Skip to main content

Abstract

The Schrödinger equation, first obtained in 19261, was an extension of de Broglie’s hypothesis, proposed two years earlier,2 that each material particle has associated with it a wavelength λ related to the linear momentum p of the particle by the equation

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqaH7oaBcqGH9aqpdaWcaaqaaiaadIga % aeaacaWGWbaaaaaa!43CB!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\lambda = \frac{h}{p}$$
(1)

where h is Planck’ s constant. Since any sinusoidally varying wave motion of amplitude ψ and λ wavelength X satisfies the differential equation*

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqGHhis0daahaaWcbeqaaiaaikdaaaGc % cqaHgpGAcqGHRaWkdaWcaaqaaiaaisdacqaHapaCdaahaaWcbeqaai % aaikdaaaaakeaacqaH7oaBdaahaaWcbeqaaiaaikdaaaaaaOGaeqOX % dOMaeyypa0JaaGimaaaa!4DD9!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\nabla ^2}\varphi + \frac{{4{\pi ^2}}}{{{\lambda ^2}}}\varphi = 0$$
(2)

matter waves would obey the equation

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqGHhis0daahaaWcbeqaaiaaikdaaaGc % cqaHgpGAcqGHRaWkdaWcaaqaaiaaisdacqaHapaCdaahaaWcbeqaai % aaikdaaaaakeaacaWGObWaaWbaaSqabeaacaaIYaaaaaaakiaadcha % daahaaWcbeqaaiaaikdaaaGccqaHgpGAcqGH9aqpcaaIWaaaaa!4EFA!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\nabla ^2}\varphi + \frac{{4{\pi ^2}}}{{{h^2}}}{p^2}\varphi = 0$$
(3)

In particular, a particle of mast m with no forces acting on it has energy EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWGfbGaeyypa0ZaaSaaaeaacaaIXaaa % baGaaGOmaaaacaWGTbGaamODamaaCaaaleqabaGaaGOmaaaakiabg2 % da9maalyaabaGaamiCamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikda % caWGTbaaaaaa!4A08!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$E = \frac{1}{2}m{v^2} = {{{p^2}} \mathord{\left/ {\vphantom {{{p^2}} {2m}}} \right. \kern-\nulldelimiterspace} {2m}}$$, or p 2 = 2m(E-V). Equation (3) may thus be written

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqGHhis0daahaaWcbeqaaiaaikdaaaGc % cqaHgpGAcqGHRaWkdaWcaaqaaiaaiIdacqaHapaCdaahaaWcbeqaai % aaikdaaaGccaWGTbaabaGaamiAamaaCaaaleqabaGaaGOmaaaaaaGc % caWGfbGaeqOXdOMaeyypa0JaaGimaaaa!4ED2!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\nabla ^2}\varphi + \frac{{8{\pi ^2}m}}{{{h^2}}}E\varphi = 0$$
(4)

This is the Schrödinger equation for a free particle. Of greater importance is the equation for a bound particle for which the binding force can be related to a potential energy V. In this case, the total energy of the particle is equal to the sum of the kinetic and potential energies, i.e., E = p 2 /2m + V, or p 2 = 2m (EV). Equation (3) thus becomes

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacqGHhis0daahaaWcbeqaaiaaikdaaaGc % cqaHgpGAcqGHRaWkdaWcaaqaaiaaiIdacqaHapaCdaahaaWcbeqaai % aaikdaaaGccaWGTbaabaGaamiAamaaCaaaleqabaGaaGOmaaaaaaGc % daqadaqaaiaadweacqGHsislcaWGwbaacaGLOaGaayzkaaGaeqOXdO % Maeyypa0JaaGimaaaa!5223!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\nabla ^2}\varphi + \frac{{8{\pi ^2}m}}{{{h^2}}}\left( {E - V} \right)\varphi = 0$$
(5)

This is known as the time-independent Schr??dinger equation. Its great utility lies in the fact that it enables one to calculate energy levels, or eigenvalues, of the energy E (see QUANTUM THEORY). The remarkable agreement of the results of the equation with experimental fact

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaadaahaaWcbeqaaiabgEHiQaaakiabgEGi % rpaaCaaaleqabaGaaGOmaaaakiabg2da9maalaaabaGaeyOaIy7aaW % baaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGa % aGOmaaaaaaGccqGHRaWkdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG % OmaaaaaOqaaiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGa % ey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaaakeaacq % GHciITcaWG6bWaaWbaaSqabeaacaaIYaaaaaaaaaa!56BE!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$^ * {\nabla ^2} = \frac{{{\partial ^2}}}{{\partial {x^2}}} + \frac{{{\partial ^2}}}{{\partial {y^2}}} + \frac{{{\partial ^2}}}{{\partial {z^2}}}$$

has led to its being regarded as one of the fundamental equations of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ann. Physik, 79, 361, 489 (1926).

    Google Scholar 

  2. Phil. Mag, 47, 446 (1924).

    Google Scholar 

  3. Ganachaud, J. P., and Cailler, M., “A Monte Carlo Calculation of the Secondary Electron Emission of Normal Metals II. Results for Aluminum,” Surface Science 83, 519 (1979).

    Google Scholar 

  4. Ibach, H., J. Vac. Sci. Techn. 20, 574 (1982).

    Google Scholar 

  5. Kapoor, V. J., Bailey, R. S., and Smith, S. R., J. Vac. Sci. Techn. 18, 305 (1981).

    Google Scholar 

  6. Williams, B. F., Martinelli, R. U., and Kohn, E. S., Adv. Electronics and Electron Phys. 33A, 447 (1972).

    Google Scholar 

  7. N. R. Whetten, in “Handbook of Chemistry and Physics,” 62nd Ed. (R. C. Weast and M. J. Astle, Eds.), p. E-373, Boca Raton, FL, CRC Press, 1981–1982.

    Google Scholar 

  8. Aki, K., and Richards, P. G. G., “Quantitative Seismolology,” San Franciso, W. H. Freeman, 1980.

    Google Scholar 

  9. Bolt, B. A., “Nuclear Explosions and Earthquakes, the Parted Veil,” San Francisco, W. H. Freeman, 1976. Bolt, B. A., “Earthquakes: A Primer,” San Francisco, W. H. Freeman, 1978.

    Google Scholar 

  10. Bolt, B. A. A., “Inside the Earth,” San Francisco, W. H. Freeman, 1982.

    Google Scholar 

  11. Bullen, K. E. E., “Introduction to the Theory of Seismology,” 3d Ed., Cambridge, U.K., Cambridge Univ. Press, 1963.

    Google Scholar 

  12. Gutenberg, B., and Richter, C. F., “Seismicity of the Earth,” Princeton, N.J., Princeton Univ. Press, 1949. Hudson, J. A., “The Excitation and Propagation of Elastic Waves,” Cambridge, U.K., Cambridge Univ. Press, 1980.

    Google Scholar 

  13. Jeffreys, H., “The Earth,” 5th Ed., Cambridge, U.K., Cambridge Univ. Press, 1970.

    Google Scholar 

  14. Kasahara, K, K., “Earthquake Mechanics,” Cambridge, U.K., Cambridge Univ. Press, 1981.

    Google Scholar 

  15. Pilant, W. L. L., “Elastic Waves in the Earth,” Amsterdam, Elsevier, 1979.

    Google Scholar 

  16. Richter, C. F. F., “Elementary Seismology,” San Francisco, W. H. Freeman, 1958.

    Google Scholar 

  17. Rothé, J. P. P., “The Seismicity of the Earth, 19531965,” Paris, UNESCO, 1969.

    Google Scholar 

  18. Kittel, C., “Introduction to Solid State Physics,” 5th edition, New York, John Wiley and Sons, 1976. Shockley, W., “Electrons and Holes in Semiconductors,” Englewood Cliffs, N.J., Prentice-Hall, 1950.

    Google Scholar 

  19. For a review of semiconductor devices developments in the past decade, see, e.g., Sze, S. M., “Semiconductor Device Development in the 1970s and 1980s-A Perspective,” Proc. IEEE 69, 1121 (1981).

    Google Scholar 

  20. For a general discussion of semiconductor devices, see, e.g., Sze, S. M., “Physics of Semiconductor Devices,” 2nd Ed., New York, Wiley-Interscience, 1981.

    Google Scholar 

  21. For a discussion of integrated circuit fabrication, see, e.g., S. M. Sze, Ed., “VLSI Technology,” New York, McGraw Hill, 1983.

    Google Scholar 

  22. For a general discussion, see, e.g., Casey, H. C., Jr., and Panish, M. B., “Heterostructure Laser,” New York, Academic, 1978.

    Google Scholar 

  23. For a discussion, see e.g., Johnston, W. D., Jr., “Solar Voltaic Cells,” New York, Marcel Dekker, 1980.

    Google Scholar 

  24. Eveleigh, V. W., “Introduction to Control System Design,” New York, McGraw-Hill Book Co., 1972. Melsa, J., and Schultz, D., “Linear Control Systems,” New York, McGraw-Hill Book Co., 1969.

    Google Scholar 

  25. Raven, F, F., “Automatic Control Engineering,” New York, McGraw-Hill.Rook Co., 1968.

    Google Scholar 

  26. Elgood, O, O., “Control Systems Theory,” New York, McGraw-Hill Book Co., 1967.

    Google Scholar 

  27. Truxal, J. G., Ed., “Control Engineers’ Handbook,” New York, McGraw-Hill Book Co., 1958.

    Google Scholar 

  28. Truxal, J. G., Ed., “Automatic Feedback Control Systems Synthesis,” New York, McGraw-Hill Book Co., 1955.

    Google Scholar 

  29. D’Azzo, J. J., and Houpis, C. H. H., “Feedback Control System Analysis and Synthesis,” New York, McGraw-Hill Book Company, 1960.

    Google Scholar 

  30. Del Toro, V., and Parker, S. R. R., “Principles of Control Systems Engineering,” New York, McGraw-Hill Book Company, 1960.

    Google Scholar 

  31. Ragazzini, J. R., and Franklin, G. F. F., “Sampled-Data Control Systems,” New York, McGraw-Hill Book Company, Inc., 1958.

    Google Scholar 

  32. Newton, G. C., Jr., Gould, L. A., and Kaiser, J. F. F., “Analytical Design of Linear Feedback Controls,” New York, John Wiley and Sons, Inc., 1957.

    Google Scholar 

  33. Bradley, J. N. N., “Shock Waves in Chemistry and Physics,” London, Methuen and Co., Ltd, and New York, John Wiley and Sons, Inc., 1962.

    Google Scholar 

  34. Courant, R., and Friedrichs, K. O., “Supersonic Flow and Shock Waves,” New York, Interscience Publishers, Inc., 1948.

    Google Scholar 

  35. Davison, L., and Graham, R. A., “Shock Compression of Solids,” in Physics Reports 55, 255–379, Amsterdam, North-Holland Publishing Co., 1979.

    Google Scholar 

  36. Fickett, W., and Davis, W. C. C., “Detonation,” Berkeley, Los Angeles, and London, Univ. California Press, 1979.

    Google Scholar 

  37. Glass, I. I. I., “Shock Waves and Man,” Toronto, Univ. Toronto Press, 1974.

    Google Scholar 

  38. Physics of High Energy Density,“ Proceedings of the International School of Physics ”Enrico Fermi,“ Course XLVII, VARENNA, July 1969 (P. Caldirola and H. Knoepfel, Eds.), New York and London, Academic Press, 1971.

    Google Scholar 

  39. Shock Tube and Shock Wave Research,“ Proceedings of the Eleventh International Symposium on Shock Tubes and Waves, Seattle, July 1977 (B. Ahlborn, A. Hertzberg, and D. Russell, Eds.), Seattle and London, Univ. Washington Press, 1978.

    Google Scholar 

  40. Shock Waves in Condensed Matter,“ AIP Topical Conference Proceedings, Menlo Park, June 1981 (W. J. Nellis, L. Seaman, and R. A. Graham, Eds.), New York, American Institute of Physics, 1981.

    Google Scholar 

  41. Zeldovich, Ya. B., and Raizer, Yu. R. R., “Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena,” Vols. I and II, New York and London, Academic Press, 1966.

    Google Scholar 

  42. Thomson, W., “Mathematical and Physical Papers,” Vol. 3, p. 493, Cambridge, Cambridge University Press, 1890.

    Google Scholar 

  43. Kennelly, A. E., Laws, F. A., and Pierce, P. H., “Skin Effect in Conductors,” Trans. AIEE, 34, 1953 (1915).

    Google Scholar 

  44. Dwight, H. B., “Skin Effect in Tubular and Flat Conductors,” Trans. AIEE, 37, 1379 (1918).

    Google Scholar 

  45. Ramo, S., and Whinnery, J. R., “Fields and Waves in Modern Radio,” Ch. 6, New York, John Wiley and Sons, 1953.

    Google Scholar 

  46. McLachlan, N. W., “Bessel Functions for Engineers,” Ch. 8, London, Oxford University Press, 1955.

    Google Scholar 

  47. Flugge, S., Ed., “Handbuch der Physik,” Vol. XVI, “Electric Fields and Waves,” p. 182, Berlin, Springer-Verlag, 1958.

    Google Scholar 

  48. Moon, P., and Spencer, D. E., “Foundations of Electrodynamics,” Ch. 7, New York, Van Nostrand Reinhold, 1960.

    Google Scholar 

  49. Simpson, P. G., “Induction Heating,” New York, McGraw-Hill Book Co., 1960.

    Google Scholar 

  50. Corbin, J. C., “The Influence of Magnetic Hysteresis on Skin Effect,” Aerospace Research Laboratories Report 65–167, August 1965 ( U.S. Air Force Publication).

    Google Scholar 

  51. Casimir, H. B. G. and Ubbink, J., “The Skin Effect; I. Introduction—The Current Distribution for Various’ Configurations,” Philips Technical Review 28, 271–283, (1967).

    Google Scholar 

  52. Weeks, W. T. et al., “Resistive and Inductive Skin Effect in Rectangular Conductors,” IBM J. Res. Develop. 23, 652–660 (1979).

    Google Scholar 

  53. Chari, M. V. K., and Silvester, P. P. (Eds.), “Finite Elements in Electrical and Magnetic Field Problems,” New York, Wiley, 1980.

    Google Scholar 

  54. Konrad, A., “Integrodifferential Finite Element Formulation of Two-Dimensional Steady-State Skin Effect Problems,” IEEE Trans. Magn., MAG-18, 284–292, 1982.

    Google Scholar 

  55. Konrad, A., Chari, M. V. K., and Csendes, Z. J., “New Finite Element Techniques for Skin Effect Problems,” IEEE Trans. Magn., MAG-18, 450455 (1982).

    Google Scholar 

  56. Brauer, J. R., “Finite Element Calculation of Eddy Currents and Skin Effects,” IEEE Trans. Magn., MAG-18, 540–509, 1982.

    Google Scholar 

  57. Casimir, H. B. G., and Ubbink, J., “The Skin Effect. II. The Skin Effect at High Frequencies,” Philips Tech. Rev. 28, 300–315 (1967).

    Google Scholar 

  58. Casimir, H. B. G., and Ubbink, J., “The Skin Effect. III. The Skin Effect in Superconductors,” Philips Tech. Rev. 28, 366–381 (1967).

    Google Scholar 

  59. Burkhard, D. G., Strobel, G. L., and Burkhard, D. R., App. Opt. 17, 1870 (1978).

    Google Scholar 

  60. Burkhard, D. G., Strobel, G. L., and Shealy, D. L., App. Opt. 17, 2431 (1978).

    Google Scholar 

  61. Winston, R., J. Opt. Soc. Am. 60, 245 (1970).

    Google Scholar 

  62. Jones, R. E., Jr., J. Opt. Soc. Am. 67, 1594 (1977).

    Google Scholar 

  63. Schruben, J. S., J. Opt. Soc. Am. 64, 55 (1974).

    Google Scholar 

  64. Elmer, W. B., “The Optical Design of Reflectors,” New York, John Wiley, 1980.

    Google Scholar 

  65. Burkhard, D. G., and Shealy, D. L., Solar Energy 17, 221 (1975).

    Google Scholar 

  66. Rhodes, P. W., and Shealy, D. L., App. Opt. 19, 3545 (1980).

    Google Scholar 

  67. Han, C. Y., Ishii, Y., and Murata, K., App. Opt. 22, 3644 (1983).

    Google Scholar 

  68. Welford, W. T., and Winston, R., “The Optics of Nonimaging Concentrators,” New York, Academic Press, 1978.

    Google Scholar 

  69. Strobel, G. L., and Burkhard, D. G., Solar Energy 20, 25 (1978).

    Google Scholar 

  70. Harwit, M., “Astrophysical Concepts,” New York, John Wiley and Sons, 1973.

    Google Scholar 

  71. Bethe, H., “Energy Production in Stars,” Phys. Rev. 55, 434 (1939).

    Google Scholar 

  72. See the article NEUTRINO by F. Reines in this Encyclopedia.

    Google Scholar 

  73. Zeilik, M., “Astronomy: The Evolving Universe,” New York, Harper and Row, 1979.

    Google Scholar 

  74. Wilson, O. C., Vaughan, O. C., and Mihalas, D., “The Activity Cycles of Stars,” Scientific American, January, 1981.

    Google Scholar 

  75. McDaniels, D. K., “The Sun: Our Future Energy Source,” New York, John Wiley and Sons, 1979.

    Google Scholar 

  76. Eddy, J. A., “The Case of the Missing Sunspots,” Scientific American, May, 1977.

    Google Scholar 

  77. Butte, Ken, and Perlin, John, “A Golden Thread: 2500 Years of Solar Architecture and Technology,” New York, Van Nostrand Reinhold Company, 1980.

    Google Scholar 

  78. Becker, C. P., “Solar Radiation Availability on Surfaces in the U.S. as Affected by Season, Orientation, Latitude, Attitude and Cloudiness,” New York, Arno Press, 1979.

    Google Scholar 

  79. Zarem, A. M., and Erway, D. D., “Introduction to the Utilization of Solar Energy,” pp. 89–100, New York, McGraw-Hill Book Co., 1963.

    Google Scholar 

  80. Hiester, N. K., Tietz, T. E., Loh, E., and Duwez, P., “Theoretical Considerations on Performance of Solar Furnances,” Jet Propulsion 27, 507 (1957).

    Google Scholar 

  81. Giutronich, J. E., “The Design of Solar Concentrations using Toroidal, Spherical, or Flat Components,” Solar Energy J. 7 (4), 162–166 (1963).

    Google Scholar 

  82. Masterson, K. D., “Optics Applied to Solar Energy IV,” Proc. Soc. of Photo-Optical Instrumentation Engineers V, 161 (1979).

    Google Scholar 

  83. Green, Martin A., “Solar Cells: Operating Principles, Technology and Systems Applications,” Englewood Cliffs, NJ, Prentice-Hall, 1982.

    Google Scholar 

  84. Burch, Charles G., “Solar Energy Comes out of the Shadows,” Fortune, pp. 67–75, September 24, 1979.

    Google Scholar 

  85. Hamilton, Robert C., “Ranger Spacecraft Power System,” in Snider, N. W. (Ed.), “Space Power Systems,” p. 19, New York, Academic Press, 1961.

    Google Scholar 

  86. Wise, Donald L., “Probing the Feasibility of Large Scale Aquatic Biomass Energy Farms,” Solar Energy 25(5), 455–457 (November 5, 1981).

    Google Scholar 

  87. Ohta, T., “Solar-Hydrogen Energy System: An Authoritative Review of Water-Splitting Systems by Solar Beam and Solar Heat; Hydrogen Production, Storage, and Utilization,” New York, Pergamon Press, 1979.

    Google Scholar 

  88. Summary of Papers from the 3rd International Conference on Photochemical Conversion,“ Science News,118, 105 (August 26, 1980).

    Google Scholar 

  89. Bryce-Smith, David (Ed.), “Photochemistry,” Vol. 10, London, The Chemical Society, 1979.

    Google Scholar 

  90. Wet Solar Cells,“ Scientific American,241, 72 (October 1979).

    Google Scholar 

  91. Boer, K. W., “Sharing the Sun,” New York Pergamon Press, 1976. (Vol. 1, “International and U.S. Programs;” Vol. 2, “Solar Collectors;” Vol. 3, “Heating and Cooling;” Vol. 4, “Systems Simulation and Design;” Vol. 5, “Solar Thermal and Ocean Thermal;” Vol. 6, “Photovoltaics;” Vol. 7, “Agriculture Bismars, Wind;” Vol. 8,“”Storage, Water Heater, Data Communications;“ Vol. 9, ”Socioeconomics and Cultural;“ Vol. 10, `Business and Commercial Implications.”)

    Google Scholar 

  92. Kreider, Jan F., and Frank Kreith (Ed.), “Solar Energy Handbook,” New York, McGraw-Hill, 1981.

    Google Scholar 

  93. Kuiper, G. P., Ed., “The Sun,” Chicago, University of Chicago Press, 1953.

    Google Scholar 

  94. Thomas, R. N., and Athay, R. G., “Physics of the Solar Chromosphere,” New York, Interscience Publishers, 1961.

    Google Scholar 

  95. Smith, H., and E, H., and E., “Solar Flares,” New York, The Macmillan Co., 1963.

    Google Scholar 

  96. Gamow, G, G., “A Star Called the Sun,” New York, Viking Press, 1964.

    Google Scholar 

  97. Bray, R., and Loughhead, R., “Sunspots,” London, Longmans, 1964.

    Google Scholar 

  98. Zirin, H, H., “The Solar Atmosphere,” Waltham, Mass., Blaisdell Publ. Co., 1966.

    Google Scholar 

  99. Tandberg-Hanssen, E, E., “Solar Activity,” Waltham, Mass., Blaisdell Publ. Co., 1967.

    Google Scholar 

  100. Bray, R., and Loughhead, R., “The Solar Granulation,” London, Chapman and Hall, Ltd., 1967.

    Google Scholar 

  101. Gibson, E. G., “The Quiet Sun,” Washington, NASA 1: 21: 303, U.S. Govt. Print. Off., 1973.

    Google Scholar 

  102. Bahcall, J. N., and Davis, Jr., R., “Solar Neutrinos: A Scientific Puzzle,” Science 191, 264 (1976).

    Google Scholar 

  103. White, O. R. (Ed.), “The Solar Output and Its Variation,” Boulder, CO, Univ. of Colorado Press, 1977.

    Google Scholar 

  104. Solar Physics 74, Nos. 1 and 2, (Nov. 1981)-Special Issue: Proceedings of the 14th ESLAB Symposium on the Physics of Solar Variations, Scheveningen, Holland, Sept., 1980.

    Google Scholar 

  105. Willson, R. C., “Active Cavity Radiometric Scale, International Pyrheliometric Scale and Solar Constant,” Journal of Geophysical Research 76, 4325 (1971).

    Google Scholar 

  106. Brusa, R. W., and Frohlich, C., “Recent Solar Constant Determinations from High Altitude Balloons,” Proc. of IAMAP 3rd Scientific Assembly, Hamburg, FRG, Aug., 1981, p. 35, Pub. by National Center for Atmospheric Research, Boulder, Co.

    Google Scholar 

  107. Hickey, J. R., et al., “Initial Solar Irradiance Determinations from Nimbus and Cavity Radiometer Measurements,” Science 208, 281 (1980).

    Google Scholar 

  108. Willson, R. C., et al., “Observations of Solar Irradiance Variability,” Science 211, 700 (1981).

    Google Scholar 

  109. Willson, R. C., “Solar Irradiance and Solar Variability,” Journal of Geophysical Research 87, 4319 (1982).

    Google Scholar 

  110. Eddy, J. A., Hoyt, D. V., and White, O. R., “Reconstructed Values of the Solar Constant from 1874 to the Present,” Proc. of IAMAP 3rd Scientific Assembly, Hamburg, FRG, Aug., 1981, p. 29. Pub. by National Center for Atmospheric Research, Boulder, Co.

    Google Scholar 

  111. Arvesen, J. C., Griffin, R. N., and Pearson, B. D., “Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft,” Journal of Applied Optics 8, 2215 (1969).

    Google Scholar 

  112. Labs, D., and Neckel, H., “The Radiation of the Solar Photosphere from 2000 Angstroms to 100 Microns,” Zeitschrift für Astrophysik 69, 1 (1968).

    Google Scholar 

  113. Ziman, J. M. M., “Electrons and Phonons,” Oxford, Clarendon Press, 1970; “Principles of the Theory of Solids,” Cambridge, The University Press, 1972.

    Google Scholar 

  114. Livingston, J. D., “Microstructure and Coercivity of Permanent-Magnet Materials,” Prog. Mat. Sci., 243, 1981.

    Google Scholar 

  115. Various authors: Articles in “Rapidly Quenched Metals III” (R. Cantor, Ed.), London, The Metals Society, 1978.

    Google Scholar 

  116. Various authors: Articles in “Metallic Glasses” (J. J. Gilman and J. H. Leamy, Eds.), Metals Park, Ohio, Amer. Soc. Metals, 1978.

    Google Scholar 

  117. Kao, Kwan C., and Hwang, Wei, “Electrical Transport in Solids,” Oxford, Pergamon Press, 1981.

    Google Scholar 

  118. Pankove, J. I., and Carlson, D. E., “Electrical and Optical Properties of Hydrogenated Amorphous Silicon,”Ann. Rev. Mat. Sci., p. 43, 1980.

    Google Scholar 

  119. Andrei, N., Physics Rev. Lett. 45, 379 (1980); Andrei, N., and Lowenstein, J., Phys. Rev. Lett. 46, 356 (1981); see also Physics Today, 34(5), 21 (1981). Duke, C. B., and Schein, L. P., Physics Today 33 (2), 42 (1980).

    Google Scholar 

  120. Madelung, O, O., “Introduction to Solid State Theory,” Berlin, Springer-Verlag, 1978.

    Google Scholar 

  121. Pantelides, S. T., Mickish, D. J., and Kunz, A. B., Phys. Rev. B10, 2602 (1974).

    Google Scholar 

  122. Pines, D., Physics Today 34 (11), 106 (1981).

    Google Scholar 

  123. Schulter, M., and Sham, L. J., Physics Today 34 (2), 36 (1982).

    Google Scholar 

  124. Seitz, F., Turnbull D., and Ehrenreich, H. (Eds.), “Solid State Physics” (All Volumes), New York, Academic Press.

    Google Scholar 

  125. Smith, J. R. ( Ed.), “Theory of Chemisorption,” Berlin, Springer-Verlag (1980).

    Google Scholar 

  126. Axford, W. I., Dessler, A. J., and Gottlieb, B., “Termination of Solar Wind and Solar Magnetic Field, ” Astrophys. J., 137, 1268–1278 (1963).

    Google Scholar 

  127. Beard, D. B., “The Solar Wind Geomagnetic Field Boundary,” Rev. Geophys., 2, 335–336 (1964).

    Google Scholar 

  128. Broadfoot, A. L., et al., “Overview of the Voyager Ultraviolet Spectroscopy Results through Jupiter Encounter,” J. Geophys. Res., 86, 8259–8284 (1981).

    Google Scholar 

  129. Dickinson, R. E., Ridley, E. C., and Roble, R. G., “A Three-Dimensional General Circulation Model of the Thermosphere,” J. Geophys. Res., 86, 1499–1512 (1981).

    Google Scholar 

  130. Johnson, F. S., and Midgley, J. E., “Notes on the lunar magnetosphere,” J. Geophys. Res., 73, 1523–1532 (1968).

    Google Scholar 

  131. Kupperian, J. E., Jr., Byram, E. T., Chubb, T. A., and Friedman, H., “Extreme Ultraviolet Radiation in the Night Sky,” Ann. Geophysique, 14, 329–333 (1958).

    Google Scholar 

  132. Ness, N. F., Scearce, C. S., and Seek, J. B., “Initial Results of Imp I Magnetic Field Experiment,” J. Geophys. Res., 69, 3531–3569, (1964).

    Google Scholar 

  133. Ness, N. F., Behannon, K. W., Scearce, C. S., and Cantarano, S. C., “Early results from the magnetic field experiment on lunar Explorer 35,” J. Geophys. Res., 72, 5769–5778 (1967).

    Google Scholar 

  134. Nicolet, M., “Solar Radio Flux and Temperature of the Upper Atmosphere,” J. Geophys. Res., 68, 6121–6144 (1963).

    Google Scholar 

  135. Parker, E. N., “Interplanetary Dynamical Processes,” pp. 272, New York, Interscience Publishers, 1963.

    Google Scholar 

  136. Patterson, T. N. L., Johnson, F. S., and Hanson, W. B., “The Distribution of Interplanetary Hydrogen,” Planetary Space Sci., 11, 767–778 (1963).

    Google Scholar 

  137. Russel, C. T., “Planetary Magnetism,” Rev. Geophys., Space Physics, 18, 77–106 (1980).

    Google Scholar 

  138. Sandel, B. R., et al., “Extreme Ultraviolet Observations from Voyager 2 Encounter with Saturn,” Science, 215, 548–553 (1982).

    Google Scholar 

  139. Snyder, C. W., Neugebauer, M., and Rao, U. R., “The Solar Wind Velocity and Its Correlation with Cosmic Ray Variations and with Solar and Geomagnetic Activity,” J. Geophys. Res., 68, 6361–6370 (1963).

    Google Scholar 

  140. Sonett, C. P., and Colburn, D. S., “Establishment of a lunar unipolar generator and associated shock and wake by the solar wind,” Nature, 216, 340343 (1967).

    Google Scholar 

  141. Spreiter, J. R., and Jones, W. P., “On the Effect of a Weak Interplanetary Field on the Interaction between the Solar Wind and the Geomagnetic Field,” J. Geophys. Res., 68, 3555–3565 (1963).

    Google Scholar 

  142. Vasyliunas, V. M., and Dessler, A. J., “The Magnetic Anomaly Model of the Jovian Magnetosphere: A Post-Voyager Assessment,” J. Geophys. Res., 86, 8435–8446 (1981).

    Google Scholar 

  143. Shutt, R. P., Ed., “Bubble and Spark Chambers,” Vols. I and II, New York and London, Academic Press, 1967.

    Google Scholar 

  144. Aleksandrov, Yu. A., Voronov, G. S., Gorbunkov, V. M., Delone, N. B., and Nechayev, Yu. I., “Bubble Chambers” (W. R. Frisken, Ed.), Bloomington, Ind., Indiana Univ. Press, 1967.

    Google Scholar 

  145. Allkofer, O. C. C., “Spark Chambers,” Munich, Verlag Karl Thiemig KG, 1969.

    Google Scholar 

  146. Charpak, G, G., “Evolution of the Automatic Spark Chambers,” Ann. Rev. Nuclear Sci., 20 (1970).

    Google Scholar 

  147. Rice, Evans, P., “Spark, Streamer, Proportional and Drift Chambers,” London, Richelieu Press, 1974.

    Google Scholar 

  148. Herzberg, G, G., “Atomic Spectra and Atomic Structure,” New York, Dover, 1944.

    Google Scholar 

  149. Herzberg, G., “Molecular Spectra and Molecular Structure,” Vol. I, “Spectra of Diatomic Molecules,” New York, Van Nostrand Reinhold, 1950.

    Google Scholar 

  150. Herzberg, G., “Molecular Spectra and Molecular Structure,” Vol. II, “Infrared and Raman Spectra of Poly-atomic Molecules,” New York, Van Nostrand Reinhold, 1945.

    Google Scholar 

  151. Townes, C. H., and Schawlow, A. L., “Microwave Spectroscopy,” New York, Dover, 1975.

    Google Scholar 

  152. Shinoda, K, K., “Topics in Applied Physics,” Vol. 13, “High Resolution Laser Spectroscopy,” Berlin, Springer-Verlag, 1976.

    Google Scholar 

  153. Bloembergen, N., “Nonlinear Optics and Spectroscopy,” Rev. Mod. Phys. 54, 685 (1982).

    Google Scholar 

  154. Schawlow, A. L., “Spectroscopy in a New Light,” Rev. Mod. Phys. 54, 697 (1982).

    Google Scholar 

  155. Vanasse, G, G., “Spectrometric Techniques,” Vol. 1, New York, Academic Press, 1977.

    Google Scholar 

  156. Vanasse, G, G., “Spectrometric Techniques,” Vol. 2, New York, Academic Press, 1981.

    Google Scholar 

  157. Block, F.,Z. Physik61, 206 (1930).

    Google Scholar 

  158. Sinclair, R. N., and Brockhouse, B. N., Phys. Rev.120, 1638 (1960).

    Google Scholar 

  159. Marshall, W., “Critical Phenomena,” Proceedings of a conference held in Washington, D.C., April 1965; Edited by M. S. Green and J. V. Sengers, National Bureau of Standards, Miscellaneous Publication 273.

    Google Scholar 

  160. Hass, C., CRC, VI, Issue 1, p. 47 (March 1970).

    Google Scholar 

  161. Fleury, P. A., Porto, S. P., Chiesman, L. E., and Guggenheim, H. J., Phys. Rev. Letters, 17, 84 (1966).

    Google Scholar 

  162. Halley, J. Woods, and Silvera, I.,Phys. Rev. Letters15, 654 (1965).

    Google Scholar 

  163. Green, R. L., Sell, D. D., Yen, W. M., Schawlow, A. L., and White, R. M., Phys. Rev. Letters, 15, 656 (1965).

    Google Scholar 

  164. Akheizer, A. I., Bar’Yakhtar, V. G., and Peletminskii, S. V., “Spin-Waves,” Amsterdam, North-Holland Publishing Co., 1968.

    Google Scholar 

  165. Heisenberg, W., Z. Physik, 49, 619 (1928).

    Google Scholar 

  166. Izuyama, T., Kim, D. J., and Kubo, R.,J. Phys. Soc. Japan18, 1025 (1963).

    Google Scholar 

  167. Wolfram, T., and Callaway, Phys. Rev., 130, 2207 (1963).

    Google Scholar 

  168. De Wames, R. E., and Wolfram, T.,Phys. Rev.185, 720 (1969).

    Google Scholar 

  169. Griffiths, J., Nature158, 670 (1947).

    Google Scholar 

  170. Seavey, M., and Tannenwald, P.,Phys. Rev. Letters1, 168 (1958).

    Google Scholar 

General

  • Slater, J. C. C., “Introduction to Chemical Physics,” New York, McGraw-Hill Book Co., 1939.

    Google Scholar 

  • Flowers, B. H., and Mendoza, E., “Properties of Matter,” New York, John Wiley and Sons, 1970. Goldstein, D. L., “States of Matter,” Englewood Cliffs, N.J., Prentice-Hall, 1975.

    Google Scholar 

On the Forces Which Hold Matter Together

  • Moelwyn-Hughes, A. E., “States of Matter,” London, Oliver and Boyd, 1961.

    Google Scholar 

On Thermodynamics

  1. Pippard, A, A., “Elements of Classical Thermodynamics,” Cambridge, Cambridge Univ. Press, 1957.

    Google Scholar 

  2. Porter, A. W., “Thermodynamics,” London, Methuen, and New York, John Wiley and Sons, 1951.

    Google Scholar 

  3. Loeb, Leonard B., “Static Electrification,” Berlin, Goettingen, and Heidelberg, Springer-Verlag, 1958. Covers solids, liquids, and gases.

    Google Scholar 

  4. Klinkenberg, A., and Van der Minne, J. L., “Electrostatics in the Petroleum Industry,” Amsterdam and New York, Elsevier Publishing Company, 1958. An excellent coverage of liquid-solid contacts.

    Google Scholar 

  5. Montgomery, D. J., “Static Electrification of Solids,” Solid State Physics 9, 139 (1959). An introduction into solid-solid contacts.

    Google Scholar 

  6. Some books of more or less generality are:

    Google Scholar 

  7. Gross, B, B., “Charge Storage in Dielectrics,” Amsterdam and New York, Elsevier Publishing Co., 1964.

    Google Scholar 

  8. Dessauer, J. H., and Clark, H. E. ( Eds.), “Xerography and Related Processes,” London and New York, The Focal Press, 1965.

    Google Scholar 

  9. Schaffert, R. M, R. M., “Electrophotography,” London and New York, The Focal Press, 1965; 2nd Edition, 1975.

    Google Scholar 

  10. Harper, W. R. R., “Contact and Frictional Electrification,” London, Oxford Univ. Press, 1967.

    Google Scholar 

  11. Jowett, Charles E, Charles E., “Electrostatics in the Electronics Environment,” New York, John Wiley and Sons, 1976.

    Google Scholar 

  12. Lowell, J. (Ed.), “Conference Series No. 48, Proceedings of the 5th Conference on Electrostatic Phenomena, 1979,” Bristol and London, The Institute of Physics, 1979.

    Google Scholar 

  13. Blythe, A. R. (Ed.), “Conference Series No. 27, Proceedings from the 4th Conference on Static Electrification, 1975,” London and Bristol, The Institute of Physics, 1975. (Previous reports are Conference Series No. 11, 3rd Conference, 1971; Conference Series No. 4, 2nd Conference, 1967; British Journal of Applied Physics,Suppl. No. 2, 1st Conference, 1953.)

    Google Scholar 

  14. Ong, P. H. (Ed.), “Fourth International Conference on Electrostatics, 1981,” Journal of Electrostatics 10, special issue (1981).

    Google Scholar 

  15. Asano, Kazutoshi, “Review of the 1980 Annual Meeting of the Institute of Electrostatics, Japan,” Journal of Electrostatics 9, 367 (1981).

    Google Scholar 

  16. Becker, R. A., “Introduction to Theoretical Mechanics,” (Chapters 2 and 5 ), New York, McGraw-Hill Book Co., 1954.

    Google Scholar 

  17. Eliezer, C. J., “A Modern Textbook on Statics,” New York, MacMillan and Oxford, Pergamon Press, 1964. Lamb, H., “Statics,” Cambridge, U.K., Cambridge Univ. Press, 1913, 1945.

    Google Scholar 

  18. Lindsay, R. B., “Physical Mechanics,” (Chapter 5 ), New York, Van Nostrand, 1950.

    Google Scholar 

  19. MacMillan, W. D., “Statics and Dynamics of a Particle,” New York, McGraw-Hill Book Co., 1927. Synge, J. L., and Griffith, B. A., “Principles of Mechanics,” (Chapters 2, 3, and 10), New York, McGraw-Hill Book Co., 1959.

    Google Scholar 

  20. Huang, K, K., “Statistical Mechanics,” New York, J. Wiley and Sons, 1963.

    Google Scholar 

  21. Boer, J., and Uhlenbeck, G. E., Eds., “Studies in Statistical Mechanics,” Vol. 1, New York, Inter-science Publishers, 1962.

    Google Scholar 

  22. Prigogine, I., “Non Equilibrium Statistical Mechanics,” New York, Interscience, 1963.

    Google Scholar 

  23. Balescu, R., “Statistical Mechanics of Charged Particles,” New York, Interscience Publishers 1963. Stanley, H. E., “Introduction to Phase Transitions and Critical Phenomena,” London, Oxford University Press, 1971.

    Google Scholar 

  24. Balescu, R., and Wallenborn, J, J., “On the structure of the time evolution process in many-body systems,” Physica, 54, 477 (1971).

    Google Scholar 

  25. Balescu, R, R., “Equilibrium and Nonequilibrium Statistical Mechanics,” New York, Wiley, 1975.

    Google Scholar 

  26. Cohen, E. G. D. (Ed.), “Fundamental Problems in Statistical Mechanics,” Vol. V, Amsterdam, North Holland, 1980.

    Google Scholar 

  27. Feynman, R. P., “Statistical Mechanics,” Reading, Mass., W. A. Benjamin, 1975.

    Google Scholar 

  28. Misra, B., Prigogine, I., and Courbage, M., “From Deterministic Dynamics to Probabilistic Descriptions,” Physica, 98A, 1 (1979).

    Google Scholar 

  29. Beyer, W. H. (Ed.), “Chemical Rubber Company Handbook of Tables for Probability and Statistics,” Cleveland, Chemical Rubber Company, 1966.

    Google Scholar 

  30. Feller, W, W., “An Introduction to Probability Theory and its Applications,” Vol. I, 3rd ed., New York, John Wiley and Sons, 1968.

    Google Scholar 

  31. Gnanadesikan, R, R., “Methods for Statistical Data Analysis of Multivariate Observation,” New York, John Wiley and Sons, 1977.

    Google Scholar 

  32. Hicks, C. R. R., “Fundamental Concepts in the Design of Experiments,” New York; Holt, Rinehart, and Winston, 1965.

    Google Scholar 

  33. Hogg, R. V., and Craig, A. T., “Introduction to Mathematical Statistics,” 3rd ed., New York, Macmillan, 1970.

    Google Scholar 

  34. Larsen, R. J., and Marx, M. L., “An Introduction to Mathematical Statistics and its Applications,” Englewood Cliffs, New Jersey, Prentice-Hall, 1981.

    Google Scholar 

  35. Lindgren, B. W., “Statistical Theory,” 2nd ed., New York, Macmillan, 1968.

    Google Scholar 

  36. Nie, N. H., et al., “SPSS: Statistical Package for the

    Google Scholar 

  37. Social Sciences,“ New York, McGraw-Hill, 1975. Owen, D. B., ”Handbook of Statistical Tables,“ Reading, Mass., Addision-Wesley, 1962.

    Google Scholar 

  38. Ryan, T. A., Joiner, B. L., and Ryan, B. F. F., “MINITAB Student Handbook,” North Scituate, Mass., Duxbury Press, 1976.

    Google Scholar 

  39. Tukey, J. W. W., “Exploratory Data Analysis,” New York, Addison-Wesley, 1977.

    Google Scholar 

  40. Wolf, F. L., “Elements of Probability and Statistics,” 2nd ed., New York, McGraw-Hill, 1974.

    Google Scholar 

  41. Hooft, G., “Gauge Theories of the Forces between Elementary Particles,” Scientific American 242 (6), 104 (1980).

    Google Scholar 

  42. Georgi, H., “A Unified Theory of Elementary Particles and Forces,” Scientific American 244(4), 48 (1981). Weinberg, S., Scientific American 244 (6), 64 (1981).

    Google Scholar 

  43. Lynton, Ernest A., “Superconductivity,” New York, John Wiley and Sons 1969 (3rd Edition). A concise, extremely readable book in which most of the ideas in this article are elaborated.

    Google Scholar 

  44. Shoenberg, D, D., “Superconductivity,” New York, Cambridge Univ. Press, 1952. An excellent account of the field up to about 1952.

    Google Scholar 

  45. London, F., “Superfluids,” Vol. 1, New York, John Wiley and Sons, 1950. A classic account of the early theory of superconductivity; it and its companion Volume 2 on superfluid helium should be required reading for every cryophysicist.

    Google Scholar 

  46. Rose-Innes, A. C., and Rhoderick, E. H., “Introduction to Superconductivity,” New York, Pergamon, 1969. About the same level as Lynton, but some topics discussed in more detail; all equations are given in mks units, which should please some.

    Google Scholar 

  47. There are several books on the modern theory of superconductivity, some of which are Schrieffer, J. Robert, “Theory of Superconductivity,” New York, W. A. Benjamin, 1964; Rickayzen, G., “Theory of Superconductivity,” New York, Interscience 1965; de Gennes, P. G., “Superconductivity of Metals and Alloys,” New York, W. A. Benjamin, 1966; Kuper, C. G., “An Introduction to the Theory of Superconductivity,” New York, Oxford Univ. Press, 1968; Saint-James, D., Sarma, G., and Thomas, E. J., “Type II Superconductivity,” New York, Pergamon, 1969; Tinkham, M., “Introduction to Superconductivity,” New York, McGraw-Hill, 1975.

    Google Scholar 

  48. Parks, R. D. (Ed.), “Superconductivity,” Volumes I and II, New York, Marcel Dekker, 1969. A truly encyclopedic treatment of the subject, written by about thirty international experts. Rev. Mod. Phys., 36, 1–331 (1964). This contains the proceedings of an international conference on superconductivity held in 1963.

    Google Scholar 

  49. Chilton, F. (Ed.), “Superconductivity,” Amsterdam, North-Holland, 1971. This contains the proceedings of an international conference on superconductivity held in 1969.

    Google Scholar 

  50. Suhl, H., and Maple, M. B. (Eds.), “Superconductivity in d-and f-Band Metals,” Academic Press, 1980. This contains the papers from the next to the latest of a series of international conferences devoted to the basic superconductivity (i.e., no applications) of transition metals, alloys, and compounds, which constitute the overwhelming majority of known

    Google Scholar 

  51. Schwartz, B. B., and Foner, S. (Eds.), “Superconducting Applications: Squids and Machines,” 1977, and “Superconductor Materials Science: Metallurgy, Fabrication and Applications,” 1981, both published by Plenum Press. NATO Advanced Study Institutes, with experts giving tutorial lectures.

    Google Scholar 

  52. Vanselow, R. (Ed.), “Chemistry and Physics of Solid Surfaces,” Vols. I and II, Boca Raton, FL, CRC Press, 1979.

    Google Scholar 

  53. Gibbs, J. W., “Collected Works,” Vol. I, New Haven, Yale Univ. Press, 1948.

    Google Scholar 

  54. Blakely, J. M. (Ed.), “Surface Physics of Materials,” Vols. I and II, New York, Academic Press, 1975.

    Google Scholar 

  55. Dash, J. G., and Ruvalds, J. (Eds.), “Phase Transitions in Surface Films,” New York, Plenum Press, 1979.

    Google Scholar 

  56. Inglesfield, J. E., “Electronic Surface Structure,” Rep. Prog. Phys. 45, 224 (1982).

    Google Scholar 

  57. Smith, J. R. (Ed.), “Theory of Chemisorption,” Berlin, Springer-Verlag, 1980.

    Google Scholar 

  58. Kortan, A. R., and Park, R. L., “Phase Diagram for Oxygen Chemisorbed on Nickel (111),” Phys. Rev. B 23, 6340 (1981).

    Google Scholar 

  59. Eisenberger, P., and Feldman, L. C., “New Approaches to Surface Structure Determinations,” Science 214, 300 (1981).

    Google Scholar 

  60. Hirschfelder, J. O., Curtiss C. F., and Bird, R. B.

    Google Scholar 

  61. Molecular Theory of Gases and Liquids,“ p. 336, New York, John Wiley and Sons, 1954.

    Google Scholar 

  62. Harasima, A., “Molecular Theory of Surface Tension,” in Prigogine, Ed., “Advances in Chemical Physics,” Vol. I, New York, Interscience Publishers, 1958. Ono, S., and Kondo, S., “Molecular Theory of Surface Tension in Liquids,” in Flügge, S., Ed., “Encyclopedia of Physics,” Vol. X, “Structure of Liquids,” p. 134, Berlin, Springer, 1960.

    Google Scholar 

  63. Kirkwood, J. G., “Theory of Liquids,” p. 127, New York, Gordon and Breach, 1968.

    Google Scholar 

  64. Croxton, C. A., “Statistical Mechanics of the Liquid Surface,” New York, John Wiley and Sons, 1980.

    Google Scholar 

  65. Livingood, J. J., “Cyclic Particle Accelerators,” New York, Van Nostrand Reinhold, 1961.

    Google Scholar 

  66. Livingston, M. S., and Blewett, J. P., “Particle Accelerators,” New York, McGraw-Hill Book Co., 1962.

    Google Scholar 

  67. Wilson, R. R., and Littauer, R., “Accelerators, Machines of Nuclear Physics,” Science Study Series, Garden City, N. Y., Doubleday Anchor, 1960.

    Google Scholar 

  68. Green, G. K., and Courant, E. D., in F. Flügge, Ed., “Handbuch der Physik,” Vol. 44, Berlin, Springer Verlag, pp. 218–340, 1959.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fowles, G.R. et al. (1990). S. In: Besançon, R.M. (eds) The Encyclopedia of Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6902-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6902-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-00522-1

  • Online ISBN: 978-1-4615-6902-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics