Skip to main content

Abstract

Welche Radien r + und r- man den positiven Alkali- und negativen Halogenionen (genauer ihren Wirkungssphären) zuschreiben muß, ist aus der folgenden Zusammenstellung der empirischen Gitterkonstanten δ (doppelte Entfernung zweier verschieden geladener Nachbar-ionen) abzuleiten, da ja bei Berührung der Ionen δ/2 einfach gleich der Radiensumme r+ + r- anzunehmen ist (Tabelle 1). Durch die Gleichungen 2r++2r_=(5 mit empirisch bekannten rechten Seiten sind die Einzelwerte r+ und r_ freilich nur bis auf einen unbestimmten konstanten Summanden festgelegt. Letzteren findet man aber mit Hilfe der Gitterkonstante von LiJ. Da nämlich das Li-Ion mit seinen zwei Elektronen keinen Würfel bilden kann, sondern nur eine einquantige Ringsphäre besitzt, ist es jedenfalls so

Table 1 Tabelle 1 der empirischen Gitterkonstanten δ.108

viel kleiner als das Jodion, daß beim Gitteraufbau die um δ/√2 entfernten Jodpartikel eher zur Berührung kommen als je ein Jod- mit einem benachbarten Lithiumion. Daher ist im LiJ und eventuell auch in den anderen Li-Salzen die obige Radienbeziehung durch r.√2 = δ/2 zu ersetzen, wodurch der unbestimmte Summand festgelegt ist. Dafür bleibt aber der viel kleinere Radius des Li-Ions ganz unbestimmt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. L. Bragg, Proc. Roy. Soc. (Nov. 1913). [Vol. I. paper 17]

    Google Scholar 

  2. Hull, Phys. Rev. (10 Dec. 1917).

    Google Scholar 

  3. * [Note the weak point in the following deduction, no distinction being made as to the type of bonding of the particle, see this Vol. p. 43 and paper 117. Ed.]

    Google Scholar 

  4. Ewald, Phys. Zs. (April 15, 1914). [Vol. I. paper 18]

    Google Scholar 

  5. Acta Soc. Scient. Fennicae50 No 2 (1920).

    Google Scholar 

  6. Översikt au Finska Vet. Soc. Förh.63 A No 4 (1920–1921) and Comm.Phys.-Math. Soc. Scient. Fennicae T. I No 37.

    Google Scholar 

  7. Zeitschr. f. Physik9 (1922) 1.

    Google Scholar 

  8. Niggli, Zeitschr. für Kristallogr. 56 (1921) 167.

    Google Scholar 

  9. Wasastjerna, Soc. Scient. Fenn. Comm. Phys. Math. 38 (1923) 1 [this Vol. paper 116].

    Google Scholar 

  10. Lande, Zeitschr. für Physik 1 (1920) 191 [this Vol. paper 114]

    Google Scholar 

  11. Pauling, paper submitted to Proc. Roy. Soc.

    Google Scholar 

  12. A normal crystal is one in which contact (that is, strong repulsion) occurs only between adjacent anions and cations, and in which there is only so much deformation as that shown by the alkali halides.

    Google Scholar 

  13. The crystal structure data are taken from Wyckoff, ‘International Critical Tables,’ except where otherwise noted. Inter-atomic distances referred to Goldschmidt are from Goldschmidt, Skrifter Det. Norske Videnskaps-Akad. Oslo I. Matem.-Naturvid. Klasse 2 (1926).

    Google Scholar 

  14. The same results would be obtained by the use of any other function for φ(R), instead of the Born expression; for the calculation depends mainly on the first and second derivatives, which are found experimentally.

    Google Scholar 

  15. Wasastjerna, Soc. Sci. Fenn. Comm. Phys. Math. 38 (1923) 1.

    Google Scholar 

  16. Huggins, who has particularly emphasized the fact that different atomic radii are required for different crystals, has recently [Phys. Rev. 28 (1926) 1086] suggested a set of atomic radii based upon his ideas of the location of electrons in crystals. These radii are essentially for use with crystals in which the atoms are bonded by the sharing of electron pairs, such as diamond, sphalerite, etc.; but he also attempts to include the undoubtedly ionic fluorite and cesium chloride structures in this category.

    Google Scholar 

  17. Compare Goldschmidt’s various publications, especially Geochemische Verteilungsgesetze der Elemente VII and VIII.

    Google Scholar 

  18. J. Am. Chem. Soc.49 (1927) 765, see also Z. Krist.67 (1928) 377.

    Google Scholar 

  19. Z. Krist. 71 (1929) 517, also Physic. Rev. 37 (1931) 1295.

    Google Scholar 

  20. Dagegen wohl für den Fall des Magnetites (A. Claasen, Pr. Physic. Soc. London 38 (1926) 482).

    Google Scholar 

  21. * [Neutron diffraction (Bacon, 1952) gives u = 0.327 ±0.001. Ed.]

    Google Scholar 

  22. Dies bedeutet ein Abdrängen der Al-Atomen von der gemeinsamen Oktaederkante und damit voneinander, was ebenfalls sonstiger Erfahrung entspricht.

    Google Scholar 

  23. Aus den empirischen Ionenradien von V. M. Goldschmidt.

    Google Scholar 

  24. V. M. Goldschmidt, Geochemische Verteilungsgesetze der Elemente. (1926).

    Google Scholar 

  25. L. Pauling, J. Am. Chem. Soc. 49 (1927) 765.

    Article  Google Scholar 

  26. See also W. H. Zachariasen. Z. Krist. 80 (1931) 137 and Huggins and Mayer, J. chem. Physics 1 (Nov. 1933).

    Google Scholar 

  27. J. Sherman, Chem, Rev. 11 (1932) 93.

    Article  Google Scholar 

  28. W. L. Bragg, Z. Krist. 74 (1930) 237.

    Google Scholar 

  29. Linus Pauling, J. Am. Chem. Soc. 51 (1929) 1010.

    Article  Google Scholar 

  30. M. L. Huggins, J. Am. Chem. Soc. 44 (1922) 1841. A structure of this type was also assigned to calcite, for which an ionic structure (Ca ++ and CO 3 = ) is now accepted.

    Article  Google Scholar 

  31. H. G. Grimm and A. Sommerfeld, Z. Physik 36 (1926) 36.

    Article  ADS  Google Scholar 

  32. M. L. Huggins, Physic. Rev. 28 (1926) 1086.

    Article  ADS  Google Scholar 

  33. V. M. Goldschmidt, Trans. Faraday Soc. 25 (1929) 253.

    Article  Google Scholar 

  34. Linus Pauling, J. Am. Chem. Soc. 53 (1931) 1367.

    Article  Google Scholar 

  35. Linus Pauling, Pr. Nat. Acad. 14 (1928) 359.

    Article  Google Scholar 

  36. Linus Pauling, J. Am. Chem. Soc. 53 (1931) 1367.

    Article  Google Scholar 

  37. Hereafter called Ref. I. A detailed treatment of the theory is given by J. C. Slater, Physic. Rev. 38(1931)1109.

    Article  ADS  MATH  Google Scholar 

  38. Following Mulliken, we shall use the word ‘orbital’ to represent a one-electron orbital eigenfunction of an atom.

    Google Scholar 

  39. A detailed discussion of this question and of the assumptions underlying our approximate treatment of bond strengths is given in the interesting papers of J. H. Van Vleck, J. Chem. Physics 1 (1933) 177, 219.

    Article  ADS  Google Scholar 

  40. These were discovered by R. Hultgren, Physic. Rev. 40 (1932) 891.

    Article  ADS  MATH  Google Scholar 

  41. For a detailed discussion see L. Pauling, J. Am. Chem. Soc. 54 (1932) 988.

    Article  Google Scholar 

  42. That is, the same number of unpaired electrons (one less than the multiplicity of the state).

    Google Scholar 

  43. L. Pauling, Chem. Rev. 5 (1928) 173.

    Article  Google Scholar 

  44. O. Burrau, Det. Kgl. Danske Vid. Selsk. Math.-fys. Meddeleker 7 (1927) 14.

    Google Scholar 

  45. L. Pauling and D. M. Yost, Pr. Nat. Acad. 18 (1932) 414.

    Article  ADS  Google Scholar 

  46. L. Pauling and D. M. Yost, L. Pauling, J. Am. Chem. Soc. 54 (1932) 3570.

    Article  Google Scholar 

  47. L. Pauling, Pr. Nat. Acad. 18 (1932) 293, 498.

    Article  ADS  Google Scholar 

  48. On account of the quenching of the orbital mechanical and magnetic moment of atoms on bound formation, all electron-pair-bond complexes are to be represented as Σ states.

    Google Scholar 

  49. M. L. Huggins, Physic. Rev. 28 (1926) 1086.

    Article  ADS  Google Scholar 

  50. This table has been published by L. Pauling, Pr. Nat. Acad. 18 (1932) 293, in connection with the discussion of the resonance of molecules among several electronic structures.

    Article  ADS  Google Scholar 

  51. M. L. Huggins, Chem. Rev. 10 (1932) 427. * [This structure has been confirmed by X-rays (1941) and neutron diffraction (1953). Ed.]

    Article  Google Scholar 

  52. W. Hofmann, Z. Krist. 84 (1933) 177.

    Google Scholar 

  53. It is very improbable that this cleavage should occur in such a way as to rupture Cu—S bonds, as suggested by Hofmann.

    Google Scholar 

  54. G. Menzer, Z. Krist. 78 (1931) 136.

    Google Scholar 

  55. * [Confirmed by neutron diffraction (1966): each Bi-atom has three oxygen neigbours at a distance of 2.15Å and three more at 2.62Å. Ed.]

    Google Scholar 

  56. D. Heyworth, Physic. Rev. 38 (1931) 351, 1792.

    Article  ADS  Google Scholar 

  57. H. Braekken, Z. Krist. 74 (1930) 67.

    Google Scholar 

  58. H. Braekken, Z. Krist. 75 (1930) 574.

    Google Scholar 

  59. The possibility of such a displacement was mentioned by Miss Heyworth. ** [No redetermination performed. Ed.]

    Google Scholar 

  60. M. L. Huggins, Chem. Rev. 10 (1932) 427.

    Article  Google Scholar 

  61. The question of the co-ordinative arrangement in such cases has been treated recently in a very interesting manner by L. Pauling in his contribution to the Sommerfeld Volume, Probleme der modernen Physik (Leipzig, 1928) 17. [This vol. paper 123.]

    Google Scholar 

  62. A. Magnus, ‘Die chemischen Komplexverbindungen,’ Z. anorgan. Chem. 124 (1922) 288.

    Google Scholar 

  63. One principal aim of the experimental work on crystal structures in our laboratory during the last four years has been to find the laws which govern variations of atomic and ionic distances in crystals. It is somewhat disappointing to see that the aims and results of our work have in some cases been so completely misunderstood; as for instance shown by a paper in Physica 8 (1928) 129.

    Google Scholar 

  64. The influence of the nature of neighbouring particles has been studied in a number of cases by K. Fajans and H. G. Grimm and has been associated with ‘ionic deformation’. Quite recently L. Pauling has published most interesting considerations on this question (J. Amer. Chem. Soc. 50 (1928) 1036). * [Mathematical derivation in Zachariasen’s (1931) paper, this Vol. p. 49. Ed.]

    Google Scholar 

  65. Data on lattice energy for a number of structure types have been calculated by Born and his students.

    Google Scholar 

  66. A. E. van Arkel, Z. Physik 50 (1928) 648.

    Article  ADS  Google Scholar 

  67. F. Hund, Z. Physik, 34, (1925) 833.

    Article  ADS  Google Scholar 

  68. From our point of view a giant ionic molecule, not a valency molecule.

    Google Scholar 

  69. G. Natta, Rend. Accad. Naz. Lincei (1925), has found the structure of cadmium iodide in Cd(OH)2.

    Google Scholar 

  70. W. Zachariasen, Untersuchungen über die Kristallstruktur von Sesquioxyden und Verbindungen ABO3 Nor ska Vidensk. Akad. Oslo I. Mat. Naturv. (1928) No 4.

    Google Scholar 

  71. R. G. Dickinson, J. Amer. Chem. Soc. 45 (1923) 958.

    Article  Google Scholar 

  72. R. G. Dickinson, Ztschr. f. Krist. 64 (1927) 400.

    Google Scholar 

  73. Linus Pauling and J. H. Sturdivant, Ztschr. f. Krist. 68 (1928) 239.

    Google Scholar 

  74. J. Leonhardt. Ztschr. f. Krist. 59 (1924) 216.

    Google Scholar 

  75. W. H. Taylor and W. W. Jackson, Proc. Royal Soc. London 119 (1928) 132.

    Article  ADS  Google Scholar 

  76. Bernai, Ann. Rep. Chem. Soc. (1933) 401.

    Google Scholar 

  77. Bernai and Fowler, J. Chem. Phys. 1 (1933) 515 [this Vol. paper 124a].

    Article  ADS  Google Scholar 

  78. Megaw, Z. Krystallog. 87 (1934) 185.

    Google Scholar 

  79. * [An orientation disorder is in accord with the residual entropy of ice. Ed.]

    Google Scholar 

  80. The values given in the literature for the oxygen radius vary from 1.32 (Goldschmidt) to 1.40 (Pauling, Zachariasen). Probably the true value is about 1.35Å.

    Google Scholar 

  81. Bernai and Fowler, loc. cit.

    Google Scholar 

  82. Pauling, J. Amer. Chem. Soc. 53 (1931) 1367.

    Article  Google Scholar 

Download references

Authors

Editor information

J. M. Bijvoet W. G. Burgers G. Hägg

Rights and permissions

Reprints and permissions

Copyright information

© 1972 International Union of Crystallography

About this chapter

Cite this chapter

Bijvoet, J.M., Burgers, W.G., Hägg, G. (1972). Atomic (ionic) Radii and Building Principles. In: Bijvoet, J.M., Burgers, W.G., Hägg, G. (eds) Early Papers on Diffraction of X-rays by Crystals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6878-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6878-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6880-3

  • Online ISBN: 978-1-4615-6878-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics