Influence of Lipolytic and Antilipolytic Agents on Synthesis of Adipose Tissue Lipoprotein Lipase

  • Esko A. Nikkilä
  • Olavi Pykälistö
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 4)


Adipose tissue forms an important site in the breakdown and assimilation of serum triglycerides and its quantitative role in this process may be even greater than thus far believed if it turns out that intact triglyceride molecules cannot be metabolized by the liver1,2. The only known enzyme concerned with the hydrolysis of serum triglycerides is lipoprotein lipase (LPL) and its activity may be one of the factors regulating serum triglyceride level. Hence, knowledge of the mode of control of the synthesis and activity of LPL is important. The enzyme has an exceptionally rapid turnover, the half-life of rat adipose tissue LPL being only a few hours3–5. This makes that even a short-term control of the LPL action may be exerted through alteration of the rate of enzyme synthesis. However, this applies so far only to rat since turnover measurements of the corresponding human enzyme have not been made.


Adipose Tissue Nicotinic Acid Lipoprotein Lipase Adipose Tissue Lipoprotein Lipase Expe Riments 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Felts, J.M. and Mayes, P.A. Nature 206: 195 (1965)PubMedCrossRefGoogle Scholar
  2. 2.
    Mayes, P.A. and Felts, J.M. Biochem.J. 105:18C (1967)PubMedGoogle Scholar
  3. 3.
    Wing, D.R., Fielding, C.J. and Robinson, D.S. Biochem.J.. 104:45C (1967)PubMedGoogle Scholar
  4. 4.
    Wing, D.R. and Robinson, D.S. Biochem.J. 106:667 (1968)PubMedGoogle Scholar
  5. 5.
    Nikkilä, E.A. and Pykälistö, O. Biochim. Biophys. Acta 152:421 (1968)PubMedGoogle Scholar
  6. 6.
    Nikkilä, E.A. Eleventh Conference on the Biochemistry of Lipids, Jerusalem, Israel 1967Google Scholar
  7. 7.
    Cherkes, A. and Gordon, R. S., Jr. J. Lipid Res. 1: 97 (1959)Google Scholar
  8. 8.
    Hollenberg, C.H. Am. J. Physiol. 197: 667 (1959)PubMedGoogle Scholar
  9. 9.
    Kessler, J.I. J. Clin. Invest. 42: 362 (1963)PubMedCrossRefGoogle Scholar
  10. 10.
    Schnatz, J.D. and Williams, R. H. Diabetes 12:174 (1963)PubMedGoogle Scholar
  11. 11.
    Nikkilä, E.A., Torsti, P. and Penttilä, O. Metabolism 12: 863 (1963)Google Scholar
  12. 12.
    Wing, D.R., Salaman, M. R. and Robinson, D.S. Biochem.J. 99: 648 (1966)PubMedGoogle Scholar
  13. 13.
    Novak, M. J. Lipid Res. 6:431 (1965)PubMedGoogle Scholar
  14. 14.
    Salaman, M. R. and Robinson, D.S. Biochem.J. 99:640 (1966)PubMedGoogle Scholar
  15. 15.
    Rodbell, M. J.Biol.Chem. 241:3909(1966)PubMedGoogle Scholar
  16. 16.
    Carlson, L. A. and Östman, J. Acta Med. Scand. 177:631 (1965)PubMedCrossRefGoogle Scholar
  17. 17.
    Gross, R.C. and Carlson, L. A. Diabetes 17:353 (1968)Google Scholar
  18. 18.
    Ho, R.J. and Jeanrenaud, B. Biochim. Biophys. Acta 144: 61 (1967)PubMedGoogle Scholar
  19. 19.
    Miller, L.V. and Beigelman, P.M. Endocrinology 81:386 (1967)PubMedCrossRefGoogle Scholar
  20. 20.
    Butcher, R. W., Sneyd, J.G. T., Park, C.R. and Sutherland, E.W. J. Biol.Chem. 241: l651 (1966)Google Scholar
  21. 21.
    Pitot, H. C., Peraino, C., Pries, N. and Kennan, A. L. Adv.Enzyme Reg. 2:237 (1964)CrossRefGoogle Scholar
  22. 22.
    Niemeyer, H., Pérez, N. and Rabajille, E. J. Biol. Chem. 241:4055 (1966)Google Scholar
  23. 23.
    Bewsher, P.D. and Ashmore, J. Biochem. Biophys. Res. Commun. 24:431 (1966)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press 1969

Authors and Affiliations

  • Esko A. Nikkilä
    • 1
  • Olavi Pykälistö
    • 1
  1. 1.Third Department of MedicineUniversity of HelsinkiHelsinkiFinland

Personalised recommendations