. I., and Geusic, J. E., Proc. IEEE 63, 1176 (August 1975).

    Google Scholar 

  82. Nielsen, J. W., Licht, S. J., Brandie, C. D., IEEE Trans. Magnetics MAG-10, 474 (1974).

    Google Scholar 

  83. Tabor, W. J., Bobeck, A. H., Vella-Coleiro, G. P., and Rosencwaig, A., “A new type of cylindrical magnetic domain (hard bubble),” AIP Conf. Proc., 10, 442–457 (1972).

    Google Scholar 

  84. Slonczewski, Malozemoff, J. C., and Voegeli, O., “Statics and Dynamics of Bubble Containing Bloch Lines,” AIP Conf. Proc. 10, 458–477 (1972).

    Google Scholar 

  85. Eschenfelder, A. H., “Magnetic Bubble Technology,” New York, Springer-Verlag, 1980.

    Google Scholar 

  86. Aizu, K., Phys. Rev. B 2, 754 (1970).

    Google Scholar 

  87. Aizu, K., J. Phys. Soc. Jpn. 44, 334 and 683 (1978).

    Google Scholar 

  88. Chen, C. W., “Magnetism and Metallurgy of Soft Magnetic Materials” (“Selected Topics in Solid State Physics,” Vol. XV ), Amsterdam, North-Holland Publishing Co., 1977.

    Google Scholar 

  89. Chikazumi, S., and Charap, S. H., “Physics of Magnetism,” Melbourne, FL, Krieger Publishing Co., 1978.

    Google Scholar 

  90. Coey, J. M. D., “Amorphous Magnetic Order,” Journal of Applied Physics 49, 1648–1652 (1978).

    Google Scholar 

  91. Craik, D. J. J., “Structure and Properties of Magnetic Materials,” London, Pion Ltd., 1971.

    Google Scholar 

  92. Malozemoff, A. P., and Slonczewski, J. C. C., “Magnetic Domain Walls in Bubble Materials,” New York, Academic Press, 1979.

    Google Scholar 

  93. Morrish, A. H., “The Physical Principles of Magnetism,” Melbourne, FL, Krieger Publishing Co., 1980. Vonsovskii, S. V., “Magnetism,” 2 Vols., New York, John Wiley & Sons, Inc., 1974.

    Google Scholar 

  94. Mattuck, R. D., “A Guide to Feynman Diagrams in the Many-Body Problem,” London, McGraw-Hill, 1967. ( Most elementary account, examples from solid-state and nuclear physics. )

    Google Scholar 

  95. Fetter, A. L., and Walecka, J. D., “Quantum Theory of Many-Particle Systems,” New York, McGraw-Hill, 1971. ( Advanced, examples from solid state and nuclear physics. )

    Google Scholar 

  96. Mandl, F., “Introduction to Quantum Field Theory,” New York, Interscience Publishers, 1959. ( Elementary account, examples from elementary particle physics. )

    Google Scholar 

  97. Rickayzen, G., “Green’s Functions and Condensed Matter,” Academic Press, London, New York, 1980. ( Intermediate, examples mostly from solid state physics. )

    Google Scholar 

  98. Bjorken, J. D., and Drell, S. D., “Relativistic Quantum Mechanics” and “Relativistic Quantum Fields,” New York, London, McGraw-Hill, 1964.

    Google Scholar 

  99. Kapany, N. S., “Fiber Optics,” Academic Press, New York, 1967.

    Google Scholar 

  100. Giallorenzi, T. G., “Fiber Optic Sensor,” Optics and Laser Technology, 13 (2), 73–78 (April 1981).

    Google Scholar 

  101. Miller, S. E., and Chynoweth, A. G. (Eds.), “Optical Fiber Telecommunications,” Academic Press, New York, 1979.

    Google Scholar 

  102. Good, R. H., Jr., and Müller, E. W., “Field Emission,” in “Handbuch der Physik,” Second Edition, Vol. XXI, pp. 176–231, Berlin, Springer-Verlag, 1956.

    Google Scholar 

  103. Gomer, R, R., “Field Emission and Field Ionization,” Cambridge, Mass., Harvard Univ. Press, 1961.

    Google Scholar 

  104. Müller, E. W., and Tsong, T. T., “Field-Ion Microscopy, Principles and Applications,” New York, London, Amsterdam, Elsevier, 1969.

    Google Scholar 

  105. Swanson, L. W., and Bell, A. E., “Recent Advances in Field Electron Microscopy of Metals,”Adv. Electron. Electron Physics 32, 193–309 (1973).

    Google Scholar 

  106. Müller, E. W., and Tsong, T. T. T., “Field Ion Microscopy, Field Ionization and Field Evaporation,” Prog. Surface Sci. 4, part I (1973).

    Google Scholar 

  107. Gadzuk, J. W., and Plummer, E. W. “Field Emission Energy Distribution (FED),” Rev. Mod. Phys. 45, 487–548 (1973).

    Google Scholar 

  108. Panitz, J. A., “Imaging Atom-probe Mass Spectroscopy,”Progr. Surface Sci. 8, 219–262 (1973).

    Google Scholar 

  109. Tsong, T. T., “Quantitative Investigations of Atomic Processes on Metal Surfaces at Atomic Resolution,” Progr. Surface Sci. 10, 165–248 (1980).

    Google Scholar 

  110. Kellogg, G. L., and Tsong, T. T., “Pulsed-Laser Atomprobe Field Ion Microscopy,” J. Appl. Phys. 51 1184 (1980).

    Google Scholar 

  111. Gindler, J. E., and Huizenga, J. R. R., “Nuclear Fission,” Chapter 7 in “Nuclear Chemistry,” (Ed. by L. Yaffe) Vol. II, New York, Academic Press, 1968.

    Google Scholar 

  112. Glasstone, S., and Sesonske, A., “Nuclear Reactor Engineering,” Third Edition, New York, Van Nostrand Reinhold, 1980.

    Google Scholar 

  113. Glasstone, S., Ed., “The Effects of Nuclear Weapons,” Third Edition, U.S. Government Printing Office, 1977.

    Google Scholar 

  114. Hyde, E. K. K., “The Nuclear Properties of the Heavy Elements III: Fission Phenomena,” Englewood Cliffs, N.J., Prentice-Hall, Inc., 1964; New York, Dover Publications Inc., 1971.

    Google Scholar 

  115. I.A.E.A., “Physics and Chemistry of Fission,” Proceedings of the Third I.A.E.A. Symposium, Vienna, I.A.E.A., 1973.

    Google Scholar 

  116. Keepin, G. R. R., “Physics of Nuclear Kinetics,” Reading, Mass., Addison-Wesley Publishing Co., 1965.

    Google Scholar 

  117. Terrel, J., “Prompt Neutrons from Fission,” in Proceedings of the I.A.E.A. Symposium on the Physics and Chemistry of Fission; I.A.E.A., Vienna, 1965.

    Google Scholar 

  118. Vandenbosch, R., and Huizenga, J. R., “Nuclear Fission,” New York, Academic Press, 1973.

    Google Scholar 

  119. Sutton, G. P., and Ross, D. M., “Rocket Propulsion Elements,” Fourth edition, New York, J. Wiley & Sons, 1976.

    Google Scholar 

  120. Morgan, H. E., “Turbojet Fundamentals,” Second edition, New York, McGraw-Hill Book Co., 1958.

    Google Scholar 

  121. Janes’ All the World’s Aircraft, 1981–82,“ New York, Janes’ Publishing Inc., 1982.

    Google Scholar 

  122. Constant, E. W., “Origins of the Turbojet Revolution,” Baltimore, Johns Hopkins Univ. Press, 1980.

    Google Scholar 

  123. Landau, L. D., and Lifshitz, E. M., “Fluid Mechanics,” London, Pergamon Press, 1959.

    Google Scholar 

  124. Lamb, H., “Hydrodynamics,” First American Edition, New York, Dover Publications, 1945.

    Google Scholar 

  125. Hirschfelder, J., Curtiss, C. F., and Bird, R. B., “Molecular Theory of Gases and Liquids,” New York, John Wiley & Sons, 1954.

    Google Scholar 

  126. Gaydon, A. G., and Hurle, I. R., “The Shock Tube in High-Temperature Chemical Physics,” New York, Van Nostrand Reinhold, 1963.

    Google Scholar 

  127. Emrich, R. J. (Ed.), “Fluid Dynamics,” Vol. 18 of series “Methods of Experimental Physics,” New York, Academic Press, 1981.

    Google Scholar 

  128. Landau, L. D., and Lifshitz, E. M., “Electrodynamics of Continuous Media,” Oxford, Pergamon Press, 1960, pp. 64–69.

    Google Scholar 

  129. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., “Molecular Theory of Gases and Liquids,” New York, John Wiley & Sons, Inc., 1954, pp. 694 et seq.

    Google Scholar 

  130. Irving, J. H., and Kirkwood, John G., J. Chem. Phys. 18, 817 (1950).

    Google Scholar 

  131. Soloukhin, R. I., Curtis, C. W., and Emrich, R. J., “Measurement of Pressure,” in “Methods of Experimental Physics—Fluid Dÿnamics” (R. J. Emrich, Ed.), Vol. 18, New York, Academic Press, 1981, pp. 499–515.

    Google Scholar 

  132. Bracewell, R. N., “The Fourier Transform and Its Applications,” New York, McGraw-Hill Book Co., 1965.

    Google Scholar 

  133. Goodman, J. W., “Introduction to Fourier Optics,” New York, McGraw-Hill Book Co., 1968.

    Google Scholar 

  134. Papoulis, A., “Systems and Transforms with Applications in Optics,” New York, McGraw-Hill Book Co., 1968.

    Google Scholar 

  135. Arsac, J., “Fourier Transforms and the Theory of Distributions,” Englewood Cliffs, N.J., Prentice-Hall, Inc., 1966.

    Google Scholar 

  136. Titchmarsh, E. C., “Introduction to the Theory of Fourier Integrals,” Oxford, Oxford University Press, 1937.

    Google Scholar 

  137. Gaskill, J. D., “Linear Systems, Fourier Transforms, and Optics,” New York, John Wiley & Sons, 1978.

    Google Scholar 

  138. Brigham, E. O., “The Fast Fourier Transform,” Englewood Cliffs, N.J., Prentice-Hall, Inc., 1974.

    Google Scholar 

  139. Papoulis, A., “Signal Analysis,” New York, McGraw-Hill Book Co., 1977.

    Google Scholar 

  140. Nussbaum, A., and Phillips, R. A., “Contemporary Optics for Engineers and Scientists,” Prentice-Hall (1976).

    Google Scholar 

  141. Garrard, A., Am. J. Phys. 31, 723 (1963).

    Google Scholar 

  142. Bowden, F. P., and Tabor, D., “Friction and Lubrication of Solids,” Oxford, Clarendon Press, Part I, 1950, Part I I, 1964.

    Google Scholar 

  143. Buckley, D. H., “Surface Effects in Adhesion, Friction, Wear and Lubrication,” New York, Elsevier, 1981.

    Google Scholar 

  144. Ku, P. H. (Ed.), “Interdisciplinary Approach to Friction and Wear,” NASA Report SP-181, Washington, D.C., National Aeronautics and Space Administration, 1968.

    Google Scholar 

  145. Rabinowicz, E, E., “Friction and Wear of Materials,” New York, Wiley, 1965.

    Google Scholar 

  146. Suh, N. P., and Saka, N., “Fundamentals of Tribology,” Cambridge, MA, MIT Press, 1980.

    Google Scholar 

  147. Szeri, A. S., “Tribology-Friction, Lubrication and Wear,” New York, McGraw-Hill Book Co., 1980.

    Google Scholar 

  148. Comments on Modern Physics, Part E,“ New York, Gordon and Breach.

    Google Scholar 

  149. Reports on the bi-annual conferences on Plasma Physics and Controlled Nuclear Fusion Research, Vienna, Austria, International Atomic Energy Agency.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cook, C.S. et al. (1990). F. In: Besançon, R.M. (eds) The Encyclopedia of Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6902-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6902-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-00522-1

  • Online ISBN: 978-1-4615-6902-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics